Superbase NG IDE
Quick Start Manual

How to Use the Superbase NG IDE

Neil Robinson

Superbase NG IDE Quick Start Manual: How to Use the Superbase

NG IDE

by Neil Robinson
Copyright © 2001-2017 Superbase Software Limited

All rights reserved. The programs and documentation in this book are not guaranteed to be without defect, nor are they declared to be fit for
any specific purpose other than instruction in the use of the programming language SIMPOL. It is entirely possible (though not probable)
that use of any sample program code in this book could reformat your hard disk, disable your computer forever, fry your dog in a microwave
oven, and even cause a computer virus to infect you by touching the keyboard, though none of these thingsisterribly likely (after all, aimost
anything is possible, it isjust that most things are extremely improbable).

Table of Contents

O [gL oo (01T o o H TSP SPPPTTRN 1
2. Getting Started with the SUPerbase NG IDEcoouuiiiiii e 3
Creating OUP FITSE PrOJECTiiiit ettt ettt ettt ettt e e e e e e e eanans 4
WItING OUP FITSE PrOQraM ...ttt ettt ettt e e et e e et e e e 6
BUITAING AN TESHING ... eeeei ettt et e et e et e et b e e e e 8
Making Incremental IMPIOVEMENLSuuiiiiitieeiiit et e et e e ettt e et e e e et e e eerb e e eeneaeeees 11
SUMIMIBIY ettt ettt ettt ettt et e et et et et e e e et et et e e et e e et r e e e e ean e eees 14

3. Writing Web Server Programs With SIMPOLc..uuiiiiiiii e 17
Converting OUr PrevioUS PrOJECTciiiitieiiiii ettt ettt e et e e e e 17
Preparing the WED SEIVEr ... et enes 20
USING ANOLNEr WED SEIVET ...ttt e et e 21

Getting and INStalling APACNEcoouiii e 21
ConfigUITNG APBCIE «..oee et ettt et e e et e e e at e e enba e aens 21
ConfigUuIiNg the SEIVICE ...t ettt e et e e e et e aeees 23

Restarting the Apache WED Server ... 25

Debugging @nd RUNNINGueiiiiieeeii et ettt ettt e et e e et e e et et e e e e et e e e entaaaeeenes 26
SUMIMIBIY ettt ettt ettt ettt et e et et et et e e e et et et e e et e e et r e e e e ean e eees 28

4. Debugging INto Library SOUrCE COUEcieuuiieieii et 29
DebUgQINg REVISITEAeuniiiiii ettt e e e s 29
Adding Library SOUICE COOEcceuuuueieiiie ittt ettt e et e e e 29
Debugging Library SOUMCE COOEcoeuuuiiiiiii ettt 30
Removing Library SOUICE COOEcouuuiiiiiiiecei et e 32
SUMIMIBIY ettt et e et et et et e et e et et e et e e et et et et e e et e e et reea e ean e eees 33

Chapter 1. Introduction

Thisbook isintended to provide aquick start guide for using the new Superbase NG IDE. Although in the process
some SIMPOL programming is covered, that is not the primary purpose of this book. Other books are provided
that cover SIMPOL programming.

The chaptersthat follow will describe the use of the IDE for programming standard applicationsthat are run at the
console and from within the IDE and also cover the creation of web server applications together with information
about downloading and installing the Apache web server. Although it is not necessary to use Apache to deploy
the resulting programs, Apache is an excellent web server and the debugging of web applications in the IDE is
currently only supported using CGl, not using the ISAPI or Fast-CGIl methodologies.

A large number of screen shots are used to explain the material and a step-by-step approach istaken with respect to
the actual creation of the programs. Please take the time to work through the tutoria s for the various programming
styles. It will be time well spent.

Chapter 2. Getting Started with the
Superbase NG IDE

When the Superbase NG Integrated Development Environment (IDE) first opens you will see a picture similar
to the one below:

<El SIMPOL
File Edit View Document Project Debug Tools Window Help

D& Ha ? o a g

=

" o2 Project View | ™8 Type View

ﬂ Hame [alus | i‘

L2 b

tocats fve 7 [EN o |l .

Lo

\Outputjﬂ Debug ;'\ Find in Files / “‘_1 1A

Ln 493, Col9

Theinitial state of the Superbase NG IDE.

Let's take alook around the interface and examine the various features. At the very top is the menu, and directly
below that thetoolbars. Although themenuisfixed, thetoolbarsare dockableand can be placed in variouslocations
in the main window frame. In the upper left corner is the project window, which provides two different views of
the project, the file view and the type view. To the right of that is the editor area which isan MDI area. Multiple
source code and other document windows can be opened in thisarea. If they are maximized they can still easily be
reached by clicking on thetab at the bottom of the areathat representsthe desired window (there are no tabsin this
picture since there are no documents opened). Next is the output panel, which contains the various output areas
as separate tab regions within the same area. This panel is where the results of a compilation or the running of a
program can befound. In the lower | eft corner isthe variabl e and object Watch panel. Unlike many common watch
windows, this one always shows al of the variablesfor the current function once the variables have been declared
intheflow of the program. The Metab is provided so that the object passed to an event procedure can be examined
easily (it does not need to be called Me in the function declaration). The last panel we seeisthe Call Stack panel.
This panel shows the current state of the program in reverse order. In other words, if the program started in the
mai n() function, and then called thei ni t () function, which called thei ni t _dat abases() function and
we stopped execution within the last function then the Call Stack panel would show the three functions in the
reverse order that we called them. Also, the Watch panel would contain the current state of the variables in the
i nit_databases() function. If we then clicked on one of the earlier functions, the Watch window would
then show us the state of the variables in that function.

Creating Our First Project

The IDE is avery flexible environment and it is easily adapted to look the way any one person wishes to work.
Panels can be turned on or off, they can be resized and rearranged. The toolbars can also be moved, undocked an
arranged in a different manner that may better suit the user. Please feel free to try things out.

Now that we have had al ook around, the smart thing to do would beto actually build something. Inthe next section,

we will build our first project, a very basic program that is designed to teach us more about the development
environment.

Creating Our First Project

To create a new Superbase NG project, select the New Project from the File menu. At that point, the following
window will be shown:

Mew project options

Project Output Type Project Source Code Type
{« zmp i sml f* zma " smu

Project location:

|:-::'\sim|:uo|'\|:umiects J

Froject name:

[“Wiapper over SIMPOL code file:

[Get properties from praject;

akK | Cancel |

The New Project Options window

In thiswindow we define the project name, project output type (s or snp), source codefiletype (sra or snu),
where the project should be located and what it should be called. The options in the lower half of the window are
advanced options that we won't cover at this time. In this example we will select the smp and sma options. The
sml option is for producing compiled libraries of types and/or functions for use by yourself and others. The smu
extension is for creating Unicode source files rather than ANSI ones. In the following examples we will only use
the ANSI source file types. Unicode can be very useful when working with characters from multiple code pages,
such as mixing Greek and western European languages, but is not available when working with Windows 9x and
is therefore not appropriate as the standard type for source files when supporting all platforms.

For the purposes of our first example, select the smp and sma options. Now click on the ... button next to the
Project location box. Beneaththe Pr oj ect s directory if nodirectory called "tutorial” ispresent then please create
oneusing the Make New Folder. Onceat ut ori al directory existsbelow the Pr oj ect s directory, select it and
click on the OK button. In the Project name box enter | ear n01. Do not add any extension to this, the resulting
programwill becalled| ear n01. snp, themain sourcefilel ear n01. sma and the project directory | ear nO1.
See the picture below for details:

Creating Our First Project

Project Qutput Type
* zmp il

Project Source Code Type
* sma " zmu

[

Project location;

I:-::'\simpul'\pmiects'\tuturial

|

Project nane:

IIeamEI'I
[~ ‘wrapper over SIMPOL code file:

I~ Get properties from project:

o]

Cancel I

The New Project Options window with the correct input for learn01

Clicking on the OK button will create anew project with the name"learn01". The project will be opened, themain

source file will be created, and the result will look something like the picture below:

File Edit View Document Project Debug Tools Window Help

‘DEAG e (& emad

Do [MRR|AZAK|LELD |+ m R[S

£ @ |

=l
=[] leam01.smj
=] leam1

L leaml1sma

"~ 08 Project View | Tyee View “Eleamtisma .
Narne [alue [-] lel i
=] "
[0][Locals A Me § K »] v

[14(41[¥][+|\ Output /i Debug), FindinFies / el []
Ready [niCod [[[W |
The Superbase NG IDE with the learn01 project created
Now that we have a project we can start writing the program code.

Writing Our First Program

Writing Our First Program

The first program will be avery easy one with very little real purpose beyond demonstrating various capabilities
of the development environment. Although the "Hello World" program is quite traditional, for this example we
have chose to create a program that outputs the current date and time. This has the necessary flexibility that is
required for our demonstration. The source code in its entirety is shown below:

function nmain()
datetinme dt

dt =@datetine. new)
dt. set now()

string s

s = .tostr(dt.year(), 10) + "/" + .tostr(dt.nonth(), 10) + \
"/" + .tostr(dt.dayi nnonth(), 10) + " " +\
.tostr(dt.hours(), 10) + ":" + .tostr(dt.mnutes(), 10) + \
" + .tostr(dt.seconds, 10)

end function s

Please type the program in, don't copy it from this document. The process of entering the source code will demon-
strate a number of the features that we will discuss as we continue.

Asyoutypeinthefirst part of the code, as shown in the following picture, a number of things may occur to you.
First, the various words and punctuation in the program appear in different colors. Color-coding of the source code
is quite common today and assists the reader in immediately being able to focus on the parts of the program that
are of interest aswell asvisually pointing out when things may have been doneincorrectly. Which colors are used
for what parts of the programming language are user-configurable. By default, language keywords appear in blue,
identifiersin black, stringsin red, data typesin cyan, operators in magenta, and comments in green.

learn0l.sma * - learnD1 = (@ [=
function main(}
dt

de =E

leam01.sma ...

Thefirst portion of the learn01 program

The picture above shows the inline programming help for the datetime type. Since the new() method is the only
item in the list, it is already pre-selected. Merely by pressing the tab key the text will be entered at the cursor
position. Regular use of this feature can greatly reduce the time it takes to write programs, as well as reducing
the number of typing errors.

Once the new method name has been entered when the open parentheses is typed the inline help shows the argu-
ments for the call to the method, as can be seen from the following picture.

Writing Our First Program

learn01.sma * - learn01

function main()
datecime dt

dt =€ datetime.new(

integer datetime

leam01.sma

Theinline help for the new() method

Even when using a variable that is declared to be of the type datetime such as in our program the properties and
methods of the object are shown by the inline help while typing the code. To select a different one than the first,
just type the first one or two letters until the correct one is selected and then press the tab key to have the rest
of theitem entered at the cursor position.

learn01.sma * - learn01

function main()
datetime dt

dt =@ datecime.new()
dt.

* dayinwesk
* dayinyear

* hours

* microseconds
* milliseconds
* minutes

* month

* seconds

* set

* setnow

- type

* year |

" leam01 sma

Theinline help for the datetime object

Every component in SIMPOL has inline help, such as theintrinsic function . t ost r () as seen in this picture.
In some cases, like that of functions, the help only shows which parameter is current and needs to befilled out as
well as information about its data type and possibly the parameter name and default value.

function main()
datetime dt

dt =@ datetime.new()
dt.setnaow ()

string s

s = .tostride.year(), 10

integer |number value
integer base

_ leam01.sma ...

Theinlinehelp for the. t ost r () intrinsic function

Now enter the remainder of the program as shown in the earlier source code excerpt. Once the entire source code
has been entered, it should look like the following picture. At this point we are ready to build and test the project.

Building and Testing

learn01.sma * - learn01

E=(Een T

de = tetime.new()
dt.setnow ()

(dt.year(),
dt.dayinmonth(), 10) +
dt.minuces(), 10) + ":"

tr(dt.hours(),) o+ Mmooy
= (dt.seconds,)

end function s

« [om r

[leam0tsma .

The complete source code for the first project

Building and Testing Our First Program

The next step is to compile the program and then we can run it. To build the program, select the Build item from
the Project menu as shown below.

=El SIMPOL - learn01.5ma * -

Eile Edit V¥iew Document Debug Tools Window Help
D=E G Build Ctrl+B a4 =, o
Rebuild All Ctrl+R
= leamD1 smj Execute Ctrl+E E@
leam01 Stop Building p
leami1 sma
B Stop Execution
Refresh Documents)
new ()
Settings
-] dt.year(),) nym ridt.monthi), poe Mo
dt.dayinmonth(),)+ r(dt.hours(),)+ +
(dt.minutes [}, joe memos (dt.seconds,)
end function =
< [r
33 Project View Iaam[H sma
ﬁ Narne [value |i‘ ﬁ 1
L=]
Locals /i Me | 1 » 4 b
Xl[x:\simpol\projects\tutorialllearndillearnol\learn0l.sma(3) : .tsotr -
| Warning: Type method not followed by '(' in the following line:
x:\simpoli\projects\tutorialilearn0lilearndlllearndl.sma(9): dr.seconds
End postprocessor
Successfully built
', Output j; Debug J, Find in Files 1K ¥
Build Project Ln1l, Col47

Building the first proj

The compilation succeeded as can be seen in the output window:

ect

Building and Testing

4 L1

leam01.sma ...

EJBEgin poOStprocessor. . .
Warning: Type method not followed by " (' in the following line:
x:\simpol\projects\tutorial\learn0l\learn0lilearn0l.=sma (9) : dt.seconds
End postprocessor

Successfully built

\Outputl.-{‘ Debug .}\ Find in Files I.-'r

%||Name [alue |A|| ﬂ|

Thefirst project successfully compiled

For now we will ignore the warning from the post-processing code, but normally it is agood ideato try and deal
with all of the warnings since they can otherwise result in runtime errors in the program. Now we can execute the
program by either selecting the Execute item from the Project menu, or else by pressing Ctrl+E. Aswe can see
from the picture below, the program had an error while executing.

ijuccessfully built

R R R R R R R R R AR AR AR R R R R R R R R AR AR R R R R R AR AR AR AR R R AR R R AR AR AR AR
-- 18:52:13 12/08/2009 ——-———-———-————m—m e
Executing "x:\simpoli\projects\tutorialilearnflibin\learndl.smp" ...
Error (40): Incorrect parameter type

\Output ."{. Debug ."'\ Find in Files l.-'r

Thefirst project fails with an error

Now that we have had an error, it istime to start up the debugger. Select the Start Debugging item from the Debug
menu. This can also be accomplished by pressing the F4 key.

SIMPOL - [learn01.sma - learnl

File Edit View Document Project Tools Window Help

D E g & | 75 Start Debugging 4 =,
1l] Stop Debugging Shift+F4
= E leam01 smj Continues Thread Execution F5
= leam1 Break Thread Execution Shift+F5
B leam01sma Show Next Statement Alt+Num *
Step Into F11
Step Over F10
Step Out Shift+F11

Run to Cursor Ctrl+F10 Ltostr|

Inserts/Remove Breakpoint F9 +

Set Mext Staternent

Thread Manager

Breakpoint Manager Alt+F9
Watch Shift+F9
Profile

<L

| 03 Project View | ™ Type View] leam 01 sma J

Starting the debugger

When the debugger starts, it first checks to see if the program has changed since it was last compiled and, if
necessary, saves the project (if that is one of the settings) and recompiles the project. Then it initializes SIMPOL,
loads and starts the program, and breaks execution on the first statement following the declaration of the mai n()
function, as shown below:

Building and Testing

SIMPOL - [learn0L.sma - learn01 < << DEBUGGING. Focus in thi

[File Edit View Document Project Debug Tools Window Help |
DEE@ G THmead oo ABRA | A e[BT EDe||
| x| |
function main()
=[] leam01
4 leam01.sma
s = dr.year (),) + (dt.month (),) o+ /o
dt.dayinmonth (),) > (dt.hours(], Joe oM o4
tridt.minutes (), poe o (dt.seconds,)
end function s
« [|
" 92 Proje... [®RTyee " leam01.sma ‘

The debugger stopped on the first statement

To single step through the code, press F10. We will eventually get to the line shown in the picture below:

[28 SIMPOL - [leam01 sma - lear01

[File Edit View Document Project Debug Tools Window Help AR

Deda BE & PHhag v MRa | 4 = E >HPFHRe 3 EERE
=l x|
W function main () -
=[] leamD1
9 leam01.sma
end function s
< [om r
" o2 proje. [METyee " eamd1 sma
X|[start debug mode -
Thread "1" starts
Output) Debug J Find in Files \ q IO
ﬁ Hame Tvae B ﬂ » main - x:\simpol\projects\tutorialllearn0i\learn0lile -
dt <object reference: 63385700314303000>
s <l
Locals j, Me [L« |] m b
Ready Ln11, Col 62

The debugger stopped on the last statement inside the function

Pressing the F10 key once more will result in an error that looks something like the following picture:

- -
| Besmttons

X|Error: a statement of function "main" was executed unsuccessfully
x:\simpol\projects\tutorialilearn0l\learn0lllearn0l.sma(9): s = .tostr(dt.year() , 10) + "/" + .tostr(dt.month() , 1(

3

| Cutput }, Debug £ Findin Fies

ﬁ oo ‘Value 1\learnOl\le =~
&t <object reference: B3385700514303000 W3 Debugging execution returns the following message:
s <nub K& -> Error (40): Incorrect parameter type

The program is halted with an error

The error number is 40, "Incorrect parameter type". If we take a closer ook at the source code, we can see that
the first parameter to the . t ost r () in the final segment of the last statement isdt . seconds. The error here
isthe missing parentheses, since seconds() isamethod of the datetime type, not a property. Let's now change
the source code to the correct syntax.

10

Making Incremental Improvements

function main |
dt

dr =G .mew i)
dt.setnow |

El

ostr(dt.yeari(), + "/m + .tostridt.month (),)+ Moy

.tostr (dt.dayinmenth (], + ™ " & tostr(dt.hours(), somamoLy
.costr (dt.minutes(), + "™:"™ + .tostr(dt.seconds(),

end function =

P 3

leam01.sma ..

The corrected program source

Now by pressing Ctrl+B (or by selecting the appropriate item from the menu) we can rebuild the program and by
then pressing Ctrl+E (or avalid alternative) we can execute the program. Thistime the program runs successfully
without errors, as we can see from the resulting picture.

X||Executing "x:\simpoli\projects\tutorialllearn0l\bin‘learn0l.smp" ...
AT program result —————-——————————————————

Successfully executed
\Output ."i Debug ."'\ Find in Files l.-'r

The program has run successfully

Upon careful examination of the output from the program, however, we can aready see that there is still some
improvement that can be made over the current version. The program output the string 2009/ 8/ 12 20: 0: 25.
Although the date might be considered acceptable, the time is certainly not going to be acceptable in the current
format by most people. In the next section we will improve the current program by making incremental improve-
ments and by making use of supplied library functionality that itself was writtenin SIMPOL.

Making Incremental Improvements

The reason why theinitial version of our program, though functional, was not acceptable is that the output was not
formatted in away the user may expect or desire. Part of the reason liesin the fact that to start with, we used the
SIMPOL intrinsic function . t ost r (). Although this function is quite useful, it isafairly low-level function and
does not provide awide degree of flexibility when formatting the result. For that reason, early in the development
cycle of SIMPOL, additional functions were written using SIMPOL itself to provide that sort of functionality.

Thereis currently alarge and ever-growing library of pre-designed functionality supplied with SIMPOL and in
most cases the fully commented source code of the library is also provided. Pre-compiled libraries are located by
defaultinthel i b subdirectory of the place where Superbase NG was installed. Projects are normally located in
the Pr oj ect s directory also located directly below theroot directory of the installation. The source code for the
various supplied libraries can be found in the Li bs directory located directly below the Pr oj ect s directory.

In order to improve the output of the program, we can use the STR() function found in the STR. sm library file.
This function includes the ability to format strings in exactly the same ways as those supported by the previous
Superbase product, except currently for a lack of support for scientific notation, which will eventually also be
supported. To access the functionality in thislibrary, we first need to add it to the project. Select the Settingsitem
from the Project menu.

11

Making Incremental Improvements

=El SIMPOL - [learn01.sma - learn01]

Eile Edit View Document | Project | Debug Tools Window Hel
il g P

O g é Build Ctrl+B 'y
1=l | Rebuild All Ctrl+R |
= leam01 smj Execute Ctrl+E
=[] leamD? Stop Building
] leamD1 sma - .

Stop Execution
Refresh Documents
Settings

cstr (dt.year(), 1+
.tostr (dt.dayinmonth (),
ostr (dt.minutes (), 1

Opening the Project Settings window via the menu

Thiswill display the Project Settings window.

Thiswindow is extremely important for creating powerful and successful applicationsusing SIMPOL. Theinitial
tab allows the setting of the source code file preference, assigning of command line parameters when running and
debugging in the IDE, and also provides amethod of selecting the SIMPOL components required by the project. If
acomponent isrequired but not selected, then it will not be available at runtime nor will the inline help assistance

Frqud.SEttings]
General 1 Includes and libraries I Targets] CGl]

Comand line: SIMPOL components

| Activate | Component i‘

] cai
Output file (*.smp, *.sml):] lugnc
|x:&<impol\pmjects\tmona\\leamm “bin\eam01.smp O isap
O el
Source code file preference Project output type [m] odbe
* sma " smu * smp " sml] ppos
feamor] O ppr
™ Make Fie O |sbme =]
s

The Project Settings window

work for the associated types and functions.

The second tab provides a place to define two important areas, on the left is the place that the include directories
are added (where the compiler will ook for included source code files during compilation) and on theright isthe
list of pre-compiled SIMPOL modules (* . sm 's) that are to be added to the project

Click on the Add button on the right side of the window and from the resulting file selection window, go into the

Project Settings
General Includes and libraries ITE@E‘S] caGl]

Include Folders: Add Remove (*.sml) Libraries to link: Add Remove
SIMPOL components sml use
oo

The Project Settings Includes and libraries tab

| i b directory and select thefile STR. s .

12

Making Incremental Improvements

Bl Select SIMPOL SML File
L b ~| « Bk Er

Name’ Date modified Type Size

= = e

L sendkeys.sml | sendmail.sml

|| sessionid.sml || sessionid2.sml
| shellexecute.sml || smtpclientlib.sml

| smtpdatelib.sml | sortlib.sml

| |sqgil.sml i |strsml

|| stringlib.sml L | timer.sml
| trim.sml | uisyshelp.sml

|| unittest.sml || urlendecode.sml

File name: |str.sm|

Files of type: |SIMPOL SML Compiled Files {*.sml)

The file selection window for STR. sl

Once the library has been added to the project, we can add a declaration for the type SBLNumSettings, which is
necessary inthe SIMPOL version of thisfunction because unlikein SBL and other BASIC derivatives, thereare no
pre-defined global entities such as Super base. Nuner i cFor mat . Ascan be seen from the following picture,
the inline help aso supports user-defined objects and functions. In this case the new() has been implemented in
such away asto alow default values for the object which the user can override by passing in other values.

main ()
me dt

m

ring s

r{dt.yeari),
dt.dayinmonth
tr (dt.minutes(),

end function =

< [»

-Ieamm Sma ..
Theinline help for the SBLNumSettings type

Continue modifying the code until it looks like the source codein theimage that follows. Wewill replace nearly al
instances of the function . t ost r () with thefunction STR() . Thiswill give greater flexibility when formatting
our numbers.

function maini)
d dr

s = .tostr(dt.year(), } + "/m . STR{dt.month(), "00", ns) + "/" &\
SIR(dt.dayinmonthi), "00", ms) + " "™ + STIR(dt.hours(), "00"™, na3) + ":" + \
5TR (dt .minutes (), "00", ns) + ":" + STR(dt.seconds(), "00", ns)

end function s

< [Lm »

- leam01.sma .. I

The reworked source code using the STR() function

Now we can rebuild the project by pressing Ctrl+B. Assuming that no typing mistakeswere made and that it builds
successfully, pressing Ctrl+E should successfully run the program and show the results in the output window,
which should look something like the following (obviously the actual date and time will differ).

Xl[Executing "x:\simpol\projects\tutorialllearn0l\bin\learn0l.smp" ...
[program result

2008/08/12 20:03:58

Successfully executed
\Output/{ Debug }\ Find in Files f

13

Summary

The output from the modified program

This time around the result looks much more reasonable than the earlier version. This solution still leaves some
open issues, such as dealing with date formats that use the name or the abbreviation of the month and the am/
pm style of time format common in English-speaking countries (and possibly elsewhere). The solution to this
is to use more appropriate functions for the formatting of the date and time. As it turns out, just as there is a
STR. sml thereis aso alibrary called SBLDat eLi b. sm and another called SBLTi neLi b. s , both of
which were written in SIMPOL and for which the source code is provided. These libraries are intended to be
directly compatible with the older SBL functionality and they contain functions that are in al capital letters,
such as DATESTR() , MONTHSTR() , TI MESTR() , and others. Asthe development of SIMPOL progressed we
created numerous libraries that reproduce the functionality from SBL aswell as producing more modern versions
of some functions. For example, one of the functionsincluded isthe LTRI M) () function. Thisfunction isadrop-
in replacement for the SBL function of the same name. There is also a function supplied called | t ri n() . This
function isabit more sophisticated than the SBL version, inthat it not only trims spaces, it also trimstab characters
and can be passed a string parameter to optionally trim any character contained within that string so that the user
can choose which characters should be trimmable.

Let's make some final improvements to the program. Reopen the Project Settings window via the menu
and in the Includes and libraries tab remove the STR. s and select instead the SBLDat eLi b. sm and
SBLTi neLi b. sm fromthel i b directory. Modify the source code to look that shown in the program listing
that follows:

function main()
datetinme dt
SBLI ocal edat ei nfo | di Local e
i nteger i M crosecondsi naday

| di Local e =@ SBLI ocal edat ei nf 0. new()
i M crosecondsi naday = 60 * 60 * 24 * 1000000

dt =@datetinme. new)
dt. set now)

string s

s = DATESTR(date. new(dt/i M crosecondsi naday), "mmm dd, yyyy", \
| di Locale) + " " +\
TI MESTR(ti ne. newm(dt nod i M crosecondsi naday), \
"hh: mm ss. s ant')
end function s

Again, just as with the STR() function, the date functionality requires some formatting information that was
globally present in SBL but which must be provided explicitly in SIMPOL. Thistime after building and executing
the program we can see that we are now able to finely control the formatting of the output.

2l|Executing "X:\simpol\projects\tutorialllearn0l\bin\learn0l.smp" .
AT program result ——————-—————————————————
Iugust 12 2009 8:32:14.658 pm

Sucecessfully executed
\Output ."{'. Debug .}'\ Find in Files I.-"

The output of the new program using date and time functions

Summary

In this chapter we have learned how to:

» Create anew project in the IDE
» Make use of theinline help

14

Summary

 Build and execute a project
» Debug a project
e Work with SIMPOL libraries (*. sl)

In the next chapter we will take our current project and learn how to modify it to output the results in aweb page
as aweb server application.

15

16

Chapter 3. Writing Web Server
Programs With SIMPOL

In the previous chapter, we built our first basic program in SIMPOL and learned how to use the IDE to do various
tasks. In this chapter, we will take that project and convert it into a web server application to output the same
information to aweb browser.

Converting Our Previous Project

As afirst step, we can save our project from the first chapter as a new project. To do so, open the first project in
the IDE and then select the Save Project As ... item from the File menu.

El SIMPOL - [learn0l.zma - learn01]

Edit View Document Project Debug Tools

Mew Ctri+M) =

Open... Ctrl+0

Close ion main()
Frime dt

Mew Project localedateis

Open Project Eoer iMicros

Close Project [Locale =@ 5

Save Project As... crogecondai

Save Cirl+5 @ datetime

Save As... setnow ||

Save All Eng s

Print... Ctrl+P DATESTR (dai

Print Preview TIMESTR (tir

Print Setup... bnction =

Recent Files k

Recent Projectspace P oma ..

Exit htutoriallle

————————————————————————— program result
Bugust 12 20089 8:32:14.658 pm

Snrreagsaefnl Ty avarntadd
Saving the project with adifferent name

Then give the new project the name | ear n02 and select thet ut ori al directory as the place to store it. This
will create a new project called learn02 with amain source filecalled | ear n02. sna.

Now start modifying the source code. Add acgi cal | cgi parameter inside the parentheses of the nai n()
function. Then add the include statement at the top as shown below and press Ctrl+S to save the document. The
result should look something like the following picture:

17

Converting Our Previous Project

SIMPOL - [learn02.sma -
Eile Edit Miew Document Project Debug Tools Window Help

DEET (B8 & 2Hhad =« MRE 4504 &

i)5
E|-" leam02.smj include "htmlheaders.sma"
E| leamD2
E‘E leam0? sma function main(cgicall cgi)

datetime dt
S5BLlocaledateinfo ldiLocale
integer iMicroszecondsinaday

m htmlheaders sma

ldiLocale =E S5BLlocaledateinfo.new||
iMicrosecondsinaday = = = :

dt =@ datetime.new()
dt.setnow |}

Adding an include statement

Note that the IDE has added a document as a child to the main document of the project but that the icon for the
document hasared X through it. Thisis because at this point the project does not have any ideawhere to look for
theincludefile. Tofix this, let'sopen the Project Settingswindow again and switch to the Includesand librariestab.

General Includes and libraries |Targe¢g| CGl |

Include Folders: Remove (*sml) Libraries to link: Add I Remove

- \simpoltlib\shldatelib sml
x:\simpollib\sbltimelib.sml

SIMPOL components:

Adding an include path

Now click the Add button on the left side of the window and select thei ncl ude directory that is directly below
the root of the Superbase NG installation directory. When you return, the window should look like the one below:

X

General Includes and libraries |Targets I CGl I

Include Folders: Add I Remave (*.sml) Libraries to link: Add I Remove

X \simpoltinclude’ 2 hsimpollib\sbldatelib .sml
¢ \simpolib\sbltimelib.sml

SIMPOL components:

The include path has been added

After clicking on OK theicon that previously was marked with an X is now back to normal.

18

Converting Our Previous Project

&l SIMPOL - [learn02.sma - learn0.

Eile Edit View Document Project Debug Tools Window Help

=gy =] g Thma o B e =
=
= leam02.smj include "htmlheaders.sma"
= leam02
=) E leamD2 sma function main(cgicall cgi)

me dt
ledateinfo ldiLocale
ger iMicrosecondsinaday

4 himlheaders sma

ldiLocale =@# S5BLlccaledateinfo.new()
iMicrosecondsinaday = = = =

dt =@ datetime.new|()
dt.setnow ()

s = DRTESTE (d
TIMESTE {

=.new (dt/iMicrosecondsinaday), "vvi
=.new (dt mod iMicrosecondsinaday),

4 |

Theicon now appears normally

Now double-click the included file and copy the constant value sHTM._ HEADER to the clipboard so that you can
pasteit into the main program file. The constant value can be used aslong asit has been defined prior to it's being
used. Sincethe SIMPOL compiler is asingle-pass compiler, that means that the file containing the constant needs
to beincluded at the beginning of the program.

lx
=) leam02 smj constant sHTML HEADER "Content-type: text/html; charset=iso -
=) leam02 constant sHTML NOCACHEHEADER "Content-type: text, 1l; charzet=iso
=) E leam2.sma constant sHTML UTFSHERDER ntent-type: text, charset=utf
E ey ry— constant sHTML UTFS8NOCACHEHEADER "Content-type: text/html; c
constant sHIML METANOCRCHE
constant sHTML METACRCHECCONTROL T | 1
constant sHTML METAENPIRESNOCACHE ME' H COMTENT="-1">{d}{a}"'
constant sXHTML METANOCACHE '<meta http-= ="Pragma" content="no-cache" />{d}{
constant sXHTML METACACHECONTROL '<meta http-e ="cache-control™ content="no-cache,
constant sXHTML METAEXPIRESNCOCACHE '<meta http-equiv="Expires" content="-1" />{d}{al’'
< [b
03 Project View |.I2 Type View] Ieamﬂz.sma... htmiheaders....

Opening the included file

At this point we need to add the code that outputsthe HTML page to the browser. Generally the second parameter
to the out put () method of the cgicall type will be set to 1, since currently most protocols require single-byte
characters. The first thing that needs to be output is the header (unless you are using cookies, then they have to
be first). After that the normal HTML code is output.

19

Preparing the Web Server

include "htmlheaders.sma"

function main(cgicall cgi)
datetime dt
ateinfo 1ldiLocale

r iMicrosecondsinaday

ldiLocale =@ SBLlocaledateinfo.new()
iMicrosecondsinaday = = =

dt = datetcime.new()
dt.setnow ()
tring s

1.0d", ldiLocale) + " "o,
himm:ss.s")

3 = DATESTR (date.new (dt/iMicrosecondsinaday), "
TIMESTR (tim=.new (dt mod iMicrosecondsinaday),

cgi.output (SHTML_HERDER,
end function

string string jt
integer charsize = 2 .
boolean lbo = .true

<4 [

- leam02.sma ... I'rl

Adding the code to output the header

Now complete the code as shown in the following picture. The final argument following theend functi on
statement is the empty string. This is because if it is not set to the empty string, the string representation of the
value. nul will aso be returned at the end of the HTML page.

include "htmlheaders.sma"

function main(cgicall cgi)

edateinfo ldiLocale
integer iMicrosecond=inaday
ldiLocale =@ SBELlocaledateinfo.new()
iMicrosecond=sinaday = = =

m

dt =8 datetimes.new()
dt.setnow)

string s
=z = DATESTER (dzte.new (dt/iMicrosecondsinaday), "vvyy.0m.0d", ldiLocale) + " ™ &+ %
TIMESTR (time.new (dt mod iMicrosecondsinaday), "hh:mm:=z=z.3")

cgi.output (sHTML_HEARDER,)]
cgi.output ("<html><body>The current date and time are:™ + = + "< /body></html>{d}{a}™,1)
end function ™"

4 mn b

leam02 sma .. |2 htmiheaders. .

The complete program code for our second program

Preparing the Web Server to Run SIMPOL
Programs

We generally recommend that people pull down and use the free Apache web server, if not for deployment at
least for development. Apache is the web server software that runs more than 64% of the world's web sites. It
isincluded in most Linux distributions and as part of Apple's Macintosh OS-X operating system. Thereisaso a
Windowsversion. At Superbase we use the Windows version for devel opment and testing and deploy onthe Linux
version. Wealso strongly recommend that if you intend to do web server development that you use WindowsNT 4,
Windows 2000, or Windows XP (at least until the Superbase NG IDE isavailable for other platforms). The reason
for thisis the heavy load placed on the operating system by the web server. A typical development environment
for SIMPOL web server applicationswould consist of aweb server running in the background, the IDE, adatabase

20

Using Another Web Server

server hosting database files via PPCS, either on the local machine or within the same LAN and a web browser
or several for viewing the site in different browsers. On top of that there may be an HTML development tool
like Macromedia's Dreamweaver and possibly a graphics package such as JASC's PaintShopPro. At any point in
time there may be three or more instances of the IDE running. All of this produces afairly large load on the older
Windows 9x operating system. If you have no choice, make sure that you carefully read the section on configuring
Apache below, since one of the settings can prevent everything from working at all.

Using a Web Server Other Than Apache

If you aready have a web server running on your desktop, then you need to consult the documentation for it to
find out how to run CGI programs using it. If the server runs as a service, you will need to open the Services
applet from the Control Panel and then modify the service entry for your web server to allow it to Allow service
to interact with desktop. Thisis needed if you wish to be able to debug your CGI programs in the Superbase NG
IDE. Then set it up to execute programs that end in thefile extension . snp as CGI programs. This may well need
to know the location of the program used to run the applications and its name. The name of the program varies,
depending on whether you are debugging or not. See the discussion of the Apache configuration below to learn
about the various issues.

Getting and Installing Apache

Asmentioned earlier, the Apacheweb server isafreely downloadable product whichis part of the offering fromthe
Apache Software Foundation (ht t p: / / www. apache. or g). To get the latest release (always recommended)
retrieveitfromht t p: // ht t pd. apache. or g. Thereisalso avery recent release included on the distribution
CD of Superbase NG in the Ext r as directory. Regardless of where you get it from, the first question you will
have to answer is, "Which version?'. Apache is available in three stable releases, versions 1.3.x, 2.0.x, and 2.2.x
at the time of writing. Apache 2 is areengineered version of the Apache 1.x web server with amajor effort having
been made to remove large pieces of the architecture from the web server kernel and place them into loadable
modules. All of the following documentation will be based on the Apache 2 web server, but the configuration
information isidentical for both so there should be no problem regardless of which isinstalled. Downloading the
web server is quite straightforward. Please use one of their mirrors closest to your location. If you can use the
* . mei version, please download that, since it is considerably smaller than the * . exe version. Once you have
downloaded it, run the package and accept all of the default values. The normal locationisC: \ Program Fi | es
\ Apache G oup\ Apache2. One of the questions that you will be asked on a Windows NT, Windows 2000,
Windows XP, Windows Vista, or Windows 7 operating system is whether to install as a service. We recommend
that you answer this question with ano. The reason for thisisthat as of Windows Vista, servicesrun in a separate
Termina Server instance and therefore cannot communicate with programs running on the desktop, which means
that the debugging facility of the IDE would not work.

@ Note
If thisis being installed on Vista or later, it is recommended to not install into the C: \ Pr ogr am
Fi | es directory. Thisdirectory is specially protected on Vista and trying to work with the config-
uration files of Apache within this directory may present considerable unnecessary problems.

Configuring Apache

Before we can run our program we also need to configure Apache. This section will discuss the changes that need
to bemadetotheht t pd. conf file.

@ Note

This section describes the minimal configuration required to develop and deploy web applications
using SIMPOL and should not be considered to be a replacement for reading and understanding the
documentation of the web server! Deploying a web server can be a complex operation depending
upon the level of useit is expected to sustain. Thereis an entire branch of the industry that handles
the deployment and maintenance of high-availability web servers for e-commerce sites. Please don't
confuse basic configuration of a single web server with the knowledge required to deploy a web
server that should be handling thousands of hits per second on a continuous basis.

21

http://www.apache.org
http://httpd.apache.org

Configuring Apache

After the web server has been successfully installed (no reboot of the computer is normally required), in the root
directory of the Apache installation there will be a number of directoriesthat concern us. These are;

e cgi-bin
e conf

e error

* htdocs
* | ogs

The cgi - bi n directory is where the programs normally reside. The conf directory is where the configuration
filescan befound. Theht docs directory isthe default location for your web site (to use adifferent oneisoutside
of the scope of this document, but see the section on virtual directories in the Apache documentation) and the
| ogs directory isthe place where the access and error logs are stored. The error log will be very important when
trying to figure out why some program isn't working correctly. Often some useful information will show up in the
log, such as an error message from SIMPOL.

Of the above, the er r or directory is not really covered here, but is worth a mention. If a page is not found on
aweb site, typically an error number 404, "File not found" is returned. That doesn't help the user al that much
and it can be far nicer to provide a replacement page that offers the user access to the site's search engine, etc.
or at least alink to the home page. Most web servers alow for this and Apache is no exception. Look into the
documentation on how to create your own error pages for the errors that might be worth handling yourself rather
than leaving them to the web server defaults.

To configure Apache for use in general, there are only a few changes that need to be made to the configuration
files that are created during installation. The first thing that you may need to change should only be changed if
you are running on Windows 9x. That is the following parameter:

W nNT MPM

ThreadsPer Chi |l d: constant nunmber of worker threads in the server
process

MaxRequest sPer Chi | d: maxi mum nunber of requests a server process
serves

<I f Modul e nmpm wi nnt . c>

Thr eadsPer Chi | d 250

MaxRequest sPerChild O

</ | f Modul e>

The number of threads per child should be changed to 6. For local development you won't need many anyway but
if you try and use the default the web server may fail to even start. The next item to changeisthe Ser ver Adni n
parameter:

Server Admi n: Your address, where problenms with the server should
be e-mail ed. This address appears on some server-generated pages,
such as error docunents. e.g. adm n@our-donai n.com

#

Server Adnmi n j ohndoe@ ohndoe_wor | d. com

Set the Ser ver Adni n parameter to your email address (or to whomever should be handling server problems).
The next parameter of importanceisthe Ser ver Nane parameter. If you don't have a DNS name for your work-
station, you can get around this problem by assigning a name and domain in the host s file which can be found
in the W NDOWS directory on Windows 9x machines and otherwise in the W NDOWE\ SYSTEM32\ DRI VERS
\ ETC directory on Windows XP and in the W NNT\ SYSTEM32\ DRI VERS\ ETC directory on Windows NT 4
and Windows 2000. In the worst case you can also aways use the namel ocal host to identify the machine. In
our exampleswe will usel ocal host inthe browser URLS s0 as to be unambiguous.

ServerNane gives the nane and port that the server uses to
identify itself. This can often be determ ned automatically, but
we recommend you specify it explicitly to prevent problens during

22

Configuring the Service

startup.

If this is not set to valid DNS nane for your host, server-
generated redirections will not work. See also the
UseCanoni cal Nane directi ve.

I f your host doesn't have a regi stered DNS nane, enter its IP
address here. You will have to access it by its address anyway,
and this will make redirections work in a sensible way.

HHOH O H HHH R

Server Name ww. nyt est domai n. com 80

The next parameter should need no adjustment at this stage. You may wish to experiment with it later. This
parameter isthe Docunent Root parameter.

Docunent Root: The directory out of which you will serve your
docunments. By default, all requests are taken fromthis

directory, but synmbolic |links and aliases may be used to point
to other |ocations.

#

Docurent Root " C:./ Apache2/ ht docs™

The Scri pt Al i as parameter for the / cgi - bi n/ directory is one of the more important parameters for our
project. That and the associated Di r ect or y parameter should be set up to look like the following:

ScriptAlias: This controls which directories contain server
scripts. ScriptAliases are essentially the sane as Ali ases,
except that docunents in the realnane directory are treated as
applications and run by the server when requested rather than as
docunents sent to the client. The sanme rules about trailing "/"
apply to ScriptAlias directives as to Alias.

H HOHHH HH

ScriptAlias /cgi-bin/ "C /Apache2/cgi-bin/"

#
"C. /[Apache?2/ cgi - bi n" shoul d be changed to wherever your
ScriptAliased CA directory exists, if you have that configured.
#
<Di rectory "C:./Apache?2/ cgi -bin">
Al | owOverri de None
Opt i ons ExecCd
Order al |l ow, deny
Al'l ow from al |
</Directory>

No other parameters are required, but if you intend to run SIMPOL programs outside of the cgi - bi n directory,
thenyouwill also needthe AddHandl er parameter. Now savetheht t pd. conf file. That completesthe Apache
portion of the configuration.

Configuring the Apache Service for Desktop Access

If you chose to install as a service (this does not work on Vista and later), to enable the ability to debug server
program within the Superbase NG IDE, it is necessary to configure the service to interact with the desktop. Open
the Control Panel , Select Admi ni strative Tool s and from within that group select the Ser vi ces
applet. When it starts the window should ook something like the following:

23

Configuring the Service

File Action View Help
- @ EDEB 2 »re 1w
% Services (Local) 5. Services (Local)
Apache2 Name / I Description I Status | Startup Type | Log On As | |
%Nerh&r Motifies sel... Manual Local Service B
Stap the service i Automatic Local System T
Bestart the service %Apﬁlcahon Layer G... Providess... Manual Local Service m
%Apﬂicahnn Manage... Providess... Manual Local System
Description: . %Autumatic Updates Enables th... Started Automatic Local System
Apache/2.0.47 (Win32) %Background Intellig... Usesidlen... Manual Local System
%C\ipBook Enables Cli... Manual Local System
%COM+EVEnt System Supports 5... Started Manual Local System
%COM+ System Appli... Manages t... Manual Local System
%Cnmpuber Browser Maintains a... Started Automatic Local System
%Crypbographic Servi... Provides th... Started Automatic Local System
%DHCP Client Manages n... Started Automatic Local System
%D\sﬁihut&d Link Tra... Maintainsli... Started Automatic Local System
?ﬁD\stribubEd Transac... Coordinate... Manual Metwork 5... v
Extended A Standard /

The Ser vi ces applet window

Double-click on the Apache2 service and on the second tab of the resulting window, checkmark the box entitled
Allow service to interact with desktop as shown below:

Apache2 Properties (Local Computer)

| General | Log On | Recovery | Dependencies |

Log on as:

{#) Local System account
Allow service to interact with desktop

{7 This account: | | Browse...

Pazzwaord: | |

LConfirm paszward: | |

You can enable or disable this service for the handware profiles listed below:

Hardware Profile Service
Profile 1 Enabled

Im
51}
[
[41]

The Apache2 properties window

Click OK to close the window and store the changes.

24

Restarting the Apache Web Server

@ Note
Although thereisasimilar littlebox inthe dialog in Vista, it does not do what it did before. It merely
allows the service to show dialogs that can be reacted to by the user, in a special mode of operation,
but it does not allow the service access to the session in which the user code is running, making it
useless for our purposes on Vista and later.

Restarting the Apache Web Server

Once the configuration is complete, if you are running Apache as a service you will need to restart Apache. If
you are using Apache 2, then in the Windows taskbar you will find an icon for the Apache control utility, which
looks like a white circle containing a triangle on its point and a red feather off to the left upper side. Below is
apictureto help you.

L " 1
” @) 0 syiii 11:53

The Apache 2 control icon
Left-clicking on theicon will provide amenu with the optionsto Stop, Start, and Restart. Select the Restart option.

If you are using Apache 1.3.x then you will find menu itemsin the Windows Start menu for stopping and starting
the web server. Stop the server and then start it again.

Alternatively, if you are running as a console application, you simply select the Start menu and navigate to the
location that says Start Apache in Console. To close Apache later, just click the Close gadget.

At this point you should be ready to start writing, running, and debugging SIMPOL web server programs. Before
you go any further however, you should open your browser and enter the URL htt p: // | ocal host/ . If you
don't see ascreen like the one bel ow, you may have made an error in your configuration of the Apache web server.
You will need to correct that before you can go on. Check the Apache documentation, and look at the log files.
They may tell you what iswrong.

\#) Test Page for Apache Installation - Mozilla Firefox

Eile Edit Wiew History Delicious Bookmarks Tools Help
@ T C' 7t H E @ =H http://localhost/
@ Dizable = & Cookies~ | €SS~ |- | Forms~ |& Images - @ Information =

_E| Test Page for Apache Installation

If vou can see this, it means that the installation of the Apache web server software on this system was successful. You may
now add content to this directory and replace this page.

Seeing this instead of the website you expected?

This page is here because the site administrator has changed the configuration of this web server. Please contact the person
responsible for maintaining this server with questions. The Apache Software Foundation, which wrote the web server
software this site administrator is using, has nothing to do with maintaining this site and cannot help resolve configuration issues.

The Apache documentation has been included with this distribution.

You are free to use the image below on an Apache-powered web server. Thanks for using Apache!

wered by

The Apache test home page

25

http://localhost/

Debugging and Running

Once you ensure that the web server is working, you are ready to go on to the final part of this tutorial, actualy
running and debugging your web server programs.

Debugging and Running Your Program

Finally, we are just about ready to actually run our web server program. There is only alittle more preparation
left to do so that we can run our program. First, to make our lives simpler, we need to add a secondary target for
the build process. We do that by opening the Project Settings window and this time selecting the third tab labeled
Targets, as shown in the picture below:

Project Settin

General I Includes and libraries Targets IDGI I

Targets: Edit/Add Target

Active Shebangline

The Targets tab of the Project Settings window

Click on the Edit/Add Target button. This displays the Target Manager window. On the left side of the window is
a place to store common target directory names. On the right is a place to store common shebang lines.

K

What's a shebang line?

In some operating systems, most notably UNIX, Linux, and now Mac OS-X, it is common to place
a specia type of comment at the beginning of a script that is marked as executable by the operating
system. This comment must be the first line of the script and begins with a comment symbol, the
hash mark (#) followed by the exclamation point symbol (!) (sometimes called the bang symbol —
presumably from itsusein comic books). This combination the "hash bang" has come to be known as
the shebang. Directly following this character combination is the path and file name of the program
that should be used to execute the script that follows. Programs that are aware of this convention
and which support it can use this method of determining the correct processing program so that the
script name aone is sufficient to run the script. The line must end with an end of line character that
iscorrect for the target platform. On Windows and DOS machines thisisthe carriage return linefeed
combination OXODOXOA. On UNIX, Linux, and Mac OS-X thisis OxOA alone.

Create a target such as the one shown in the picture below. Make sure to use the correct path names for wher-
ever you installed the Superbase NG product. You may wish to add the target directory and shebang lines to
the lists since you will probably use them often. In this case we are creating a debug target. The program called
sbngi decal | er. exe isused to make direct callbacksinto the IDE.

| Target Folder List Femave Shebang Line List: Remave |

JR gi-bin's HIC:4Program Files\SIMPOL bintsbngidecallerexeldHat
[it gimpol. combegi-bin', H#1C:\Program Filesh\SIMPOLNbin\SMGDT_3, Hal
e \simnpolsliny H#IC:\Program Files\SIMPOLAbin\SMPCGI 32 EXE{dHal

¥ Asimpol\projectshinternalssimpaltlib

Target Folder: Shebang Line:
J Ic.\ApacheZQ\cgi-bin\ J Iﬂ!C.\ngram Files\SIMPOLAbin\sbngidecaller. exe{dHal
Add to st | Add to st |
Target File Mame: |lean02.smp [V Activate Targst Cancel

26

Debugging and Running

Creating our new target for | ear n02. snp

Don't forget to activate the target! Then click the OK button to create the target and then the OK button to save
the changes. Finally, press Ctrl+B to rebuild the project and create the secondary target.

Now open a browser window if one is not still open and enter the URL htt p://1 ocal host/ cgi - bi n/
| ear n02. snp and pressthe ENTER key. The following picture should appear on your desktop if you are using
the Superbase NG redirector program called sbngi decal | er. exe.

—

) Request from web server to debug

Y "Clhpachel 2\cgi-binklearn02.smp".

Should the request be accepted?

Request to debug program

This message is from the IDE indicating that it has received a request to debug a program. If that program is not
the current one in your IDE the current project will be closed and the project associated with the program to be
debugged will be opened. At this point everything runs exactly the same as when debugging normally so we won't
go into the details of that. Simply click on the OK button and then press F5 to let the program just run through (it
shouldn't have any errorsin it thistime, if it does you now know how to find them ...). The result should show
up in your browser and look like the following:

3 Mogzilla Firefox

File Edit View History Delicious Bookmarks Tools Help

@ hd c ﬁ E E ;E http://localhost/cgi-bin/learnl2.smp

= http:/flocalhost/cgi-binflearn02.smp

The current date and time are: August 12 2009 10:26:41.194 pm

Our program output in the browser

@ Note
If more than one copy of the Superbase NG IDE are running concurrently then the first win-
dow that pops up will not be from the IDE about a request to debug, it will be from the
sbngi decal | er . exe program asking which copy of the IDE should receive the request to de-
bug. That window looks like this:

Select application

learnl . sma - learn0l
lear 13 - leaml2

ak | Cancel |

Request to select an IDE for debugging

Select the appropriate entry and then the debugging request message will appear.

27

http://localhost/cgi-bin/learn02.smp
http://localhost/cgi-bin/learn02.smp

Summary

Once the program works as it should, we can go back into the settings for the project and add a non-debug target
and deactivate the debug target. That way, if we ever need to work on the program again, our debug target is ready
to be used. Once you change the target type, don't forget to rebuild the project!

Genemll Includes and libraries Targets |CGI I

Targets: Edit/Add Target Remove Target

Active Shebangline

c:hapache. 2\egi-bintleam0z. smp

Adding a non-debug target

Summary

In this chapter we have learned how to:

» Save an existing project as a new project

» Add an external source file to our program with thei ncl ude statement
* Add include directories to our project definition

* Useaconst ant inour code

» Convert aprogram to work as aweb server application

* Retrieve, install, and minimally configure the Apache web server

* Work with targetsin the IDE

» Debug aweb server application

In the next chapter we will learn about debugging intothe source code projects provided for most of the SIMPOL
libraries.

28

Chapter 4. Debugging Into Library
Source Code

In the first chapter, we built our first basic program in SIMPOL and learned how to use the IDE to do various
tasks, including basic debugging. In this chapter, we will learn how to debug into the source code of one of the
supplied libraries.

Debugging Revisited

Debugging a program is an important aspect of the development process. Since so many parts of Superbase NG
are delivered as libraries, it is important to be able to assess what happens to your program when it goes into
one of those libraries, especialy if you think that there is a flaw in the library itself. Another important aspect
isto learn how the libraries are written, and see how they work. This can be a useful tool for learning about the
programming language. Using the Superbase NG IDE you can debug into any library for which the source code
(asaproject) isavailable.

Adding Library Source Code

The first step in the process is to add the library source code to your project. We will use the source code from
theinitial project in Chapter 2, Getting Started with the Superbase NG IDE. To add the source code from another
project to the current one, in the project tree view right-click the root node of the tree. From the resulting pop-
up menu select, Import Modules From Project.

Jx

| Fimetinn main il

Add MNew Module
Import Modules From Project ldiLocale
) psecondsinaday
Build
Rebuild All
Execute -naday = ;)
SEtti”gs SOew)
Properties
=
= = DATESTE| .new (dt/iMicros
TIMESTR | .new (dt mod iMi
end function =

Project context menu

In the resulting file open dialog, select the project file for the library. In this case, we will use the
SBLDat eLi b. snj project file.

29

Debugging Library Source Code

=El Open SIMPOL Project File (3w
Look n: | J. SBLDateLib ~| & BckEr
Mame . Date modified Type
| bin 21/08/201214:26 File fold:
| 5BLDateLib 20/08/201210:34 File fold:
103 5Bl DateLib 21/08/201214:26 SIMPOL
a4 T 3
File: name: |SBLDateLib Open
Files of type: | SIMPOL Project Files (".smj) 1 Cancel

Open project window

Thiswill add thelibrary project into the current project asamodule. Projects|oaded in thisway cannot be modified,
the source code is read-only. Once it has been added, the IDE will retrieve the function and type information, and
add it asamodule to the tree.

=~ .
L=y == g THhaod 8h oM |4
=l
— leamD1 smj function main()
= [leamO1 R w
E' leam1 sma SEL edateinfo ldiLocale
H n SBLDateLib integer iMicrosecondsinaday
ldilocale =@ SBELlocaledateinfo.new()
iMicrosecondsinaday = = = =
dt =¢ datetime.new()
dt.setnow ()
string =
s = DATESTE (date.new (dt/iMicrosecondsine
TIMESTE (time.new (dt mod iMicroseconc
end function s

Project after importing a module for debugging

Debugging Library Source Code

Now that the project code has been imported, if we now expand the entry for SBL Datel ib and double-click on the
SBL Datel ib.smaitem, that will open the sourcefilein the editor. Next wewill place abreak point at the beginning
of the DATESTR() function, so we can debug inside the call to the library function.

30

Debugging Library Source Code

heEdd BRAE e g
= x
=] leam01.smj
=15 leamD1
9 leam01 ema o N .)
=-IF] SBLDatelib s will be either "", some stri
Eﬂ SELDateLib.smz times, or the date formatted a

function DATESTR (da

b

te dt, string format, SEBL1
7 tmp, £, tmp2, lformat, tmp3
retval

1 done,
n bdayz,

bDays, bMonths, bYears
bmonthz, byearfirst

if ldiLocale
ldiLocale =
end if

retval mn

Setting a break point in alibrary function

Aswedidinthefirst chapter, press F4 to enter debugging. Then press F5 to run the program. Almost immediately
the program execution should halt with the line containing the break point highlighted, as shown below:

== Slemadg R % |
=
=-I® leam01 smj
=] leam(
] leam01.sma

=] 5BLDateLib
] SBLDatelibsma

her mnw

thi , Some str
e date formatted

function DATESTR (dace dt, string format, S

ne tmp, £, tmp2, lformat, tmp3
retval
i, 1, iPos, iXtraSeps
dispf

done, bDays, bMonths, bYears
n bdayz, bmonthz, byearfirstc

if ldilocale
ldiLocale =&
end if

retval = ""

Code execution halted at the break point

At thispoint, we can start single-stepping through the code, examine the variables, and evaluate what is happening
to the code. In the beginning of the function most of the variables will be equal to . nul , since they have been
declared but nothing has yet been assigned to them.

Tip

@

If you are debugging code that is working with a multi-threaded system, such as that provided by

the SIMPOL Application Framework, then you may need to switch to the correct thread before any

debugging commands will work or the variables are shown in the list. To do this select Debug —
Thread Manager and in the window select the correct thread, then click on the Set Focus button.

Thread Manager

Thread ID Suspend

*00000001

T

=

Location

DATESTR

Suspend
Resume
Set Focus

31

Removing Library Source Code

Thread Manager dialog window

Further into the function, as shown in the following image, the variables can be seen to the right in the watch
window and the call stack is shown in the window below that.

Bl SIMPOL - [SBLDateLib - lean0l | <<<<< DEBUGGING. Focus in thread 1 » >335] = R
Fille Edit View Document Project Debug Tools Window Help NEE
DEE@ & Twmeg ooRA e KEE (s MR E0e |3 B EEs
] |l
else if bDays and bMonths and bYears and .instr("dmyzO", tm =
= gq:;;; - 11 ust do nothin Mame \Va\ue H
1 leam01 sma bDays false
= [P SBLDateLiv not i bianths false
[sBLDateLibsma ¢ tme) bYears false
. ST character So OUTPUT What we nave bayz talse
dispf (dt, £, ldilocale, iPos, byearfirst)
+ we have to establish brnonthz false
byearfirst false
dispf <object reference: SBL
done false
dt <object reference: 734
f mmmm
format mmmm dd, wyyy
i 5
iPos 2
itraSeps 0
| 13
iXtraSeps = iXtraSeps + IdiLocale <object reference>
else ltarmat mmmm do. Wy
tmo = tmo3 ¥ retval
e : tmp |
98 Project View | Type View [leamD1 -lea_ [SBLDateLib]| EN| |
ﬂ + |#l> paTESTR - X:\simpol\projects\libs\SBLDateLib\SBLDatelib\SBLDat
b main - X:\simpol\projects\tutorial\learn0l\learn0l\learnOl.sma
- 10:18:17 24/10/2012 —-mmmmmmmmmmmm e
Start debug mode
Thread "1" starts E
Thread "1" stopped in function "DATESTR":
X:\simpol\projects\libs\SELDateLib\SBLDatelib\SBLDatelib.sma (82) & -
Qutput) Debug f Find in Files Ikl | 4 i b
Ready Ln 143, Col 35

Debugging showing the variables and call stack

By double-clicking on a function further down the call stack, the point in the code that called the next function
further up the call stack can be displayed, and the state of the variablesin that function can be shown.

== BO |

cES{MPDL - [learn01 - learn01 | <<<<< DEBUGGING. Focusinthreadl >>>3>]

[File Edit View Document Project Debug Tools Window Help &
D& & Twmeod A e E = s BT EUue |3 |E(EE
T =l
function main|()
= IE‘”}:;;B‘% de MName [value H
B leam01.:5ma nfc ldilocale cht <ahject reterence: 6341
= IF] SBLDatelio iMicrosecondsinaday iMicrosecondsinaday | 86400000000

[SBLDatelibsma

" o2 Project View | ™8 Type View

ldiLocale

, ""mmmn

am"
end function =

< v

[eam0 -kear..[[5 SBLDateLb

IdiLocale
El

<ohject reference>
<.nul>

[

Start debug mode
Thread "1" starts

x|
Sl R KRR KRR KRR R R R R KRR R main -

10:19:17 24/10/2012

- (= —
3 > DATESTR

m

Thread "1" stopped in function "DATESTR":
X:\simpoliprojects\libs\SELDatelib\SBLDatelib\55Lbatelib.=ma (82):

Output) Debug

Ready

Find in Files 4 i3 < m

X:\simpol\projects\libs\SBLDateLib\SBLDatelib\SBLDat ~
|\t

Ln14, Col 87

Debugging showing the variables at a different call stack position

Removing Library Source Code

Once the debugging exercise with the library source code is complete, it is beneficial to remove the project from
the tree, since each time debugging is entered, the IDE must analyze the source code from the library project as

32

Summary

well asthe development project, which slows down development. To remove the project, right-click on the module
node in the project tree, and select the menu item Remove Modul e from the pop-up menu.

D Ed

SE
= leam 01 smj
= leam01
£ leam01.sma
o I
- Rename Module
Properties
d |

'
(=

S T e o dh o e

/S There are even more complications. Superbase doe
{ when the format contains the z character. It res

f swallows from the day or month and inserts it atc

Remove Module | _______

Create SIMPOL File ng — This will be either "", some 3tring con

or more times, or the date formatted as a st
and the locale information passed.

function DATESTR (date dt, string format, SELlocaled
scring tmp, £, tmp2, lformat, tmp3
=T retval
in r i, 1, iPo=, iXtraSeps
f1 on dispf

n done, bDays, bMonths, bYears
lean bdayz, bmonthz, byearfirsc

@ if ldiLocale
ldiLocale =

end if
4|

[EHleam - lea... [SELDatelib ...

Summary

Removing the imported source code module

In this chapter we have learned how to:

» Import alibrary project to allow debugging into its source code
» Usethe Thread Manager to select the correct thread
» Removealibrary project module once it is no longer required

Now itstime to open up some of the sample projects and try them out. Have fun!

33

	Superbase NG IDE Quick Start Manual
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started with the Superbase NG IDE
	Creating Our First Project
	Writing Our First Program
	Building and Testing Our First Program
	Making Incremental Improvements
	Summary

	Chapter 3. Writing Web Server Programs With SIMPOL
	Converting Our Previous Project
	Preparing the Web Server to Run SIMPOL Programs
	Using a Web Server Other Than Apache
	Getting and Installing Apache
	Configuring Apache
	Configuring the Apache Service for Desktop Access
	Restarting the Apache Web Server

	Debugging and Running Your Program
	Summary

	Chapter 4. Debugging Into Library Source Code
	Debugging Revisited
	Adding Library Source Code
	Debugging Library Source Code
	Removing Library Source Code
	Summary

