Superbase NG Quick Start Guide

A Fast Introduction to Devel-
opment with Superbase NG

Neil Robinson

Superbase NG Quick Start Guide: A Fast Introduction to Develop-

ment with Superbase NG

by Neil Robinson
Copyright © 2009-2017 Superbase Software Limited

All rights reserved. The programs and documentation in this book are not guaranteed to be without defect, nor are they declared to be fit for
any specific purpose other than instruction in the use of the programming language SIMPOL. It is entirely possible (though not probable)
that use of any sample program code in this book could reformat your hard disk, disable your computer forever, fry your dog in a microwave
oven, and even cause a computer virus to infect you by touching the keyboard, though none of these thingsisterribly likely (after all, aimost
anything is possible). It isjust that most things are extremely improbable.

Table of Contents

T g0l 4 = o | PP PR PP iX
Copyright TNFOIMELTONoieeie et e e e e e e e iX
DISTIAIMIES .ottt et e e e e e e iX
New Versions of thisS DOCUMENTcoiiiiiiiiiiii et iX
SOFIWEAIE USEO ...ttt e s iX

O | gL oo (0 1o o RO UPPTTR SO 1
Who Should Read ThiS BOOKcccuuuiiiiiiiieiiiiiie et 1
Superbase NG and SIMPOLcoouuiiiiiii e e eens 1
Conventions Used in ThiS BOOKoooiiiiiiiii e 1
WHY SIMPOL? <.ttt ettt e et e e e et e e eera e eeees 1
Running SUperbase NG Programsuieeeiiiiieeiii ettt e e e 2
Deploying Superbase NG Programsccuuieeiiiiieeiiiii et 2
SUMIMBIY ettt ettt et et et e e et e et et e e e e e ena s 3

2. What's in the PaCKAE?oeeeiieieii et 5
OveErview Of the ProdUCEuuiiiiiii e 5
The SUPErDAse NG IDEcooeiiiiiiiiii et e 5
SUPErDAsE NG PEISONELc.uuuiiiiiiiieiii et et e et e e e 5
C-Language Components and RUNtIME FIlESooiiiiiiiiiiii e 5
SIMPOL Language Libraries and SamplesScoouuiiiiiiiiiieiiiiece e 6

SIMPOL Language Libraries (*. S) ... 7
Supplied Superbase NG PrOJECESccoevuiiiiiii e 11
DOCUMENEALION ...ttt ettt ettt ettt e et et e e e e e ena s 18
L0 L= PP P PP PPPTTI 19
Superbase Conversion ULHITIESooeuuiiiiiiieei e 19

3. GEING SEAIMTEeeeee ettt e e e e een 21
THE ESSENTIAIS ... e 21
Preparing Our ENVIFONMENTo..uiiiiiiiei et e e e e 21
Command Line PrOgramsScoeeuuuiiiiiiie ettt et e e e e enaes 22
Dial0g-StYI€ PrOQramsS ... et 22
Database GUI APPHICALTIONScoeeitieiiiii ettt e e 22
WED Server APPHICALTIONScieeeiieei e e 22
SEVEr APPIICALIONSeeitie e 23
Converting from SUPEIDASEcouuiiiii e 23

4. ComMMENG LiNE PrOgraITIS .. .ceiiiieiiitiiee ittt ettt e e et et e e ene e eeneas 25
Building @ Command Line Programieieiuiioiiiiieeeei et 25
FITSE SIS .ottt 25
Understanding the COOEuu it 28
RUNNING OUI PrOJECE ...ttt ettt et e e e e enaes 28
IMProVIiNG OUF PrOGIEIMceeieieieii ettt e e e e et e e 28
RUNNIiNG the FiNal VEISIONooiiiiiii e 31
SUMIMBIY ettt ettt ettt et e et et e e e e e e e r et et e ean e eees 32

5. Dial0g-StYl€ PrOgraImIS .. .ceeviieiiiti ettt ittt e et e et e e et eeebe s 33
What's @ Dialog Program? ettt 33
The SamPIE PrOGramcooeeiieeii et e 33
Creating the PrOJECTeiiiiiie et e 33
Creating the DESIONuueiiiiii ettt e e et e e e e 34

SEtiNG the SEBOE cieeie e 36
Adding the ControlS to the FOrM ... 36
Cleaning ThiNGS UP ..ouuuiiiii ettt et e e e eens 40
SAVING ThE FOIMM .euiiii e 44
Adding the Form Source to the Projectcoouuiiiiiiiiiii e 44
Setting Up the Programooou e 46
Getting the Basic FOrM RUNNINGuiiiiiiiii e 47
Finishing the Color Lal Program ... 49
SUMIMBIY ettt ettt ettt r et et e r et e e e e e e e n et e e ean e eees 52

Superbase NG Quick Start Guide

6. GUI-Style Database PrOgramSiuu. e e e e e e e e e e e e e eanes 53
g1 0o [0 ot [o U SPPRTPPPIN 53
Creating the PrOJECEu.iiii i e e e e e e e e e e 53
Create the Datahaseoovvviiiei e 53
BUIlAiNg the FOIM ... e e e e e 57
The Program COOEuiiiiieii e e e e e e e e et e e et e et e e e eanaas 60

The Mai N() FUNCHONii e e e e e 61
The addresshookappliCation TYPEuiiiniiii e e 62
The Remaining Initialization Codecccuiiiiiiiiiiiici e 65
Preparing the FOMM ... 69
The FiNIShed ProdUCLooiiiiiei et e s 70
F NV o o AN o | I 3 T 71
SUMIMIBIY .ttt e e e e e e e e 72
P07 01070 [o] o T o= 73

7. SIMPOL BUSINESS ...cetuiiiiiiiiiee et e et e et e e et e e e e e e e e et e e e et e e e e e et e e ee et e e eeeteaeas 75
g1 0o (8o [o KSR 75
SPECIAl FEALUIESuuiiii i e ettt e et e e e e e e e e e e e e et e e e 75
Working With the dataformldetailblockcooveiviiiiiiiii e 76

About the Design of Detail BIOCKSoiiiiiiiiiiiiiiiece e 76
Adding New Records to Detail BIOCKScccuiiiiiiiiiiiicicccin e 76
Editing Records in a Detail BIOCKccocvuiiiiiiiiiiicii e 78
Deleting Records in a Detail BIOCKooevviiiiiiiiiiicce e 79
Usingthedri | 1 down() FUNCLIONcoooiiiiii e 80
Storing Data Correctly in Modern Windows SyStemscc.uveviieiiiiieiiineiiiieeneeeiees 82
SUMIMIBIY .ttt e e e e e e e e e e e e 83

S Y @ IS o= PP 85
About the SIMPOL PPCS Server Programsuveeuueeeiiieeeieeeineesiieeaneessnneesnneesnnnns 85
The Configuration FilEoiiii i e 85

The[Server] Section of the Config Fileccooeiiiiiiiiiii e, 85
The[Fi |l es] Section of the Config Fileccovviiiiiiiiiii e, 86
Working With Si MPOI SEI VI . EXE .iiiiiiii i e e 87
Working With gui Si MPOI SEIr VeI . EXE .iiviiiiiii i e 88
RUNNINg Si MPOIl SErver. Xe @S a SAIVICE ...iiuui i e e e e 88
SIMPOL SEIVEr SUMMEIY ...euiiiiiie ettt e e e e s e e e e e e e e e e eanns 90

9. WED SEIVEN PrOGIaIMIS ... iiiiiiii e i e e et e e e e e e e e e e e e e et e e et e et e e aaneeaannas 91
Introducing World Wide Web Server Programmingc.cceeeiiieiiiiiiiiiieiiiieeiie e 91
Styles of Web Server APPliCatioNoceuniiiii e 91
Vauable Reading References Within the SIMPOL Documentationcceevvvvvevnnnnnn. 92
Sample Web Server Applications Shipped with SIMPOLcocoiiiiiiiiii e, 92
The Web Server "Sandwich” Methodooviiiiiiiiiii e 93
Web Server AppliCation SUMMAIYcocuiiiiiiiiii e e e e 93

F0. SEIVEr PrOQIAIMIS «..iiuiiiii it e e e e e et e e e e e e e e e e e e 95
ADOUL SENVEr PrOgIaMS .. ovueiiiieiiieeee e et e e et e e e e e e e e e e et e e e e e et e e st e e et e eenaees 95
ACCESSING SEIVEL PrOGraMS ...ovvuiiiieiiiie et e et e e e e e e e e e et e e et e e et e e et e eateeeaneaeenaes 95
Sample TCP/IP Server and Client Programscooceveiiiiiiiii e e e 95
Server Programs CONCIUSIONiiueiii e e e e e e e e e e e e e e e e e e et e e ean e eanees 95

11. Converting LegaCy SUPEIDESEc.uuiiiii i e e e e e e 97
LTAY L= = (o TN 2= o 1 o 1 97
How Superbase NG DIffersccouiiii e e 97
SO What's the GOOU NEBWS?ciiiiiieiiii et e e e et e eeata e aees 99
Converting Superbase Databases to Superbase NGccoocviiiiiiiiiini e 99
Converting the FOMMScoe e e e e e e e eaes 101
Creating the APPIICALIONciiiiii e e e e e 103
RSl 00100 Y 104

List of Tables

1.1. Superbase NG Runtime Loaders

1.2. Superbase NG RUNtIME COMPONENESceuuueiiiiiieeeiii et e et et e e e e eeene e eeenes

5.1. Control Naming Conventions

5.2. Event Handling Function Naming ConVENiONSuueiiiiiieeiiii e

Vi

List of Examples

4.1 Initial version of Ur 1 dUMP. SIMB .oooieiiieiii e 27
4.2. Updated usage() FUNCLIONiiiiiiieieii e 29
4.3. THE PArAMELENS TYPE ... ieeie ettt ettt ettt ettt et e et e e e et e e e ebe s 29
4.4. The Final Version of the mai N() FUNCHONuiiiiiiiiiiiii e 30
4.5, SAMPIE COMMEANG ...ttt ettt ettt e e ettt e et et e et et e e e eent e e e eenaaeeees 31
5.1. Themai n() Function of the colorlab Programccooeiiiiiiiiinie e 46
5.2. The remaining Empty Functions of the colorlab Programcccooveiiiiiiieiiiiiiciiineees 47
5.3. The Full Implementation of the adj ust f or ncol or val s() Function 49
5.4. The Code for the hexval _ol f () anddecval _ol f () Functions..............ccoeeeeuneeennn. 50
5.5. Handling the Events for the Color Edit CONtrolSooviiiiiiiiiiiic e 50
5.6. Handling the SCroll Bar EVENEScooeuiiiiiiii e 51
5.7. Extracting the DigitS from String ValUESccoovuiiiiiiiiiieii e 52
6.1. The mai n() function of the PrOgramc.uuiiiiiiii e 61
6.2. The addressbookappliCation tYPEu i 62
6.3. The apPIiCALION TYPEeieeiii ettt e e e e e e 62
6.4. The Code to Create a New addressbookappliCationovveeeiiiiiiiiiiiieiii e 63
6.5. The Code fOr the MeNU Bariiiiiiiiiiiii e 65
6.6. The Code fOr the MENU Bari it 66
6.7. The Code fOr the TOOI Barvoiiiiiieiiiiie e e 66
6.8. The Code for the Tool Bar COmMDO BOXESuiiiiiiiieiiiiii et 68
6.9. The Code for the Tool Bar INitializationooeeiiiiiiiiiiiiie e 69
6.10. The pr epaddr esshookf or m() FUNCHIONccouvuiiiiiiiiici e 69
6.11. The ab_onnewr ecor d() FUNCHIONuiiiiiiiiieiii e 70
7.1. Theaddor der | i ne() function of the SIMPOL BuSINess programc.oeeeevvnneeeens 77
7.2. Theaddor der | i ne() function of the SIMPOL BuSIiNess programc.oeeeevvneeeens 78
7.3. Theaddor der | i ne() function of the SIMPOL BuSINess programc.c.oeeeevvneeeens 79
7.4. Thefindcust onmer () Function for the Orders Formccccooiveiiiiiiieiiiiiiieceeees 81
7.5. Thefi ndcust omer () Function for the Orders FOrmccccooiieiiiiiiiiiiiiiiiccieeees 82
8.1. A Sample SIMPOL Server Configuration Fileccoiiiiiiiiiiiiii e 85
8.2. A Sample svcrunnr. exe Configuration Filecoooiiiiiiiiiii e 89

vii

viii

Important

Copyright Information

This document is copyrighted (c) 2009-2016 Superbase Software Limited and is not permitted to be
distributed by anyone other than Superbase Software Limited and its licencees.

All trandlations, derivative works, or aggregate works incorporating any of the information in this
document must be cleared with the copyright holder except as provided for under normal copyright
law.

If you have any questions, please contact <i nf o@i npol . conp

Disclaimer

New

No liability for the contents of this document can be accepted. Use the concepts, examples and other
content at your own risk. Asthisisanew edition of this document, there may be errors and inaccura-
cies, that may of course be damaging to your system. Proceed with caution, and although thisis highly
unlikely, the author(s) do not take any responsibility for that.

All copyrights are held by their by their respective owners, unless specifically noted otherwise. Use
of atermin this document should not be regarded as affecting the validity of any trademark or service
mark.

Naming of particular products or brands should not be seen as endorsements.

Y ou are strongly recommended to take a backup of your system before major installation and backups
at regular intervals.

Versions of this Document

Newer versions of this document will undoubtedly be released from time to time. It is recommended
that you always ensure that you have the latest version of the documentation. Normally the latest
version will be included with any update of the main product.

Software Used

This book was written using DocBook v5. It was initially written and edited in the <oXygen/> editor.
A single sourcein XML is used to produce the book in HTML, HTML Help, and in PDF formats.

Chapter 1. Introduction

This book provides a quickstart guide for doing development using Superbase NG. It is intended as
a quick introduction to the various components that make up the Superbase NG package, as well as
providing a number of introductions for various methods of using the product.

Who Should Read This Book

If you are just getting into Superbase NG development and want a high-level introduction to the parts
that comewith the Superbase NG product, then thisbook isagood placeto start. It beginsby describing
the various pieces of the product and then goes on to explain various approaches to working with the
package depending on the type of project the user is planning.

Superbase NG and SIMPOL

The name of the product is Superbase NG. That includes the development environment, Superbase
NG Personal, the compiler, the code libraries, runtime system, etc. The name of the programming
language is SIMPOL. As such, you may see things talk about SIMPOL instead of Superbase NG but
they will be normally discussing thelanguage, not the product. Still itissafeto think of thetwo asbeing
almost interchangeable. Much of the Superbase NG product is built using the SIMPOL programming
language.

Conventions Used in This Book

Throughout the book, various conventions are used to identify items such as program code, file names,
datatypes, etc. Af i xed- pi t ch fontisused for those sorts of things. Blocks of codeare normally set
off asaseparate section, and have agray background. Emphasized items aretypically in anitalic font.

Why SIMPOL?

The design ideas behind the SIMPOL programming language and the development tools associated
with Superbase NG are adirect result of years of exposureto customer program code. We have looked
at what worked well, at what caused problems, and have made many very strongly discussed decisions
about fine pointsin the product. The goal for SIMPOL isto provide a powerful, yet easy-to-learn and
use programming language. A common problem in the past has been that the programming languages
that were easiest to start with did not enforce enough discipline to ensure that the products that often
grew from those early simple programs were able to be maintained and extended. As aresult, a pow-
erful product might wither from alack of resourcesto improve and support it, beyond a certain level of
complexity. Thedesign of SIMPOL promotes code reuse, careful design, and at the same time does not
require an understanding of fairly arcane conceptsin order to get started. It allows for both object-ori-
ented and functional programming styles, and these can be mixed and matched where appropriate.

Another guiding principle for SIMPOL was that of being cross-platform. By designing the language
to hide the vast majority of platform-specific issues, applications can be written once and run without
change on other platforms.

Finally, inthe heritage of numerous productsfrom the mid-80'sthrough the mid-90's, aconscious effort
was made to provide higher level toolsthat assist people who may not have been trained programmers
to succeed in solving their own problems. At the same time, we chose to build the tools in SIMPOL
itself, so that they can be easily extended. By producing variouslayers of decreasing complexity within
the same tool chain, people can enter into the development process at the level with which they are
comfortable, and still grow and progress over time to more complex layers of the product if they
choose. We found that although there are products that exist that allow easy development, they often
become dead ends when the desires of the user exceed the capabilities of thetools. At the other end of

Running Superbase NG Programs

the spectrum, there are many complex tools available on the market for doing devel opment, but most
are simply too difficult for people who are not programming for aliving.

Running Superbase NG Programs

When Superbase NG isinstalled on Windows, an association is created between the* . snp file exten-
sion and the location of thesnpr un32. exe loader program. That meansthat any SIMPOL program
can be run from the command line simply by typing its name, or by double-clicking it in Windows
Explorer. If the program is a GUI-style program, then it will display a terminal window when the
programisrun. To avoid this, you can create ashortcut for the program that usesthesnmpwi n32. exe
loader program.

On Linux, the binary executables should normally be placed in the / usr/ bi n/ directory, and the
loadablelibrariesinthe/ usr /1 i b/ directory. That meansthat programs can be run simply by using
the snpr un loader program without referring to itslocation. Thereisno special GUI loader program
for Linux, asnoneisrequired. If desired, a shebang line can be added to the beginning of the* . snp
file and the file made executable, and then the program can be run directly, as on Windows.

Deploying Superbase NG Programs

Once you have completed a program using Superbase NG and wish to distribute the results, you need
to make sure that you include all the pieces necessary together with your compiled program. Since
Superbase NG provides a component architecture, only the components required to run your applica-
tion need to be redistributed with it. These files can be found inthesi npol \ r edi st directory. The
essential componentsinclude the application |oader, the core SIMPOL language library, and your pro-
gram. In addition, if you used any components, then the associated library files must also be included.
There are various loaders, depending on the type of program you are running. Below isalist of them:

Table 1.1. Superbase NG Runtime L oaders

Application Type L cader L cader for
for Win32 Linux x86
CGIl —Web Server Applications snpcgi 32. exe snpcgi
Fast-CGl —Web Server Applications snf cgi 32. exe snf cgi
ISAPI — 1S Web Server Applications sm sap32. dl | N/A
Console Programs snprun32. exe snprun
GUI Programs smpwi n32. exe snprun
Loader to call SIMPOL Functionsas DLL Calls smexec32. dl | N/A

There are two different loaders for regular programs on Windows; this is because Windows differs
between programs that have their own window, and programs that do not. On Linux, all programs
share the same |oader program (except for specialized programs such asweb server applications). The
list of required libraries, arranged by component, is shown below:

Table 1.2. Superbase NG Runtime Components

Component Required File(s) Win32 Required File(s)
Linux x86
Web Server Applications sncgi 32.dl | I i bsmpol cgi . so
LXML — XML Doc- sm xm 32.dl 1, i bsmpol I xm . so,
ument Object Model iconv.dll,libxm2.dI, Uses the libxml2 support
libxslt.dll,zlibl.dll from the distribution
ODBC - SIM- snodbc32. dl |
POL ODBC Client

Summary

Component Required File(s) Win32 Required File(s)
Linux x86
PPCS - SIMPOL Mul- snppcs32. dl | I i bsnpol ppcs. so
ti-User Database Client
PPSR — SIMPOL Mul- snppsr 32. dl | | i bsnpol ppsr. so
ti-User Database Server
SBME - SIMPOL Sin- snsbnme32. dl | I i bsnpol sbne. so
gle-User Database Client
SLIB —SIMPOL Shared Li- snsl i b32. dl | i bsnpol slib.so
brary Access (*.DLL, *.s0)
SOCK — SIMPOL snmsock32. dl | I i bsnpol sock. so
TCP/IP Socket Support
UTOS - SIMPOL snut 0s32. dl | | i bsnpol ut 0s. so
File System Support
WXWN - SIMPOL smwwn32. dl |, ['i bsmpol wxwn. so,
GUI Components wxbase28u_vc_sinpol . dl I, pl us the wxW d-
wxmsw28u_adv_vc_si nmpol . dl I, gets runtine
wxXnsw28u_cor e_vc_si npol . dl | package for
2.8.x for the
di stribution

@ Note
The only item listed above that cannot be distributed simply asalibrary fileisthe PPSR
component. Thisis the code that implements the multi-user database server. To distrib-
ute the server, it is necessary to buy the appropriate database license and then use that
registration number to install the Superbase NG database server engine on the customer's
computer. Copying the PPSR component's DLL will result in the engine simply not
working at all. It requires a correct installation with a valid registration number.

Summary

Sincethisisaquick start guide, as a starting point, it may be agood ideato take a quick look at what
camein the package, and to divide it up into various areas.

Chapter 2. What's in the Package?

Overview of the Product

Superbase NG includes the following major sections:

» The Superbase NG IDE

 Superbase NG Personal

» The C-Language Components and Runtime Files

» The SIMPOL Language Libraries and Samples

» The Documentation

» Genera Utilities and Conversion Utilities for Legacy Superbase

Let'slook at each of these itemsin more detail.

The Superbase NG IDE

The Superbase NG IDE is the place where program coding, compiling, and debugging are done. It
is a carefully designed environment that closely supports the efforts of the programmer. For more
information about this tool, it is recommended to read the first chapter of the SIMPOL IDE Quick
Start Manual [http://www.simpol.com/docs/tutorial/], and for specifics about configuring the IDE see
the Superbase NG IDE Users Guide [http://www.simpol.com/docs/ide/].

Superbase NG Personal

Superbase NG Personal is used for various things. It hosts the rapid application development (RAD)
tools, such as the database table creation/modification tool, the display and print form designers, the
graphic report designer, and a front-end for the reporting system. It also supplies a number of useful
facilities, such as import/export, the ability to do basic data-entry into database tables (either through
formsor inrecord view), reorganize utility, dataupdatetool, |abelssystem, etc.. In many cases, projects
will begin in Superbase NG Personal and after the database tables, forms, and reports have been cre-
ated, then the programmer will switch to building abasic program in the I DE to display the forms and
to respond to events. Superbase NG Personal is not currently available as a separate package and it
cannot currently be copied to other computers, it is part of the full development product.

C-Language Components and Runtime Files

SIMPOL is designed as a component-based architecture. Only the components required for a given
program need to be distributed with that program. The pure minimum for a SIMPOL program is a
loader and the core language library. The various components are listed below, including the Win32
and Linux filenames (when available):

» smpol — core language library — (snpol 32. dI | ,1i bsnpol . so)

» shsort — sorting orders for database components (ppcs, ppst, sbme) — (sbsort 32.dl 1,
|'i bsbsort01l. so)

» CGIl — CGl support — (sntgi 32. dl | ,1i bsnpol cgi . so)

e ISAP— ISAPI support (Windows-only) — (smi sap32. dl |)

http://www.simpol.com/docs/tutorial/
http://www.simpol.com/docs/tutorial/
http://www.simpol.com/docs/tutorial/
http://www.simpol.com/docs/ide/
http://www.simpol.com/docs/ide/

SIMPOL Language Li-
braries and Samples

e LXML — XML and HTML DOM support — (s xm 32.dl | ,| i bsnpol | xm . so)
» ODBC — ODBC client support (Windows-only) — (snodbc32. dl |)

e PPCS — multi-user database access using the PPCS protocol — (smppcs32.dl1,
| i bsnpol ppcs. so)

 PPSR — multi-user database server providing the PPCS protocol — (snppsr32.dl1,
| i bsnpol ppsr. so)

» SBME — single-user database engine— (snsbne32. dl | , 1 i bsnpol sbne. so)

e SLIB — shared-library function access (*.dll's and *.so'sy — (smslib32.dl1,
| i bsnpol slib. so)

» SOCK — TCP/IP socket objects, client and server — (snmsock32. dl |, 1 i bsnpol sock. so)

» UTOS— tilitiesfor file and operating systems— (srmmut 0s32. dl | , 1 i bsnpol ut 0s. so)

« WXWN — GUI objects and functions using wxWidgets — (smwxwn32.dl 1,

| i bsnpol wxwn. so)

Of the items listed above, only the PPSR component requires a separate license (and installer) for
distribution.

The following list contains the various loaders; again the file names are provided, first the Win32
file name and then the Linux file name. The debugging versions of the loaders are not intended for
redistribution:

» smexec — the DLL loader program for loading SIMPOL language libraries from other program-
ming languages — (snmexec32. dl 1)

» smpcgi — the CGI loader program — (snpcgi 32. exe, snpcgi)

e smgdl — thedebug CGI loader program — (sngdl_32. exe, sngdl)

» smfcgi — the Fast-CGl loader program — (snf cgi 32. exe, snf cgi)

» fcgdl — the debug Fast-CGl loader program — (f cgd1l_32. exe,fcgdl)

» smprun — the console |oader program — (snpr un32. exe, snpr un)

» smpdl_ — the debug console loader program — (snpd1_32. exe, snpdl_)

» smpwin — the Windows GUI loader program (not needed by Linux) — (snpwi n32. exe)

e smpwl — the debug Windows GUI loader program — (snpwl_32. exe)

SIMPOL Language Libraries and Samples

In keeping with our company philosophy of making sure that we use our own products (to keep usin
touch with the needs of the customers), many of the lower level and higher level objects and functions
are written in the SIMPOL programming language. Many of these are provided as full source code
with the entire project code as samples.

The SIMPOL language componentsarefound inthe\ | i b directory for inclusion in projects. Most of
them have equivalent SIMPOL language projectsinthe\ pr oj ect s directory. Programming samples
are also primarily found in the \ pr oj ect s directory. In the\ sanpl es directory there are three
subdirectories, each of which contains SIMPOL source files (but not projects), except for one that
contains SBL programs. The SBL programs demonstrate methods of calling SIMPOL from SBL, one

SIMPOL Language
Libraries(*. sm)

of which determines the dimensions of a JPEG image, the other makes the operating system "File
Open" and "File Save" dialogs usable from an SBL application. There are also a group of bitmap
resourcesinthe\ r esour ces directory. Finaly, inthe\ i ncl ude directory areincludable SIMPOL
source files for defining useful constants, such as standard error values, or for working with specific
libraries. The list of standard libraries continues to grow. In the following sections we will look at
what is provided in more detail.

SIMPOL Language Libraries (*. snl)

abs. sm — Implements the ABS() function for returning the absolute value of a number or
integer

appf ramewor k. smi — Implements afairly powerful application framework for creating GUI-
style database-based applications

bool str. sm — Thisprovidesfunctionsfor converting boolean and datetime valuesinto strings
and also the reverse

bzi p2. sm — Thisprovides functions that wrap the BZi p2. dl I compression library

cal ceval . sml — Providesafunction that can evaluate a string containing aformula and return
the result

cal clib.sm — Provides abasic calculator that can be popped up and which returns the final
result

codepagesl! i b. sm — Code page conversion library for converting to and from various code
pages

col or pal ette. sm — Provides ablob based storage for an image palette

commonr eport gui . sm — Library containing the types and functions used to produce ele-
ments for the report system, such as the filter dialog, calculation dialog, and the sort order dialog

conflib.sm — Library of functions for reading from and writing to configuration files in the
Microsoft INI file format

consol el i b. sm — Library containing the tConsole type for creating console-style progams
that allow interaction with the user.

dat abasef or ms. sm — Data-aware form library providing the primary interface for working
with data-aware forms and form controls

datetinelib.sm — Collection of functions and types used to provide conversions from and
to dates, times, and datetimes, in various formats

dblli b. sm — Basic stub library that should never be called directly but which actsas a supplier
of information to the IDE during development when using thet ype(db1t abl e) family of type

tags

dblutil.sm — Database utilitieslibrary with routines for copying records, creating and main-
taining system tables, etc.

dbconverter.sm — Import/Export conversion library with support for ASCII-Delimited,
CSv, XML, SBM, and PPCS

di spl ayf or mat . sm — Diaogsfor retrieving the desired display format for various datatypes

drill down.sm — Diaog for allowing interactive search against an index in a database table
with display of requested columns and return of selected record

SIMPOL Language
Libraries(*. sm)

dxflib.sm — Function to convert AutoCAD DXF files of a specific style into Windows
bitmaps

errornmsgs_en. sm — Library that converts an error code into a an English-language message
that describes the error

fastset.sm — A set object that alows elements to be string indexed objects of any type,
implemented using red/black trees

filesyslib.sm — Functionsfor working with elements of afile system, such as parsing path-
names, retrieving the current directory, etc.

filtergui.sm — Providesthe selection filter GUI functionality

formib.sm — Functions and types for loading and saving data-aware forms and for saving
forms as source code

gaugel i b. sm — Provides various progress gauge dialog types

graphi creportlib.sm — Provides types and functions that implement a banded report
writer for use with SIMPOL databases for output to window or printer

httpclientlib.sm — Objectsfor retrieving items from the web using GET or POST

i eeel i b. sm — Contains function for converting to and from 4-byte and 8-byte |EEE floating
point format

i magel i b. sm — Functions and typesfor reading and writing imagesin BMP and XPM format
i nt.sm — Implementsthel NT() function for converting a number to an integer

j peglib.sm — Currently only supplies functions for determining the dimensions of an image
in JPEG format

j son. sm — Providesfunctionsand typestowork with JSON-encoded data, including converting
to and from SIMPOL

| abel slib.sm — Implements a mailing labels package including defining, saving, loading,
and printing of labels

i bxm . sm — Implements the Document Object Model Core Level 1 and 2 and part of 3 plus
XSLT transforms and XPATH by working with the LXML component

l'ists.sm — Utility library providing various strutural types, such asnodes, lists, rings, queues,
and stacks

| ogmanager . sm — Utility library providing a mechanism to allow multiple threads to write to
atext-based log file by providing a queuing system and a function to process the queue

Itrimsm — Implementsthe LTRI M) function to trim spaces from the left of astring

mat hl i b. smM — Contains various math functions such as pi (), sqrt(), sin(),cos(),
tan(), and more

nrulib.sm — Provides alibrary of types and functions for working with most-recently-used
lists, including loading and saving to INI files and managing a submenu

netinfolib.sm — Contains functions like get user nane() and
get conmput er name_w n32()

obj set.sm — An early implementation of a set object based on binary trees, but new code
should usethef ast set . sni library or theinternal set type

SIMPOL Language
Libraries(*. sm)

odbc2. sm — Helper library for working with the ODBC client functionality that is part of the
SIMPOL ODBC component

pad. sm — Implements the PAD() function to right-fill a string with spaces to a specified size
(or to truncate if it exceeds that size)

par senum sm — Isacontribution from a member of the SIMPOL community and provides a
function that converts numbersinto words (in English), commonly used in check writing programs

printformib.sm — Contains useful functions for printing to window or printer, like
printwxform(),printrecord(),andprinttext()

propertybrowser. sm — Thisimplementsaruntime property browser that can be very useful
in tracking down the value of objects at runtime (supervisor functionality)

gl. sm — Thisisthelibrary that implements the query optimizer for the SIMPOL report engine

qui ckreportlib. sm — Containstypesand functionsthat implement the light-weight report-
ing functionality called Quick Report that can output to window, printer, database, clipboard, and
other targets and which can create, save, and load the reports

random sm — Provides the random type for use in generating pseudo-random numbers
recor dvi ew. sm — Providesarecord view implementation used by the application framework

regi strylib.sm — Contains the win32registry type that provides methods for reading and
writing the Windows registry

reorglib.sm — Functions for reorganizing (repacking) databases in the SIMPOL database
engine format (*. sbm)

repguil i b. sm — This provides the Quick Report front-end for user programs

repl ace. sm — Providesther epl ace() function for replacing all instances of one substring
with another in atarget string

reportlib.sm — Contains the types and functions that implement a base reporting system
used by more sophisticated wrappers such as Graphic Report and Quick Report

rsal i b. sm — Contains functions and types for working with RSA encryption, including key
generation, encryption and decryption

sbhi sl i b. sm — Functions for working in a CGI environment, such as Ht nl | ncl ude(), or
Ht M Read()

sbl dat el i b. sm — Implements functions for working with dates and for formatting dates as
strings
sbl ext en. sm — Includes a conversion of functions from a Superbase sample library of the

same name and which may be helpful when converting from Superbase

sbl I'i b. sm — Functionsare provided that represent various FN-style functionsfrom SBL, such
asFN Dec(),FN _Fact (), etc.

sbl | ocal edat ei nf 0. sm — Contains the SBLIocaledateinfo type for use with the date for-
matting functionsin sbl dat el i b. sm

sbltimelib.sm — Functions for formatting times as strings and converting strings back to
time values

sbngl i b. sm — Contains useful types and functionsfor interfacing with Superbase NG Person-
al, such asrings of data sources and tables, and an object for managing wxformoption objects

SIMPOL Language
Libraries(*. sm)

sendkeys. sm — Thislibrary implements a SENDKEY S functionality for Win32

sendmail .sm — Provides the sendmail () easy wrapper function to the
sntpclientlib.sm functionality for sending text-based SMTP emails

serialize.sm — Thislibrary implements a serialization mechanism for storing objects at
runtime and reloading them later

sessi oni d. sm — Functionsand typesfor creating and manipulating session | Dsusing cookies
for web applications

sessi oni d2. sm — Functions and types for creating and manipulating session 1Ds without
cookies for web applications

shel | execut e. sm — Wrapper around the Windows API call for loading the appropriate ex-
ecutable for agiven file type, ie. Acrobat Reader for * . pdf files

si mpol | i b. smM — Contains functions that use meta-capabilities of SIMPOL to provide func-
tionslike: f i ndf uncti on() andi sproperty()

smtpclientlib.sm — Email functionality viaSMTP

snt pdat el i b. sm — Implementation of a date formatting function that accepts format strings
using the standard SMTP date format

sortlib.sm — Various sorting algorithms such as Insertion sort, Quick Sort (iterative and
recursive), etc.

soundl i b. sm — Provides sound playback functionality that is currently Windows only
sql 1. sm — Thelibrary providing a SQL92 report engine for SIMPOL databases
str.sm — Providesthe STR() for formatting a numeric value as a string using a pattern

stringlib.sm — Numerous functions that implement useful string handling functionality,
including par set oken(),ltrim(),rtrim), etc.

t abl evi ew. sml — Provides atable view implementation used by the application framework

timer.sm — Providesatimer typethat can call an event handler either once or at intervals and
which runsin a separate thread

trimsm — Containsthe TRI M) function

ui syshel p. sm — Various functions and types for providing standard system defaults, such as
system colors, default fonts, display size, etc.

uni ttest.sm — Basic unit testing library that helpsin running regression tests
ur | endecode. sm — Functions for doing URL-encoding and URL-decoding

urllib.sm — Providesthe URL type and the par seur | () function for parsing a URL into
its component parts

ut f 8l i b. smM — Functions for converting from and to UTF-8 format

uuencode. sm — Functionsfor doing uuencode, uudecode, base 64 encoding and decoding and
quoted printable encoding

val . sm — Implementsthe VAL() function

vol at abl e. sml — Provides afairly full implementation of a database that only existsin mem-
ory. Compatible to the sbmel family except for table modification

10

Supplied Superbase NG Projects

e wi ndowsenai | | i b. sm — Containsadatatypefor sending email by using the Windows script-
ing host

 wi nfil edl g. sm — Providesawrapper to the open and save dialogs from the operating system
that can be called viathe smexec32. dl | from a program such as Superbase

e xm i b.sm — Provides a number of useful programs for parsing and evaluating XML strings
and can be used to enhance the functionality provided by | i bxm . sm

Supplied Superbase NG Projects

Superbase NG ships with alarge number of sample projects. Many if not most of the libraries listed
above are included as source code projects. Below is abasic description of the directories containing
projects:

Console Projects

Theconsol e directory houses projects that demonstrate basic functionality and are meant to be run
from the console;

» convert — Demonstrates acommand line program for converting end of line charactersin text
filesfrom DOS (CRLF) to Linux (LF) annd aso to the older Macintosh format (CR)

* hel | 0 — Theusua "Hello World" program

» ppcssel ect key — A command line program for selecting a specific record from atable on a
PPCS server and then showing the content of that record.

e ur | dunp — A command line program for retrieving a page from the World Wide Web and either
storing it in afile or dumping it to the console.

XML Document Object Model (DOM)

The DOMdirectory contains a sample program that fully exercisesthe XML DOM

e |i bxm _exanpl e — Contains 14 tests that demonstrate the various features of the XML DOM
support in SIMPOL

Examples

The exanpl es directory contains GUI programs, TCP/IP sockets programs, and samples of using
thel i sts. sm library. To begin with, the sockets examples are a pair of projects. The cl i ent
project and the ser ver project are designed to work together to demonstrate transferring afile from
aserver to aclient upon request of the client.

e cl i ent — Demonstrates using a TCP/IP-based client program to connect to a server and to com-
municate with it, including receiving both text and binary data.

» server — Shows how to create a custom TCP/IP-based server program that implements a basic
protocol and which then acts upon connections and can send and receive text data and which then
sends binary data.

There are four samplesthat demonstrate the use of varioustypesfromthel i st s. sm library. These
are:

* | i st sanpl e — Thisexample demonstrates how to usethelist and listnode typesin order to wrap
existing objects and possibly add information to them in addition to managing them in alist.

e ri ngsanpl e — This example demonstrates how to use the ring and listnode types in order to
wrap existing objects and possibly add information to them in addition to managing themin alist.

11

Supplied Superbase NG Projects

e dli st sanpl e — This example demonstrates how to use the dlist and dlistnode typesin order to
wrap existing objects and possibly add information to them in addition to managing themin alist.
Both dlist and dring types are better choices when you need to insert or delete from the list or ring,
since they are more efficient in these operations.

» dri ngsanpl e — This example demonstrates how to use the dring and dlistnode types in order
to wrap existing objects and possibly add information to them in addition to managing them in a
list. Both dlist and dring types are better choices when you need to insert or delete from the list or
ring, since they are more efficient in these operations.

There is asingle example that shows the use of the dataforml type family and which loads any valid
formstoredasan* . sxf file(openingthe datasourcesthat arereferenced in the form) and then allows
the browsing of records using the form. That exampleis:

» dat af or ms — Loads and allows the browsing of datain any valid form

The udt menber opsanpl e project explains the implementation and use of the SIMPOL member
operator (!) in a user-defined type. It is an advanced topic, but can be useful depending on the com-
plexity of the application being devel oped.

» udt menber opsanpl e — demonstrates the use of the SIMPOL member operator in a user-de-
fined type

The remaining projects in this directory all demonstrate various capabilities within the GUI controls
provided viathe wxWidgets library.

* ol e2excel —isasample program that demonstrates the use of OL E2 automation to open Excel,
create an Excel workbook, add data, select and cal culate that data, create a chart, and then read the
results back out into SIMPOL

» wxdi al og — isavery small program that demonstrates the use of the wxdialog type to create a
modal dialog and wait until it is closed or the OK is pressed.?

* wxdi al og2 — isavery small program that demonstrates the use of the wxdialog type to create
anon-modal dialog and wait until it is closed or the OK is pressed.

* wxdi al 0og3 — isavery small program that demonstrates the use of the wxdialog typeto create a
modal dial og using the standard buttonsfeature, and then waitsuntil it isclosed or the OK ispressed.

» wxdi al og4 — isavery small program that demonstrates the use of the wxdialog type to create
anon-modal dialog using the standard buttons feature, and then waits until it is closed or the OK
is pressed.

» wxf or 8 —isaminimal program that demonstrates the use of the wxform and wxwindow types
to display aform in awindow and then wait for events.

* wxf or ns2 — isasmall program that demonstrates the use of the wxform and wxwindow types
together with agroup of form controls on the form that allow modification and include sample data.
Pressing the button will evaluate the selections and content from the various form controls, close
the window and return that as aresult.

* wxgri d—isasmall program that demonstrates the use of the wxgrid including various aspects
of using the grid control.

* wxnenu — isaminimal program that demonstrates the use of the wxmenubar, wxmenu, and wx-
menuitem types to create a basic menu bar that shows the various features supported and to add
that to awindow.

e wWxWi ndows — demonstrates the minimal amount required to create a window on the screen and
then wait for events.

12

Supplied Superbase NG Projects

wxwi ndows2 — creates four different windows of various styles. Closing any of the windows
closes all of them and ends the program.

Forms Examples

The f or s directory contains some more sophisticated form-based GUI examples. One of them
shows various controls in a number of configurations, the other is a dedicated import program that
can import from PPCS data sources into SBME. It was originally designed to assist the conversion of
applications from Superbase into SIMPOL.

Games

deno — demonstrates the use of the various features that SIMPOL provides via wxWidgets.

i mport ppcs2sbme — implements an import program that makes use of PPCS, SBME, plusthe
GUI components via wxWidgets.

The ganes directory is meant to contain example game programs. The first one included shows the
object-oriented implementation of the classic worm game.

wor m— Usesaminimal set of libraries to produce a basic version of the classic worm game.

Libraries

The largest number of samples can be found in the Li bs directory, which contains projects that im-
plement reusable functionality either as functions or types.

ABS — implements the ABS() function for returning the absolute value of a number or integer

appf r amewor k — provides afairly powerful application framework for creating GUI-style data-
base-based applications

bool st r — formatting library for converting boolean and datetime values to string and back
bzi p2 — compression library wrapper for the BZip2 compression format and the BZi p2. dl |

cal ceval — library for evaluating a string and parsing and carrying out the calculation formula
and returning the result

cal cl i b — library that displays a calculator and that returns the result of the calculation
codepages! i b — code page conversion library for converting to and from various code pages

conf | i b —Ilibrary of functionsfor reading from and writing to configuration filesin the Microsoft
INI file format

consol el i b — library that implements a basic console window for creating console programs
that interact with the user

dat abasef or ms — library of types and functions that provide the full implementation of da-
ta-aware display and print forms for SIMPOL

dat et i nel i b — library of functionsfor converting to and from dates, times, and datetimes (in-
cludes various other libraries plusits own functions)

dbll i b —library that implementsastub classto match the dbl typetag family so that the IDE will
provide useful information when working with variables that are defined ast ype(db1lt abl e)
for example

dbluti| — database utilities library with routines for copying records, creating and maintaining
system tables, etc.

13

Supplied Superbase NG Projects

dri | | down — user-interface component that provides an interactive search capability with adis-
play of resultsin agrid control and return of the selected record

dxf I i b —functionfor converting aspecific styleof *. dxf fileinto aWindows bitmap (includes
ahelper DLL)

f ast set — aset implementation compatible with the objset type but faster using red-black trees

fil esyslib—functionsfor working with elements of afile system, such as parsing pathnames,
retrieving the current directory, etc.

form i b — types and functions for loading, saving and saving as source code dataforml and
printform1 objects

gaugel i b — provides various progress gauge dialog types

httpclientli b — objectsfor retrieving items from the web using GET or POST

i magel i b — functions and types for reading and writing imagesin BMP and XPM format

I NT — implementsthe | NT() function for converting a number to an integer

i pl i b—library for hosting functions and types associated with working with the Internet protocol

j pegl i b — currently only suppliesfunctionsfor determining the dimensions of animagein JPEG
format

| i st s — utility library providing various structural types, such as nodes, lists, rings, queues, and
stacks

LTRI M— implementsthe LTRI M) function to trim spaces from the left of a string

mat hl i b — contains various math functionssuch aspi () ,sqrt(),sin(),cos(),tan(),
and more

nr ul i b — provides a library of types and functions for working with most-recently-used lists,
including loading and saving to INI files and managing a submenu

netinfolib — contains functions like get user nane() and
get conput er name_wi n32()

obj set — an early implementation of a set object based on binary trees, but new code should use
thef ast set. sm library or theinternal set type

PAD — implements the PAD() function to right-fill a string with spaces to a specified size (or to
truncate if it exceeds that size)

par senum— isacontribution from amember of the SIMPOL community and providesafunction
that converts numbers into words (in English), commonly used in check writing programs

printform i b — contains useful functions for printing to window or printer, like pri nt wx-
form(),printrecord(),andprinttext()

r andom— provides the random type for use in generating pseudo-random numbers
regi stryl i b — contains functions for working with the Windows registry

r epl ace — providesther epl ace() function for replacing all instances of one substring with
another in atarget string

r sal i b — contains functions and types for working with RSA encryption, including key gener-
ation, encryption and decryption

14

Supplied Superbase NG Projects

sbi sl i b — functions for working in a CGI environment, suchasHt mi | ncl ude(),or Ht nl -
Read()

SBLDat eLi b — implements functions for working with dates and for formatting dates as strings

sbl ext en — includes a conversion of functions from a Superbase sample library of the same
name and which may be helpful when converting from Superbase

sbl i b — functions are provided that represent various FN-style functions from SBL, such as
FN Dec(),FN _Fact (), etc.

SBLI ocal edat ei nf o — contains the SBL|ocaledateinfo type for use with the date formatting
functionsinsbl dat el i b. sm

SBLTi meLi b — functions for formatting times as strings and converting strings back to time
values

sbngl i b — contains important types used throughout much of SIMPOL, such as datasourceinfo
and thinfo aswell as the types and functions used to provide option groups for wxformoption types

sendnmai | — providesthesendnai | () easy wrapper functiontothesnt pclientlib. snl
functionality for sending text-based SMTP emails

seri al i ze — provides the ability to serialize an object to afile and then read the data from the
file and recreate the object at alater point in time

shel | execut e — wrapper around the Windows API call for loading the appropriate executable
for agiven filetype, ie. Acrobat Reader for * . pdf files

si mpol | i b — containsfunctionsthat use meta-capabilities of SIMPOL to providefunctionslike:
findfunction() andi sproperty()

snt pclientlib— email functionality viaSMTP

snt pdat el i b — implementation of a date formatting function that accepts format strings using
the standard SMTP date format

sort | i b— varioussorting algorithms such as Insertion sort, Quick Sort (iterative and recursive),
€etc.

soundl i b — Library with thelong-term plan to be the host for sound playback routines, currently
supports Windows sound playback

STR— providesthe STR() for formatting a numeric value as a string using a pattern

st ri ngl i b — numerousfunctionsthat implement useful string handling functionality, including
parset oken(),ltrim(),rtrim),etc.

ti mer — providesatimer typethat can call an event handler either once or at intervals and which
runsin a separate thread

TRI M— containsthe TRI M) function

ui syshel p — variousfunctionsand typesfor providing standard system defaults, such as system
colors, default fonts, display size, etc.

uni tt est — basic unit testing library that helpsin running regression tests
ur | endecode — functions for doing URL-encoding and URL-decoding

url l'i b — split out of a small library containing a type and function for parsing a URL from a
string into its component parts

15

Supplied Superbase NG Projects

e ut f8lib—functionsfor converting from and to UTF-8 format

» uuencode — functionsfor doing uuencode, uudecode, base 64 encoding and decoding and quoted
printable encoding

* VAL — implementsthe VAL() function
* wi ndowsenai | | i b — datatype for sending email by using the Windows scripting host

* wi nfil edl g— provides awrapper to the open and save dialogs from the operating system that
can be called viathe smexec32. dl | from a program such as Superbase

e xm | i b — providesanumber of useful programsfor parsing and evaluating XML strings and can
be used to enhance the functionality provided by | i bxm . sm

SBME Database Examples

A series of command line programs that make use of the single-user database engine can be found in
the sbne directory. Thisincludes two utility programs for doing database maintenance and repair.

» jdktutorial —wasinspired by one of our users. It provides abasic tutorial on using the somel
family of typesto first create, then populate atablein acontainer file. Then to open lock and modify
records in that container file.

* reorgani ze — provides acommand line front-end to the functionality inr eor gl i b. sni for
repacking one or more database tables.

e shnecust — readsrecordsfrom the CUST table at ssimpol.com port 1280 and createsan*. sbm
file with the same table.

» shnecust 2 — provides atiming test for reading records from one table and creating with them
another table.

» shnecust 3 — demonstrates creating a duplicate table in the the same container as the original
table.

» shnereadcust — shows how to read records from atable and output them to atext filein XML
format.

» shnerepai r — provides a command line based repair program to fix a database table in the
unlikely event that it may have become corrupted.

SIMPOL Tutorial Examples

All of the sample programs used in this book that are not located elsewhere can be found in the
Proj ects\tutorial directory.

» addr essbook — implements a basic address book application using data-aware forms and the
application framework.

* col or| ab — demonstrates a dial og-style application program.
e qui ckreport sanpl e — shows how to create a Quick Report program in source code.

e shai r — contains the form, program, and required database tables from the Superbase Airlines
sample that is converted in the Chapter 11, Converting Legacy Superbase chapter.

* si npol busi ness — contains the forms, reports, program, and required database tables for the
SIMPOL Business sample from the Chapter 7, SMPOL Business chapter.

16

Supplied Superbase NG Projects

SIMPOL Web Server Programs

A full suite of web server programs, which work using CGI or ISAPI are contained in the ssp di-
rectory. To use the samples, make sure that the items from the Apache directory are placed in the
appropriate locations. The items from the ht docs directory include the items in the css directory
and theimagesthat arelocated inthei mages directory. Theitemsinthecgi - bi n should be placed
in the appropriate cgi-bin location in your system. These items are used by the web server sample
projects. Thereisalso adirectory called: i ncl ude, which contains chunks of code used by more than
one project in this group. The ppcsser ver directory contains a Superbase server program and as-
sociated database files, aswell asa SIMPOL server program (si nmpol ser ver . snp) together with
the necessary database container files and the configuration file for the server (sspsanpl es. cf g
—read ther eadme. t xt to run or stop the server).

The examplesin this section do not demonstrate particul arly attractive web pages. They are very basic
intheir look and feel. Designing attractive web pagesis better donein an HTML authoring tool. These
examples demonstrate how to use SIMPOL to dynamically create pages, as well as showing how to
interact with the database and to accept dataover theweb. Most of the moreinteresting SIM POL -based
web applications are normally designed using CSS and XHTML in a proper authoring tool, and then
the template pages are migrated into SIMPOL and set up to use parameters so that they can be output
with varying content by the programs.

@ Note
All of the samples that begin with "shis" were translated from the original samplesin-
cluded with the Superbase Internet Server program (SBIS).

 hell ocgi — is designed using the "server page' approach. That uses a file called
hel | ocgi . sne, whichisan HTML file containing special comments that are processed by the
SIMPOL IDE into a SIMPOL program file with the same name. This is then compiled as part (or
in this case as all) of the program.

» shi scal endar — demonstrates creating and outputting a calendar using atable.

* shi scont act — is asample contact database with the ability to view the records in a smple
record view format. It also allows browsing with First, Previous, Next, and Last buttons. These all
call the same program with specific parameters. On the right-hand side are another set of buttons:
Add, Search, Report, and Report2. These buttons call either directly or indirectly other programs
in the group.

» shi scont act di spl ay — displays a selected record (found as a result of searching using the
Search button. If the selected record is not found, it redisplays the search page.

» shi scont act post — handlesthe posting of anew record asaresult of acal to the Add function
insbi scont act .

» sbhi scont ent sf rame —ispart of thesbi sf r anesanpl e, athough frames have now gone
very out of fashion in web design.

» shi senvvars — outputs all the various CGI variable values (plus those supplied by ISAPI if
called from I1S) that can be retrieved viathe cgicall type'sget vari abl e() method.

e shi sframesanpl e — uses various SIMPOL programs to provide different frame content for
each of the various frames. Frames are no longer particularly popular in modern web design, but
can still havetheir uses.

* shi si nagesanpl e — demonstrates a dynamic page that shows an image.

» shi si ncl udesanpl e — shows the method of including an external HTML file into the output
going back from the program to the browser.

17

Documentation

Tests

e shi smai nf rame — is part of the shi sf r amesanpl e, athough frames have now gone very
out of fashion in web design.

» shi sreport — runsan unoptimized report that showsits resultsin atable and does athree-level
sort of the results. Each line of the results can be clicked on to call the shi scont act di spl ay
code to show the record for the resulting selection.

» shi sreportfast — runsan optimized report that showsits results in atable and does a three-
level sort of the results. Each line of the results can be clicked on to call the sbi scont act di s-
pl ay code to show the record for the resulting selection.

» shistitleframe —ispartof thesbi sf ramesanpl e, athough frames have now gone very
out of fashion in web design.

A few basic test programs can be found in thet est s directory.

» cal ceval t est — tests the various capabilities of the cal ceval () function using the
unittest.snl library.

» chartest — could actually be called echo, since it returns whatever text is passed in the first
parameter to the function.

* consol etest — is a simple demonstration program that shows how to use the
consol el i b. sm library to create a simple tet-based program that can interact with the user.

e datelibtest —isatest suiteusingtheuni ttest. sm toimplement regression testing for
the DATESTR() and st ri ng2dat e() functions.

» fcaset est —isatest suiteusingtheuni ttest. snl toimplement regression testing for the
fcase() function.

« filetypetest —isatest suiteusingtheuni ttest. snml toimplement regression testing for
thefil et ype() function.

» fixtest —isatest suite using theuni ttest. sm to implement regression testing for the
.fix() function.

* string2val t est —isatest suiteusingtheuni ttest. snl toimplement regression testing
forthest ri ng2val () function.

* STRt est — isatest suite using the uni ttest. sn to implement regression testing for the
STR() function.

* tinelibtest —isatest suiteusingtheunittest.sm toimplement regression testing for
the TI MESTR() , ext TI MESTR() ,and st ri ng2ti me() functions.

Documentation

Superbase NG contains six different books that cover various aspects of using the product. These are:
» SIMPOL Quick Start Guide (this book)

» Superbase NG IDE Users Guide [http://www.simpol.com/docs/ide/]

» S MPOL Language Reference Manual [http://www.simpol.com/docs/langref/]

» SMPOL Programmer's Guide [http://www.simpol.com/docs/progbook/]

» Superbase NG IDE Quick Sart Manual [http://www.simpol.com/docs/tutorial/]

18

http://www.simpol.com/docs/ide/
http://www.simpol.com/docs/ide/
http://www.simpol.com/docs/langref/
http://www.simpol.com/docs/langref/
http://www.simpol.com/docs/progbook/
http://www.simpol.com/docs/progbook/
http://www.simpol.com/docs/tutorial/
http://www.simpol.com/docs/tutorial/

Utilities

e Superbase NG Personal User Guide [http://www.simpol.com/docs/personal/]
Utilities
There are anumber of standalone utility programsincluded with Superbase NG. These include:

» i maget ool . snp — provides a tool for manipulating images for creating bitmap buttons (con-
tributed by John Roberts)

» projectfixer.snmp— aprogram for changing the paths in one or more project filesin a sub-
directory tree

» savei maget obl obgui . smp — aprogram that converts one or more images and writes out a
SIMPOL source code program that for each image provides a function that contains the image as
ablob and can return it as awxbitmap

» sbhf 2sbm snp — aprogram for converting alist of Superbase database filesinto SIMPOL data-
base files

* sbm2snagui . smp — aprogram for converting one or more Superbase NG database tablesinto a
function that can re-create the table (empty of data), whichisuseful for generating tables at runtime

» shner epai r. smp — aprogram for repairing adatabase by retrieving all recordsviatheir unique
internal record ID (ignores indexes completely and can also ignore sequential linking problems)

» shv2sxf.snp — a program for converting a list of Superbase form files into Superbase NG
display form files

Superbase Conversion Utilities

To support Superbase programmers and users, there are anumber of conversion toolsthat are provided
in the Superbase SBL programming language. These are:

» dl g2snma. shp — a converter for Superbase dialog programs saved from the Superbase Dialog
Editor into SIMPOL source code to create the equivaent form using the wxWidgets-based com-
ponents

* ngnengen. shp — converts Superbase menu programs saved from the Superbase Menu Editor
into SIMPOL source code using the wxWidgets-based components

* shv2sxp. shp — generates a SIMPOL XML print form file that is directly loadable from the
SIMPOL data-aware print form support, assuming that the database tables have been saved as SIM-
POL equivalents, which can be used as the starting point for working with the form in the SIMPOL
Print Form Designer

e shvr 2xm . sbp — generates an imperfect SIMPOL XML graphic report file that requires some
maodification under certain circumstances but should then be directly loadable from the SIMPOL
graphic report code, assuming that the database tables have been saved as SIMPOL equivalents,
which can be used in SIMPOL programs as |oadable and runnable Graphic Reports

19

http://www.simpol.com/docs/personal/
http://www.simpol.com/docs/personal/

20

Chapter 3. Getting Started

The Essentials

It must have been clear by then end of the previous chapter, that there are a lot of different ways to
approach Superbase NG. The hardest part about getting to know a new product is that there are so
many thingsto learn. It is generally best to have some clear goals, in order to direct the learning and
to provide an early project or two. As a starting point, it is strongly recommended that the reader at
least browse thefirst chapter of thisbook. Also if any real programming is planned it isagood ideato
work through Chapter 1 of SIMPOL IDE Quick Start Manual [http://www.simpol .com/docs/tutorial/],
which teaches the basics of using the IDE to create projects, edit, compile, and debug programs, to
work with external libraries, and to set project settings.

Oncethat is done, the next steps depend greatly on what the reader wishesto accomplish. These might
be any of the following:

» A command line program, see the section called “Command Line Programs”

A dialog-style application, see the section called “Dialog-Style Programs’

A GUI-style database program, see the section called “ Database GUI Applications’
» A web server program, see the section called “Web Server Applications’

» A standalone server application, see the section called “ Server Applications”

» A conversion from Superbase, see the section called “ Converting from Superbase”

Each of these is described more thoroughly below. Obviously these are merely starting points, thereis
nothing that saysthat they couldn't be combined in variousways, such asaserver application that hasa
GUI for controllingit, or database GUI application that also providesaset of web server applicationsto
allow some users a specific set of functionality viathe web to what is otherwise a desktop application.

Another might be adesktop application that usestheht t pcl i ent | i b. sii library to access useful

resources on the Internet and provide their functionality to the desktop program.

Preparing Our Environment

Before we start actually developing any programs, it might be a good idea to start out by preparing
our development environment. Thereisn't much to do, and it isn't absolutely essential, but it will save
time and aggravation later, especialy if you are using the Windows Vista operating system or alater
version. That is because it is very difficult, bordering on impossible to manage projects as a sub-
directory below the Pr ogr am Fi | es directory. Thereisaspecia level of additional protection that
prevents applications from writing to that directory, even if you have administrative rights. Assuch, it
isagood ideato get in the habit of locating your projects somewhere el se, such asyour homedirectory.
InWindows XPand earlier thatisnormally theC. \ Docunent s and Set ti ngs\ user nane\ My
Docunent s directory. In Vista, it has been changed to C. \ User s\ user nane and even more
importantly, the actual home directory is more usable than it wasin XP.

In the SIMPOL IDE select Tools — Options.... In that dialog window, in the edit control for the
Working Project Directory, enter a path name or click on the ... next to the field and select the path
from the directory selection tool. The dialog window can be seen here:

21

http://www.simpol.com/docs/tutorial/
http://www.simpol.com/docs/tutorial/

Command Line Programs

Application Options. E
SIMPOL compiler fle path

|E‘ “\Progiam Files\simpolbin'smpol zmp E] R MuklLanguage
R Optimize Linker Dutput

Werking Project Dirsclony:
[simpahprogects! El W Postprocassor
Larguages

Add | Language sstings file path

C\Prograim FlessimpahbrtSIMPOL ini

File extensions: bdamacemu..

Short descriplion:

P Edk Language... |

fudosave [intempatary path) T
5 X = _
Save praject copy each: [|con File associsbons

,— SIMPOL IDE Language...

Manimum rumber of copies

¥ Save project documenits before bulkd, rebuld, exectie and debug
W SMA source code file defaul peefersnce

¥ Fegenerats SME fil ahwaps in the buld process
I™ Lock documents being edied

The IDE Application Options dialog.

Command Line Programs

Getting started with command line programs is probably as easy asit getsin SIMPOL, from a purely
programming perspective. There areanumber of examplesto show the ropes. Command line programs
cantake up to 10 parameters (currently), and can output their results. They do not have accessto typical
command line features like stdin, stdout, and stderr, but can still accomplish goals and return results.
For an in-depth look at creating a command line program, see Chapter 4, Command Line Programs.

Dialog-Style Programs

These types of programs are normally not terribly complicated, and are often designed to provide a
tool that accomplishes a specific goal. The applications are usually hosted in adialog window and are
generally not connected with a database (though they certainly could be). For the complete story, with
aworking example, visit Chapter 5, Dialog-Style Programs.

Database GUI Applications

Web

Database programsin SIMPOL tend to start with Superbase NG Personal . Using itstable creation tool,
or viatheimport functionality, a new database table or tables can be created. In the same program the
Form Designer can be found. Once the database tables are created, the Form Designer isused to create
appropriate masks for the screen. These can be saved asforms, as source code, or both. Oncethe basic
components have been created, they can be quickly turned into a small program that provides all the
toolsfor creating, editing, and deleting data from the tables. More can be added to allow the output of
datain various formats. For afull example, see Chapter 6, GUI-Style Database Programs.

Server Applications

SIMPOL can also be used to create powerful web server applications and has built-in support for CGI
(Common Gateway Interface), ISAPI (Internet Server Application Programming Interface), and Fast-
CGil, which is a high-performance version of CGI. One of the more powerful features in SIMPOL
when developing web server applications is the ability to do source-level debugging of aweb server
application as a callback from the web server. Generally this is done using the Apache web server
running locally on Windows. For the complete story, go to Chapter 9, Web Server Programs.

22

Server Applications

Server Applications

Server applicationsare aspecial type of command line program. They are designed to start up and then
wait for clients to connect to them. At that point, they provide some service. Typically they are using
TCP/IP to communicate, though a SIMPOL database server program is also a server program that is
waiting for connections from database clients. Any sort of service could be a viable candidate, such
as aprogram that does some very complex calculations based on a specific set of input, or aprogram
that regularly collects information from various web sites, consolidates that, and produces a new set
of information based on what it found and makes that available to clients. Another example might be
a dedicated encryption/decryption service, for communications security. To have alook at creating a
server program, see Chapter 10, Server Programs.

Converting from Superbase

Superbase provided a great set of tools to quickly create applications, similar in style to the database
applications described above. Superbase is not directly compatible with SIMPOL, but a significant
effort has been made to ease the path of migration from Superbase to SIMPOL. To that end a number
of conversion tools areincluded, somein SIMPOL and somein SBL. For awalk through the process
of doing a Superbase to SIMPOL migration, Chapter 11, Converting Legacy Superbase is the best
place to start.

23

24

Chapter 4. Command Line Programs

Building a Command Line Program

In this chapter we are going to build a program that based on the parameters passed, downloads a
page from the Internet and storesit in an output file. If it gets an error while retrieving the page it will
output an error message. If run without any parameters it will report the correct method of running
the program. The program is called ur | dunp. snp, and there is a project already located in the
Pr oj ect s\ consol e directory.

Before you run off and start devouring that program though, it would be a good idea to continue
reading here. The areason is that although that program will show you how its done, it won't be able
to explain how it cameto bein that form. That said, it is probably time to do just that.

First Steps

Since every SIMPOL program begins with the function mai n() , that is where we will start. The
image bel ow shows the beginning of the project. At thisvery early stage, there is not much there. The
httpresponse type is aso not in blue, but instead it isin black. That is a sign that the library is not
yet part of the project.

ES_IMPQL - [urldump

[File Edit Yiew Document Project Debug Tools ﬂi Help

DEHO | 'R & R0 2 BAA 44324 BFEELD + 00005 | 2@
G_W—lz function main (string SUEL, string SOBGLile)
1= 9] wridump ..-<' no errtext

B widump1.2ma
treanr fpo

httpresponse response

if aUrl <= ""
errrext = usage/()
else
end if
end function

« [
7 °3Pmieﬂ\ﬂcn 8 Type Vew I -@Lﬂdﬂm'l.sm...

ﬂ Mamwe |Vahe |:| 4
E
AT Locals fve 7 | X
x
=)
4102 vy output {Debug) FndinFies] Il]
Ready Ln9, Cal7 | | | y

Initial stage of theur | dunp. snp project.

To resolve this, we can add the required library to the project. From the Project menu, select the
Settings item to display the Project Settings dialog. Select the second tab, Includes and libraries, and
then click on the Add button next to the (*.sml) Librariesto link; label. From there, enter the SIMPOL
[i bdirectory and picktheht t pcl i ent i b. snl file. Theresult shouldlook like theimage bel ow:

25

First Steps

Project Setting

General Includes and libraries |Targets I CGl I

Include Folders: 5 (*.sml) Libraries to link: Add

C:\Program Files"simpol\ib“httpclientlib sml

SIMPOL components:

The Project Settings dialog after addingtheht t pclientlib. sm library.

At this point, clicking on the OK button will result in awarning dialog being shown. This one warns
usthattheht t pcli entli b. sm library requiresthe SIMPOL component sock and thereforethis
will also be added to the project. Thisis quite handy, since otherwise the library wouldn't even work.
The warning dialog looks like this:

The SIMPOL components "sock” will be added to the project because
they are needed by the project linked libraries (*.sml}

The warning dialog shown when alibrary has been added that re-
quires components that are not currently part of the project.

Depending on the size of the screen area on our computer, it may be useful to turn off a couple of
windowswhilewriting the program. This can be done from the View menu, by selecting the Call Stack
and Variables items, for example. After a bit more code has been written, and with our new adjusted
windows, the result might look like the following image.

~El SIMPOL - [urldumpl.sma - urldumpl].

[File Edit View Document Project Debug Teols Window Help [=]2]x

DERG| 2B S| THhT |2 BARA | ACEN EBEHEL >0 0e |5 FERw

B L <mpa> =L constant SERRTXT_PAGE -
L esocks constant sERRINT _NOTFOUND
= L uddumpsmp constant SERRINT_SUCCESS
& F man constant SERRIXT_FILEOPENFAILED
F ussge conscant sCRLF

- L hitpclentlis.smi}

[

funccion main(string sUrl, string sQucfile)
2 J errcext
e

ststrean fpo
response

if 38Uzl <= ""
errtext = usage|
else
response =B httpget (sUrl)
if response !@= .nul
if response.errorstatus >
Srrtext = response.errorstatus
else if sQutfile > "7

fpo = cutputstrear.new (sQutfile, error-e)
if fpo =E= .nul or e != C
errtext = sERRTXT_FILECFERFAILED + sCRLF
else
if response.statuscode < 200 or response.statuscode >= ¥ -

ER |

g l:r,___]— [uidump1.sm...

z
2 Succesafully built

=
4[4][]+ output { Debug J, Findin Fies] Ik o+
Ready |n53,coism | | A

First Steps

The project in its more advanced state after also adjust-
ing some of the windows for greater code visibility.

At thispoint, let's actually have alook at our first version of this program.

Example4.1. Initial version of ur | dunp. snma

const ant sERRTXT_PACGE "Page '"

const ant SERRTXT_ NOTFOUND "' not found"

const ant sSERRTXT_ SUCCESS "' successfully retrieved"
const ant sERRTXT FI LEOPENFAILED "Error opening output file"
constant sCRLF "{d}{a}"

function main(string sUl, string sQutfile)
string errtext
i nteger e
fsfil eout putstream fpo
ht t pr esponse response

if sUl <=""
errtext = usage()
el se

response =@ httpget (sUrl)
if response ! @ .nul
if response.errorstatus >
errtext = response. errorstatus
else if sQutfile > ""
e =0
fpo =@fsfil eout putstream newm(sQutfile, error=e)
if fpo =@ .nul or e '=0
errtext = sERRTXT_FI LEOPENFAI LED + sCRLF
el se
i f response. statuscode < 200 or \
response. st at uscode >= 300
errtext = seERRTXT _PAGE + sUrl + \
SERRTXT_NOTFOUND + sCRLF

el se
errtext = sERRTXT PAGE + sU |l + sERRTXT SUCCESS + sCRLF
end if
fpo. putstring(.if(response.entitybody != .nul, \
response. entitybody. getstring(1, .inf, 1), ""),
end if

el se

i f response. statuscode < 200 or response. statuscode >= 300
errtext = sERRTXT _PAGE + sU |l + sERRTXT NOTFOUND + sCRLF

el se
errtext = ""
end if
errtext = errtext + .if(response.entitybody != .nul,
response. entitybody. getstring(1, .inf, 1),
end if
end if
end if

end function errtext

function usage()

27

Understanding the Code

string s

s = "snprun[32.exe] urldunmp.snp <url> <outputfile>{d}{a}"
end function s

Understanding the Code

Although there is not much to this program, it covers a number of concepts that are worth exploring.
To begin with, the command line parameters are always string variables and they do not alow for
default values, so to set those you will need to write some codefor it. At the beginning of the program,
thereisatestforthesUr | variable. If it findsthat no value has been passed, thenit callstheusage()
function. This approach makesit quite easy to both document how the program works and also inform
the user when the parameters are not correct.

The next thing to note is the call to the ht t pget () function. That returns an httpresponse object
(and should do so under all circumstances, so the following test for . nul may be unnecessary). The
httpresponse object contains all the information that is a result of the attempt to retrieve the resource
represented by thesUr | variable. Should there have been any unexpected problem with the retrieval
of the resource then the errorstatus property would have some value greater than theempty string (").

The remaining code simply checks whether the output is going to afile or if it will be output as part
of the return value. In each case, it outputs the content of the entitybody property if the retrieval was
successful (avalue between 200 and 299 in the statuscode property) then a success string is returned,
otherwise an error string.

Running Our Project

At this point we should build our project (Ctrl+B — Build). Now we can run the program, but if we
want to try it in the IDE we will also need to define the argument that is being passed to the mai n()
function. We can do that in the Project menu by selecting the Settings item again. In the first tab, in
the Command line box, enter the URL:

http://www.google.co.uk/search?hl=en& g=SIMPOL & btnG=Google
+Search& meta=& ag=f& og=

and then click OK to close the dialog.

@ Note
Itisalwaysagood ideato click onthe Save All icon on thetool bar after making changes
to the project's settings. This ensures that those changes are saved to the project file.
If you don't, and the IDE crashes for some reason, you may |lose the changes that you
have made.

Now to run the program, press CtrI+E (Execute). The result should be the page containing the Google
search resultsfor the key word "SI MPOL". The page will be messy and hard to read, sinceit normally
returns as an unformatted stream of characters without any new line characters. To see a page that
may look a little more familiar, try the URL "www. si nmpol . coni'. That should look like a fairly
readable page of XHTML.

Improving Our Program

Although this program isn't bad, it might be useful if it were alittle more flexible. One thing we might
want to do isallow it to take parameters, so that it can do not only a GET operation, but also a POST.
We could also decide to allow the program to output the header information that it received from the

28

Improving Our Program

web server,

which can be very handy when trying to debug routines that retrieve data from a web
server. A method of handling and validating command line parameters might also be useful. Let's add
support for not only the output file, but also a flag to decide if the header is output, and also support

for passing variables through using the POST method.

As afirst step, we can update our usage() function with the new information. The new version

looks like this:
Example 4.2. Updated usage() Function
functi on usage()
string s
s = "snprun[32.exe] urldunp.snp <url> [--outfile=<fil enane>] \
[--showheader] {d}{a}"
s =s +" [--vars=<varlist>]{d}{a}{d}{a}"
s =s +" Where the vars need to al ready be URL-encoded and \
if they violate the{d}{a}"
s =s +" shell rules they will also need to be escaped to \
be hi dden fromthe{d}{a}"
s =s +" shell. It is recommended to pl ace quotes around \
the --vars= entry. {d}{a}"
s =s +" The equal s sign and what foll ows CANNOT al |l ow \
spaces! |If necessary,{d}{a}"
s =s +" surround any entry with quotes. {d}{a}"
end function s

Now that we have decided what the parameters are going to be (and incidentally also the format), we
code to handle the parameters. This is probably best done using a specifically designed
data type. This will allow us to offload most of the work to the type itself, without cluttering our
existing mai n() function with all the associated code. It will also make it easier to lift it and use it
again in another program, or even in the future to create a more versatile type that is more universal.

can add the

Let's see what that code looks like:

Example

type par
enbed
string

4.3. The parameters Type

aneters

out fil enanme

bool ean showheader

string
string

refere
functi
end type

function
nme. out
ne. sho
nme. var
nme. ope
end func

vari abl es
operati on

nce
on get param

par anet er s. new(par anet ers ne)
filename = ""
wheader = .fal se

i abl es
ration
tion ne

"GET"

Improving Our Program

function paraneters. get paran{paranmeters ne, string paraneter)
if paraneter <= ""
/1 do not hi ng

else if .likel(paraneter, "--outfile=*")
me.outfil ename = .substr(paraneter, .instr(paraneter, "=") + \
1, .inf)
else if .likel(paraneter, "--showheader")
nme. showheader = .true
else if .likel(parameter, "--vars=*")
me.variables = .substr(paranmeter, .instr(parameter, "=") + \
1, .inf)
end if

end function

The parameters type has properties to store all the information that we will use for this call to the
program. It defaults to running in GET mode, and will not return the header from the web server.
The way the get par an() method has been coded requires that each parameter that has a value
component must be separated from the value by an equals (=) sign and no white space to either side.
Part of the reason for thisisthat allowing white space would require a more complex algorithm, since
each of the white space separated items would arrive as separate parameter values from the shell to
themai n() function.

We now have amethod of handling the various parametersto the program, and one of the nice features
of this approach is that the order of the parameters does not matter. The only parameter that has a
fixed position is the URL itself, since it must be first. Using this approach requires some changes to
themai n() function aswell. Let's have alook at those now.

Example 4.4. The Final Version of themai n() Function

function main(string sUl, string paraml, string paran2, \
string paranB)
string errtext
i nteger e
fsfil eout putstream fpo
ht t pr esponse response
par anet ers parans

e =0

if sUl <=""
errtext = usage()

el se

paranms =@ par anet ers. new()
par ans. get par am(par ani)
par ans. get par am(par an®)
par ans. get par am(par anB)
errtext = ""
i f parans.variables >
response =@ httppost(sUrl, parans.vari abl es)
el se
response =@ httpget (sUrl)
end if

if response ! @ . nul
if response.errorstatus >

30

Running the Final Version

errtext = response. errorstatus
else if parans.outfilename > ""
fpo =@fsfil eout putstream new parans. outfil enane, error=e)
if fpo =@ .nul or e '=0
errtext = SERRTXT_FI LEOPENFAI LED + sCRLF
el se
i f response. statuscode < 200 or \
response. st at uscode >= 300
errtext = sERRTXT _PAGE + sUrl + SERRTXT_NOTFOUND + \
SCRLF
el se
errtext = sERRTXT _PAGE + sUrl + SERRTXT _SUCCESS + sCRLF
end if
f po. putstring(.if(parans.showheader, \
makenot nul | (response. ful | header) + \
SCRLF + sCRLF, "") + \
.if(response.entitybody !'= .nul, \
response. entitybody. getstring(1, \
.inf, 1),""), 1)
end if
el se
i f response. statuscode < 200 or response. statuscode >= 300
errtext = sERRTXT _PAGE + sU |l + sERRTXT NOTFOUND + sCRLF
el se
errtext =
end if
errtext = errtext + nmakenotnull (.if(paranms. showheader, \
response. ful | header + \
SCRLF + sCRLF, "")) + \

.if(response.entitybody !'= .nul, \
response. entitybody. getstring(1, \
.inf, 1),"")
end if
end if
end if

end function errtext

Aswe can seefrom the previous code, not alot has changed from the original version. We now support
the POST operation if we were given variables (which must be URL-encoded when they are passed
in). We can also optionally return the entire header from the web server if requested to do so. All of
the actual handling of the parameters is done by the parameter type and itsget par an{) method.

Running the Final Version

Now that all our coding is done (the final coded version of this example can be found in the supplied
program samples as a console project called ur | dunp. Thisis the command line we will use to try
out the new features:

Example 4.5. Sample Command

url dunp. snmp "wwwx. cs. unc. edu/ ~j bs/ aw wwp/ docs/ r esour ces/ per |/
perl -cgi/ prograns/cgi _stdin.cgi" --showheader "--vars=nane=Joe&
t ext ar ea=Cool &r adi obut t on=m ddl eun&heckedbox=pi zza&
sel ecti t emrhanbur ger s"

31

Summary

E Note
The URL in the previous command was found while searching on the Internet. It may
or may not be there forever, but it is greatly appreciated for providing an opportunity to
test the POST operation in this program. Eventually we may produce a sample program
running from our own web site but anticipate the likely web load of afew peopletrying
this out will not greatly inconvenience the university site.

Theresult of running this new version of the program with the command line parameters shown above,
can be seen in the section below:

----------------- 20:41:34 13/08/2009 -----------------

Executing "X:\simpol\projects\consol e\url dump\bin\urldump.smp" ...
————————————————————— program result --------------------

HTTP/1.1 200 OK

Date: Thu, 13 Aug 2009 19:41:35 GMT

Server: Apache/2.2.3 (Red Hat)

Connection: close

Content-Type: text/html

<HEAD>

<TITLE>stdin vars.</TITLE>
<H1>Print CGl STDIN Variables</H1>
</HEAD>

<BODY>

<HR>

<H3>STDIN Variables</H3>

<L I>radiobutton = middleun
<L I>checkedbox = pizza
name = Joe Bloggs

<L I>selectitem = hamburgers
textarea= Cool form dude

</BODY >

Successfully executed

Summary

In this chapter we have devel oped acommand line program to retrieve a page across the Internet using
both GET and POST. We extended the initial version of the program to also take named parameters
in any order. The techniques learned here could also be applied in other programs. The parameter
handling can be reused in other command line programs. The use of the htt pclientli b. sn
library could be added to aweb server or desktop program to retrieveinformation from another location
on the Internet, such as currency exchange rates, stock market values, etc.

32

Chapter 5. Dialog-Style Programs

What's a Dialog Program?

A dialog program in the sense used in this book refersto typically smaller, less complicated programs
that typically only require a single window, without a menu or tool bar. These types of programs are
common of smaller utilities. They are not typically connected to a database table, though that doesn't
mean they can't be. Also, the same approach used to create adial og-style program can be used to create
dialog-style functionality as part of a larger program. In some cases, the stand alone utility program
can easily be converted to provide its functionality within the context of alarger program.

The example program that we will usein this chapter was selected to fulfill anumber of goals:
» The sample should provide some useful functionality

* It should demonstrate the use of the SIMPOL Form Designer

« It should use generated form source code

* It should be possible to incorporate the result in another program if desired

The Sample Program

The sample program we will use in this section is called SIMPOL Color Lab. While thinking about
the program, it was decided to make something that would let the user see the color that corresponds
to a specific web color value. These are normally specified in the format: #A0B0OCO where the first
character is an indicator signifying that the following number is in the hexadecimal format and the
following values are interpreted as the three RGB values between 0 and 255 (or in this case between
0 and FF). To make the tool more interesting, the user should also be able to enter a decimal value,
or the values for the three color components: red, green, and blue. These can be entered by hand or
by moving a dliding widget.

There are many different design approaches that can be taken with development of a software project,
some of them more formal than others. This sort of project lends itself well to a fairly informal and
interactive approach. To get this project moving, it would be a good idea to start with the layout and
look of the dial og that the user will see. Oncethebasic designisdone, it will only require the additional
work to show the dialog and react to what happens when it is used.

@ Note

The source code for this project is included in the Superbase NG product and can be
found inthe directory \ Pr oj ect s\tut ori al \ col or| ab.

Creating the Project

As afirst step, it would be a good idea to create the project. That will provide us with alocation for
storing the form once we finish designing it. We won't actually write any code until later, though.
Start the SIMPOL IDE and onceit is running from the menu, select File -~ New Project. Inthedialog
window that is then displayed, select an appropriate location for the project, and give it the name
col or | ab. Seethe New Project window image shown here:

33

Creating the Design

Project Dulput Typs Froject Source Code Type:
IV & wmp i zml [& zma i zmu
Propect location:
Project name:
colorlzh
™ ‘Wrapper over SIMPOL code fie:
{]
I~ Get peopesties from project:
{ i

o] _conoel |

Image of the SIMPOL IDE New Project dialog.

Click on the OK button to create the project. Remember this location, we will use it save our form
design later. For now, minimize or close the IDE; we won't need it anymore for awhile yet.

Creating the Design

To create the design, start Superbase NG Personal (it can be found in the main program group for
Superbase NG). Once it has started running, it should look something like this:

] Tl >]2 |asluv]

Superbase NG Personal just after being started.

Then select File » New — Form from the Superbase NG Personal program to open the Form Designer
and create anew form.

Creating the Design

Starting the Form Designer from the Superbase NG Personal program.

Once that has been done, the SIMPOL Form Designer will open and present a picture similar to the
one that follows. It contains a blank form sized to a percentage of the size of the screen, with no
controls on it.

Iﬁhﬁﬁﬁﬂ'hmﬂ* I

| | 1| 24| % | | £B] 2B) o0 el = | /|0 A9 O

The SIMPOL Form Designer with a new blank form.

35

Setting the Stage

Setting the Stage

Now that we have ablank form, it isagood ideato set afew default properties and to give the form a

preliminary size. Select File - Page Setup... from the menu, or double-click the left mouse button on
theformto display the Form and Page Properties dial og, which will ook something like the one bel ow:
Form ang Page Properties ﬂ
I Form Name |EIZI
Width ,F Height ,F

I~ Use System Col
o S e R G B

Background Color | | 290 240 240
oK I Cancel

The Form and Page Properties dialog.

Change the both the Form Name and the Page Name to col or | ab. Now click on the Use System
Colors check box, which will default to the CLR_BTNFACE entry. What this doesis allow the form
toinherit the system settingsfor the color scheme. By selecting this setting, the settingsfor the controls
will also default to using system colors. For now, leave the page size asit is.

@ Note
It is not necessary to work using this approach. If you want to specifically set the colors
used for various parts of the form, feel free to do so. Just realize that users expect their
applicationsto look like the other applications that they use and if they do not, they may
react negatively to a program, or consider it to be unprofessional.

After al of our changes, the resulting dialog will ook roughly like this:

Form ang Page Properties
' | |

Form Mame | colorab
PageName | coloriab
width g9 Height g5

¥ Use System Colors

Background Color |CLR_BTNFACE | |:|
oK I Cancel

The Form and Page Properties dialog after changes.

Adding the Controls to the Form

It is now time to start adding controls to the form. Start by selecting the abc button from the tool bar,

or by selecting Draw — Text from the menu, and then using the mouse click the left mouse button
and while holding the button down, drag a rectangular outline for the form label. Release the mouse
button when the rectangle represents the area desired for the label. When the button is released, the
Properties dialog window is shown. For now, just set the Name field to "l HexCol or Val ue" and
the Caption to "Hexadeci mal Col or Val ue", leaving the rest unchanged. The content will be
similar to what is shown here:

36

Adding the Controls to the Form

Mame | HexColorvahe Caplion Hexadecimal Color Value
Toel tip I
Left 10 Top 0 -
width [138 Height [17 . 2
W visble W Enabled E
¥ Use System Colors
Background Color |CLR_ETNFACE - |:|
Text Calor [eLr_smrexT =] .
Font ™S Shell Dig 2;8;n;n;
| AZBbCcDdEeFfagHh 123456 7830 Algnment
left -
Events
Function Name:
anmouse
i b
onmousemask
000 1 OMM_LEFTBTNDOWN
x0002 OMM_LEFTETHUP
(%0004 OMM_LEFTETNDELCLK
0500 10 OMM_MIDDLESTNDCWN -

The Properties dialog for alabel.

Now add an editable text box to the form, by selecting the ab| button from the tool bar, or by selecting

Draw - Editable Text from the menu. In the resulting dialog box, set the Nameto t bHexCol or -

Val ue andinthe Eventsgrid, set thevalue of the onlostfocus Function Nameentry tohexval _ol f .
This sets the name of the function that is to be called when the event occurs. The dialog should then
look similar to the one below:

Mame | thHexColorvale
Toel tip I
Left 157 Top 3 o
wdth [126 Heght [22
¥ Visbie M Enabled
¥ Use System Colors
Background Color |CLR_WINDOW - |:|
Text Color [vmoowre] [}
Font ™S Shell Dig 2;8;n;n;
| AZBbCcDdEeFfagHh 123456 7830 Algnment
left -
™ Horizontal scrolbar
Events I~ Mulbine
S e [Read Only
anchange e
Fe = Password (=)
ot Mol
anmouse -
i b
onmousemask
000 1 OMM_LEFTBTNDOWN
x0002 OMM_LEFTETHUP
(%0004 OMM_LEFTETNDELCLK
0500 10 OMM_MIDDLESTNDCWN -

The Properties dialog for an editable text box.

@ Note

In the preceding text the two elements have been assigned the names: | HexCol or -
Val ue andt bHexCol or Val ue. It isn't absolutely essential to name the elements of
the dial og, the Form Designer will doit for you, but the nameswon't be very meaningful.
Whenever you expect to actually need to change the content or read the content (or the
state — visible, enabled, etc.) or acontrol, it isagood ideato give it ameaningful name.
Also, using aconvention for the nameswill help you remember what type of control you
are dealing with in the code. A common convention used in the examplesis:

37

Adding the Controls to the Form

Table5.1. Control Naming Conventions

Prefix

Explanation

Label — used for wxformtext objects

th

Text Box — used for wxformedittext objects

b

Button — used for wxformbutton objects

bb

Bitmap Button — used for wxformbitmapbutton objects

Check Box — used for wxformcheckbox objects

Option Button — used for wxformoption objects

List Box — used for wxformlist objects

Combo Box — used for wxformcombo objects

Grid — used for wxformgrid objects

Scroll Bar — used for wxformscrollbar objects

Bitmap — used for wxformbitmap objects

Line — used for wxgraphicline objects

=

Rectangle — used for wxgraphicrectangle objects

—

Triangle — used for wxgraphictriangle objects

Arc — used for wxgraphicarc objects

a
e

You may notice that some of the values are used more than once, such as b for both
bitmaps and buttons. Although it may seem like it could be confusing, in practice the
name that goes with the type identifier tends to make a clear distinction. It isalso agood
practice to use the same base name for alabel and an edit control that are meant to go

Ellipse — used for wxgraphicellipse objects

together, like in the example above.

Now we add some more labels and edit controls for: the decimal color value, and the red, green, and

blue color values. The resulting form looks like this so far:

38

Adding the Controls to the Form

File Edt Wiew Draw Define Help

h | e | | | 7 | = | BB EB| 8| m0f=g | /|0 A|O|O)
tHexadecmal Colorvae |

Decmal Color Value Ii

Red |

Green

Blue l—

The state of the form after placing two controls.

Theform isn't particularly pretty yet, but before we do any cleanup, it may be useful to just plant the
rest of the controls on the form. To make things visually more interesting we will use three horizontal
scroll bars for controlling the three color components. Select the scrollbars control from the controls

palette on thetool bar, or select the Draw — Scrollbar item from the menu. Drag ahorizontal rectangle
on the form and then set the properties in the dialog as shown in the image below:

‘Ornientation horizontal

Range (0-7) [235
Position 255
B Page Sze 16
Function Name | humbsze [y
angotfocus L
orlostfoas 1
ormouse
onscrol redscroll_os -
. n] v
enmousemask
000 1 OMM_LEFTETNDOWN -
0x0002 OMM_LEFTETHUP ¥ |
00004 OMM_LEFTETHDELCLK -
00010 OMM_} -
[] _om |

The Properties dialog for ascrollbar.

Please note that the background color of the red scrollbar was set to red. Now do the same again for
the green and the blue scrollbars. Once they are on the form, add a rectangle to the form (to show the
actual color value). To do this, select the appropriate control from the tool bar or the menu, then drag
a rectangle onto the form. The Properties dialog for graphics is considerable simpler in design than
that for form controls. Set the values as shown in the image that follows:

39

Cleaning Things Up

Fort1 x [1a vy [7
Port2 KE y |55

T~ Visble
™ Use System Colors R 6 B

Colr [emene

¥ BorderVisile Borderwidth [1

Border Color .uuu
[] o |

The Properties dialog for arectangle.

Now that we have added much of the form content, |et's take alook at the current state of our form.

—————— ———
s X\simpol\projects\tutonialicolo =al x

Eile Edit View Draw Define Help

I abe| | | | @ | = | EB| EB| 18| 0| =)~ | /|0 A S| O
Hexadeomal Color Valus |

Dedmal Color Vake ,7

. [

Green ,_ .

- T |

The state of the form after adding most of the controls.
Cleaning Things Up

The form isn't looking too bad, but it just doesn't work very cleanly from a design perspective, so we
are going to rearrange things a bit. Make sure the Arrow button is selected, and then drag arectangle
around thelabelsfor thered, green, and blue boxes. Make surethey areall sized to not take up too much
space beyond what they require (use the sizing handles for this). Now drag select the edit controls and
move them over to the left. Resize the blue scrollbar to take up more of the space to the left that has
now been made available. The result will look something like the following:

Cleaning Things Up

File Edit View Draw Define Help

[|)| 2| | = | ER| EB| 0| 0| e = | /|0 AQ|O)

The state of the form after moving the color edit controls and during resizing of the blue scrollbar.

Now drag select the other two scrollbars and after clicking on the selected area with the right mouse
button, select Adjust Size — Same Size, then click on the blue scrollbar that was just resized.

File Edit View Draw Define Help

[|)| 2| | = | ER| EB| 0| 0| e = | /|0 AQ|O)

Hexadeomal Color Valus |

—

Select All
Move to Front
Move to Back
Align »

Adjust Size 3 Same Width
Distribute r Same Height
Graphic Properties.]

Showing the right-mouse pop-up menu to resize the selection.

This will then resize the selected scrollbars to the same size as the blue one as can be seen in the
following image.

41

Cleaning Things Up

[| |)| 2| # | = | ER| EB| 8| 0| = | /|0 AQ|O)

Hexadeomal Color Value I
I—
<]]

The resulting form after the scrollbars have been resized to match.

We have corrected the size, but they are still in the wrong place. By again clicking with the right mouse

button on the still selected items, select the Align — Horizontally — Left choice and then click on the
blue scrollbar. That will realign the scrollbars so that they are all at the same horizontal position on
the form. The image that foll ows shows the menu selection, and the one after that the result.

File Edit View Draw Define Help

[|)| 2| | = | ER| EB| 0| 0| e = | /|0 AQ|O)

Hexadeomal Color Valus |

Dedmal Color Vake |—
Red I—
freen I_ Select All
e [Move to Front
Move to Back ;
Align »
Adjust Size »{ Vertically v Cm&
Distribute) Right

Graphic Properties

Showing the right-mouse pop-up menu for aligning the selection.

Cleaning Things Up

File Edit View Draw Define Help

[| e e || =i @ | < | 8| cH| e mm|=f ~| /| AO|O

The resulting form after the scrollbars have been realigned.

Now, using the resizing, distribution, and alignment tools, plus the ability to select and then drag the
selection around, the form is going to be rearranged. The final result after playing around to get alook
that works, can be seen below:

[o] | | wi| | < | BB 8| 8] | = = | /|0 A O|O)
tHexadeomal Colorvake | Decimel Color vaue [

The resulting form after it has been rearranged.

Saving the Form

The form is nearly finished. What would be useful is to provide the user with an OK button as an
alternate way of closing the program. Also we should resize theform to fit around the contents without
alot of extra space. The fina resulting form looks like this:

The final version of the form.

Saving the Form

Tosavetheforminaformat that can be reopened and modified, select File — SaveAs - Form... Save
the form as col or | ab_f or m sxf in the project directory that we created earlier in the chapter.
Thebest location would bethecol or | ab\ col or | ab directory, sincethat isalso where our source
directory islocated.

For the purpose of this project, we are going to use the form as source code, o let's also save it off as

SIMPOL source code. To do that, select File —» Save As — wxform Program from the menu. Save
the program as col or | ab_f or m sma. This should also be saved to the source directory fro our
project. We will be using it in the next section.

That's it! The design portion of our project is done. Now it is time to get on with turning our form
into aworking program.

Adding the Form Source to the Project

Now that the design portion is done, we can start actually getting the program running. If it is still
open, Superbase NG Personal can be closed. Now switch to our minimized IDE from earlier in the
chapter (or reopen the project if it was closed). The first thing we'll do isinclude the form source code:

include "colorlab_formsm"

After adding this line, save the file (Ctrl+S or select File — Save from the menu). Y ou will notice
that a dependent entry for the file col or | ab_f or m sma appears in the Project View tree on the
left. To see what that 100ks like, examine the image that follows.

Adding the Form
Source to the Project

@file Edit View Document Project Debug Teols Window Help

DEdd | iR 8 THhac | 0= BRA (A% %K | EFEEED »or00e ¢ | @RS
=l
[E] coletebami include "colorlab_form.sma"
1 coloriats
[colorab.sma
= [colodab_fom sma
[uisyshelphdr sme

] ¥]
" o2 Project View I"R'we-.lew (e p—

Name]\l'due ,j 4l

l=lx

T\ tocal foe 7] o

L%

44 ¥][+ \ output § Debug) Findinries] el [*
Ready Ln2 Coll

The SIMPOL |DE after adding the include entry to the project.

Also, another dependent entry appears below that, with a red X over the icon. The source file
ui syshel phdr. sma isincluded by the form source code, but is not visible to the project. To re-
solve that, we need to add the i ncl ude directory to the project. We also need to add a library that
is used together with that include file. The library is called ui syshel p. sm . To do this, from the

menu select Project — Settings. Then select the second tab, Includes and Libraries. On the left side
click on Add and then locate and select thei ncl ude directory from the SIMPOL installation. On the
right side, also click the Add button. Select theui syshel p. snl fileto add it to thelist of libraries.
The result can be seen in the following image.

General Includes and lbraries | Targets | CGI - |
Include Folders Add | Remove (" ami} Libranes to link: Add Remave
SIMPOL comporerts _ osmuse |
|slib, utoa, wown
G
e

The Project Settings dialog after adding items.

Now click on the OK button and that will show awarning dialog informing you that three additional
components will be added to the project: ut os, sl i b, wxwn. Seethe equivalent image hereafter.

The SIMPOL components "utos, slib, weawn” will be added to the project
B\ becouse they are needed by the project linked libraries (*.smi)

The Project Settings warning dialog adding components.

Setting Up the Program

This is done by detecting the required components from the library. Without those components the
library would not work correctly. As can be seen from the following screen shot, once the update to
the Include Folders has been added, the IDE now shows the entry in the Project View with a normal
icon; thered X isgone.

(LB svrolL - [olorabama - coloroo L AN =

@ File Edit Yiew Document Project Debug Tools Window Help - |[E]
(= -] Ha S Twag| = HRae e El, L] &

ld | —
[E] coletebami include "colorlab form.sma®

] colodab
B colodab sma
[colarizh_form sma
[uisyzhelphdr sme

g o «Lm
" oF Project View [W8 Type View " cslorab sma

x|
4

o|| | Name [Vaue [

3
1<)

LI

W Locals e [JLel 1 [

L=

" Output { Debug), FindinFies | el | :

Ready Ln2 Coll

The SIMPOL IDE showing the updated project.

Setting Up the Program

Thefirst step with getting the program running isto write the code that initializes the program, creates
the form, creates the dialog window, and then waits for events. Asit turns out, this does not require
an excessive amount of program code.

Example5.1. Themai n() Function of the colorlab Program

i ncl ude "colorlab _formsm"
constant | STARTCOLOR Oxffffff

function main()
wxf orm f
wxdi al og d
i nteger e

e =0
f =@col orl ab(error=e)
if f =@ .nul
errornmsg(e)
el se
d =@wxdi al og. nem(1, 1, innerw dth=f.width, \
i nner hei ght =f. hei ght, \
vi si bl e=. fal se, \
capti ont ext="SI MPCL Col or Lab", \

46

Getting the Basic Form Running

error =e)
if d =@ .nul
errornsg(e)
el se

adj ustforntol orval s(f, i STARTCOLOR)
f . set cont ai ner (d)
cent er di al ogonpar ent (d)
d. processnodal (.1 nf)
end if
end if
end function

The code above is fairly straightforward. It calls the generated col or | ab() function to create the
form. If anything goeswrong, it callstheer r or meg() function if anything goes wrong. Assuming
that the form was successfully created, it creates the dialog window, sizing it based on the size of
the form. Again it checks for success, and assuming that worked, it calls a function to initialize the
form for a specific color value (the starting color). That color value is contained in a constant called
i STARTCOLOR. Finaly, the form is selected into the dialog window, the dialog window is centered
on the display (since it has no parent), and it then is set to wait forever (or until the dialog is made
invisible, either by caling the set vi si bl e() method, or by the user clicking the Close gadget.

The program as is will not yet compile without warnings nor will it run without errors. The source
code of the form contains assignments of function namesfor handling events, but those functions have
not yet been created.

Getting the Basic Form Running

In this section we will now add all the minimum bits remaining in order to get our program to run and
show the form. It won't do anything yet, but at least we will be able to see the form come up in the
dialog window, and we will also be able to close the window and have the program exit correctly.

In order to do this, we need to at least add the functions, even if they don't yet do anything. That code
is shown below.

Example 5.2. Theremaining Empty Functions of the colorlab Program

function adjustforntol orval s(wkxformf, integer rgbval, \
string ignorescrollbar="")
end function

function hexval ol f (wxfornedittext ne)
end function

function decval ol f (wxfornedittext ne)
end function

function redval ol f(wxfornedittext ne)
end function

function greenval ol f(wxfornedittext ne)
end function

function bl ueval ol f (wxfornedittext me)
end function

47

Getting the Basic Form Running

function redscroll _os(wxfornmscrollbar me, string scrolltype)
end function

function greenscrol |l _os(wxfornscrol |l bar me, string scrolltype)
end function

function bl uescroll _os(wxfornmscrollbar me, string scrolltype)
end function

functi on okbtn_oc(wxfornmbutton mne)
wxdi al og d

d =@ ne. f orm cont ai ner
d. setvisible(.fal se)
end function

function errornsg(string s)
wxmessagedi al og(nessage=s, captiontext="SlI MPOL Col or Lab \
Error", style="ok", icon="error")
end function

The remaining functions shown above don't yet do anything, except for theokbt n_oc, which merely
setsthedialogvisibility to. f al se, whichresultsinthe codeexitingthepr ocessnodal () method

and the program then exits.

@ Note
Another useful naming convention can be seen in the names of the functions. The begin-

ning portion of the nameindicatesthe control with which it isassociated, followed by an
underscore, and then a set of |etters describing the event. Below is atable of potentially

useful names for the portion following the underscore.

Table5.2. Event Handling Function Naming Conventions

Suffix Explanation

oc onchange

oc onclick

occ oncellchange

ocs oncellselect

ocwce oncolwidthchange
odc ondoubl eclick

ogf ongotfocus

olf onlostfocus

om onmouse

om onmove

orhc onrowheightchange
0s onscroll

0s onselect

0s onsize

0sC onsel ectionchange
0sC onstatechange

48

Finishing the Color Lab Program

Suffix ‘Explanation

ovc ‘ onvisibilitychange

At this point, it should be possible to build and run the program. It doesn't do anything yet, other than
display the form, but it is a nice place to be, since now all that is left is manipulating the form in
response to user-generated events (or in other words, filling in those empty functions).

Finishing the Color Lab Program

Now that we have the basic program running and displaying the form, all that remainsisto fill in the
functions that are currently empty. One thing that we can do to minimize the amount of coding is to
use a common piece of code for some of the functions, and call it from each of them. From looking
at the code, it seems that the scrollbar event handling functions will probably be similar, as will the
functionsthat handle the edit control events for the three color values. Everything will eventually call
theadj ust f or ntol orval s() function. Sincethat isthe function that everything hasin common
(itiseven being called during initiaization), let's build that first.

Example 5.3. The Full Implementation of the adj ustf orntol orval s()
Function

function adjustforntol orval s(wxformf, integer rgbval, \
string ignorescrollbar="")
i nteger red, green, blue

bl ue = rgbval / 0x10000

green = (rgbval nmpd 0x10000) / 0x100

red = ((rgbval nbpd 0x10000) nod 0x100)
f!tbHexCol or Val ue. settext (.tostr(rgbval, 16))
f1tbDecCol or Val ue. settext (.tostr(rgbval, 10))
fltbRed. settext(.tostr(red, 10))
fltbGreen.settext(.tostr(green, 10))

fltbBl ue.settext(.tostr(blue, 10))

f! sbRed. set backgr oundr gb(red)

f!sbG een. set backgroundr gb(green * 0x100)
f!sbBl ue. set backgr oundr gb(bl ue * 0x10000)

if ignorescrollbar !'= "red"
f! sbRed. set scrol | (position=red)
end if
if ignorescrollbar != "green"
f1sbGreen. setscroll (position=green)
end if
if ignorescrollbar != "blue"
f1sbBl ue. setscrol | (position=blue)
end if

f!rBorder. setrgb(rgb=rgbval)
end function

What this function does, is to take the final color value and then use it to set the value of all the other
controls. While playing around with this, it was noticed that setting the position of ascrollbar that had
caused the event resulted in a strange flicker, so an extra parameter was created that isignored by the
other functions, but whichis passed by the code that handlesthe scrollbar events. That | et'sthe function
choose not to set the scroll position for the scrollbar that is passed. Other than that, the function is
fairly basic. It takes the color value that comes as an RGB value and splits it into the red, green, and
bluevalues. It then assignsthe value to each of the edit controls. It also usestheindividual color values

49

Finishing the Color Lab Program

to set the background color for each of the scrollbars, as well as being used to set the position of the
thumb in the scrollbars. Finaly, it sets the color of the rectangle to that of the color passed.

The next two functions are quite similar, but different enough to deserve different function imple-
mentations. In each case, the functions retrieve the current value of the control, convert it to a value,

force the value to be within avalid range, and then they each call theadj ust f or ntol or val s()
function.

Example5.4. TheCodefor thehexval _ol f () anddecval _ol f () Functions

function hexval _ol f (wxformedittext ne)
i nt eger rgbval
string hexcol or

hexcol or = ne. gettext ()

hexcol or = .if(hexcolor <= "", "0", hexcol or)

rgbval = .toval (hexcol or, nohexdi gits(hexcol or), 16)
rgbval = .max(. mn(Oxffffff, rgbval), 0)

adj ust f or ncol orval s(nme. form rgbval)
end function

function decval ol f(wxfornedittext ne)
i nt eger rgbval
string deccol or

deccol or = ne. gettext ()

deccolor = .if(deccolor <= "", "0", deccol or)
rgbval = .toval (deccol or, nodigits(deccolor), 10)
rgbval = .max(. mn(Oxffffff, rgbval), 0)

adj ust f or ncol orval s(nme. form rgbval)
end function

There are two specia function calls in the previous code, nohexdi gi t s() and nodi gits().
Each is designed to extract all of the characters of a specific type, either normal digits or the normal
plus hexadecimal digits. The result is passed to the . t oval () function as the characters to ignore
when converting the value.

The next task is to handle the events for the individual color values. As mentioned earlier, these will,
in fact, be exactly the same code in each case, since the change to any one color value still requires
all the color valuesto be read. All the event handlers will call the exact same function, which we will
cal handl eonecol or change() .

Example 5.5. Handling the Eventsfor the Color Edit Controls

functi on handl eonecol or change(wxf orm f)
i nteger red, green, blue, rgbval
string col or

color = fltbRed. gettext()
red = .toval (color, nodigits(color), 10)
red = .max(0, .mn(255, red))

color = fltbG een. gettext()
green = .toval (color, nodigits(color), 10)
green = . max(0, .m n(255, green))

50

Finishing the Color Lab Program

color = fltbBlue. gettext()

blue = .toval (col or, nodigits(color), 10)
blue = . max(0, .m n(255, blue))
rgbval = cal crgbval (red, green, bl ue)

adj ust f orntol orval s(f, rgbval)
end function

function redval ol f (wxfornedittext ne)
handl eonecol or change(ne. form
end function

function greenval ol f (wxfornedittext ne)
handl eonecol or change(ne. form
end function

function blueval ol f(wxfornmedittext mne)
handl eonecol or change(ne. form
end function

function cal crgbval (i nteger red, integer green, integer blue)
i nt eger rgbval

rgbval = blue * 0x10000 + green * 0x100 + red
end function rgbval

The final piece of the puzzle is to handle the events for the scrollbars, and this next piece of code
does that. Again, all three have much in common, so they all call one common routine called do-
scrol I bars().

Example 5.6. Handling the Scroll Bar Events

function getcurrentcol orval s(wxformf, integer red, \
i nt eger green, integer bl ue)
red = f!lsbRed. position
green = flshbG een. position
bl ue = f!sbBl ue. position
end function

function doscroll bars(wxformf, string ignorescroll bar)
i nteger red, green, blue, rgbval

red = 0; green = 0; blue =0

getcurrentcol orval s(f, red, green, bl ue)

rgbval = cal crgbval (red, green, bl ue)

adj ustforntol orval s(f, rgbval, ignorescrollbar)
end function

function redscroll _os(wxfornscrol |l bar me, string scrolltype)
doscrol | bars(nme.form "red")
end function

function greenscroll _os(wxfornscrol |l bar ne, string scrolltype)
doscrol | bars(ne.form "green")
end function

function bluescroll _os(wxfornscrollbar me, string scrolltype)

51

Summary

doscrol | bars(me.form "bl ue")
end function

The first function in the previous chunk of code is caled by the doscr ol | bar s() function to
retrieve the component color values from the position property of each of the scrollbars. Since we set
the range of the scrollbars to 256 and the thumb size to 1, that means that the range of valid positions
isfrom O through 255. Once the component values have been retrieved, it callsthecal cr gbval ()
function that is aso caled by thehandl eonecol or change() function.

Finally, here is the code for the two functions mentioned earlier for extracting the valid digits from
the string passed.

Example5.7. Extracting the Digits from String Values

function nodigits(string s)
end function s-"0"-"1"-"2"-"3"-"4"-"5"-"@g"-"7"-"8"-"9"

function nohexdi gits(string s)

end function s-"0"-"1"-"2"-"3"-"4"-"5"-"§"-\
"7t-tgrt-tot-"at-"pt-"c"-"d"-\
"e"-"f"-"A"-"B"-"C'-"D'-"E"-"F"

Summary

In the preceding section we have learned to design a basic form using the Form Designer, including
setting default values, using system theme colors, and working with the sizing and alignment tools.
We have aso saved that form in the new XML-based form format and also as SIMPOL source code.
We have worked with included source files and SIMPOL language libraries. Finally, the resulting
form wasincorporated in a project that used adialog to host the form and then waited on events, which
were then handled by the program code. We also validated the input that was entered.

This sort of program component is acommon requirement for more complex applications, where any
number of similar dialog-style user-interface components will be needed to ensure a user-friendly
experience. Thissort of program is a stepping stoneto the type of project discussed in the next chapter,
which is considerably more complex.
Hexadecms Color Veke | FTcaBf Deomal Color Vale [16239247
rea [« N |
sen [22 < N |
we [« | |

oK

The final working SIMPOL Color Lab program.

52

Chapter 6. GUI-Style Database
Programs

Introduction

Database programs with a graphical user interface (GUI) are a very common type of application. In
many cases, this is the only type of application that some people may need to create, though if the
package becomes complex, it may well use quite a number of dialogs to get input from users. In this
chapter, we will cover the basics of building a database-based graphical program to provide a starting
point for building more complex systems of this nature.

@ Tip
Before reading and getting heavily involved in this chapter, it is agood idea to at least
read through Chapter 5, Dialog-Style Programs. Many of the techniques for working
with the Form Designer are covered in that chapter.

In this chapter we will build abasic contact manager. Thiswill be a program that manages an address
database using a form hosted in a window. We will also use a tool bar for selecting records, and a
menu with asmall set of items. The steps to follow in creating this application are:

1. Create the database
2. Createtheform
3. Build the application code

In essence, thisisnot very dissimilar to the stepsfollowed to create the dial og-style application, except
first we need to create the database. So, let's get started!

Creating the Project

Just aswedid in Chapter 5, Dialog-Style Programs, it would be agood ideato create the project first,
sincethat will provide uswith alocation for storing the components of our project that we are creating
using Superbase NG Personal. Start the SIMPOL IDE and once it is running from the menu, select

File — New Project. In the dialog window that appears, select an appropriate location for the project,
and give it the name addr esshook. Then click on the OK button to create the project. Take note
of this location, we will use it save our new database in a moment, plus our form design later. For
now, minimize or close the IDE;.

Create the Database

In many cases, a database is a complex set of related tables, each containing a specific set of infor-
mation and also fields which link to other tables. In this example, we only really need one table for
now, the "Addr ess" table. To create this table, we need to start up Superbase NG Personal. Once

it isrunning, select File - New — Table.... That will display the data source dialog. Since no data
sources are currently open, the combo box with the list of data sources will be disabled and the list
of tables will be empty. In the New *.sbm File Name box enter the location of your project's bi n
directory, plusaddr ess. sbhmand in the Table Name box enter Addr ess.

53

Create the Database

Data Source
| e~ sbim file J Open.
Table List
New ° sbm File Name
|X ‘simpol\projects tutoral addresshook \bin\address sben -
Table Name
|-f\dm=ss
OK Cancal

The Superbase NG Personal New Database dialog.

Now click on the OK button to create the database container and to display the dialog window where
we can define the table.

Database Table Definition

Tabie Name: Address - X .sbm

Field Mame Data Type | Index Type | Index Max Chars Index Algarithm Shareahls Share Name Add Field

Fe——]
x|
o |

Cancel

The Superbase NG Personal Database Table Definition dialog.

Toadd afield, just click on the Add Field button. Thefirst field we will add isthe Addr ess| Dfield.
Enter that text into the box and click on the OK button. The screen will look like the one below:

Database Table Definition =)

Tabie Name: Address - X .sbm

Field Mame: Data Type |Index Type |Index Max Chars Index Algorithm Shareable Share Hame
v | AddressiD string true AddressiD

Delete Fiel
Display Format

oK
Apply
Cancal

The updated Superbase NG Personal Database Table Definition dial og.

The default data type for a new field in an empty table is string (text). We will change this after we
have added a number of other fields, since the fields inherit the data type and other characteristics
from the currently selected field. For now add the next field, Fi r st Names, which will contain the
first and any middle names or initials. Now move the scrollbar at the bottom to the right, to expose

Create the Database

some more columns. The three columns named Shareable, Share Name, and Share Type are specific
to using the multi-user database support, and can be ignored for now. The default assignments tend to
be adequate. The Display Format column is used for more than one purpose. It is used as part of the
multi-user database engine, but it is also used to supply the desired display format in the data-aware
form environment. It is currently set to 4000 (which happens to be the maximum length of atext field
that can be accessed viathe PPCS protocol used for the current multi-user support. Change that to 30.
This column will be the only one we need to change as we go through them later, but by changing this
one now, we may have less to change later. See the image that follows.

Database Table Definition

Table Name: Address - X simpohprojecisVutoriahaddresabookibin\address sbm

Sharesble | Share Name Share Type | Display Format Help Text - Add Field
true AddressiD iy 4000 L

| |true Firstiames T Delete Figid

Display Format

oK

Apply

The Display Format column in the Database Table Definition dialog.

@ Note

The SBME database format does not actually have any limitations on the size of a text
column, or an integer, etc., but since the initial multi-user support was designed to be
100% compatible with Superbase's PPCS protocol, it has the exact same limitations as
well. A later version of the protocol that is not intended to be Superbase compatible
is planned, and will support all SIMPOL data types in their full capabilities. Also, the
database engine only stores what is there, it uses variable length fields to only take up
the space it must.

Now add therest of thefields, if the currently selected field isthe Fi r st Nanes field, then thelength

of 30 will also beinherited. When you get to the Addr ess 1 field, change the length to 50, and then

make sure that is selected when adding the rest.

e Surname

* Addressl

» Address2?

» Address3

* Address4

» City

* Region

* Postcode

» CountryCode

» Telephone

55

Create the Database

o Fax

* Emall

* Remarks

Now that that isfinished, go through and change thefield lengthsto 25 for Post code, Tel ephone,
and Fax, 80 for Emai | , and 2 for Count r yCode. Now set the Remar ks fieldto 4000 R, which

allows for new line characters within the field content. The Display Format column should look like
this:

Database Table Definition ===
Tablke Name: Address - X\si i .8bm

ex Algorithm | Sharesble Share Name Share Type | Display Format Help Text - Add Fisid
true Addressi0 T 5
true Firstiames. ™ 30 Delete Fisid
true Surname ™ 30 —
true Addressi ™" 50 |
true Address2 ™ oK
true Address3 ™ 50
rue Addressd ™ 50 Apply
true Cy ™T 50
frue Riegion ™ 50 Cancel
true PostCode ™
true CountryCode ™ 2
rue Tekephone ™T 25
trus Fi ™T 25
true Emai ™T 80
true Remarks ™ 4000 R

The Display Format column after updating the format entries.

Now scroll back to the left and select the cell for the Addr ess| D Data Type column. Click again
to drop down the selection box, as shown below, and pick i nt eger . Then pick the cell in the next
column, Index Type, and click again to drop down the selection box, and pick uni que as the index
type, then click on the next cell to see the results. It should look like the following:

Database Table Definition ===
Table Name: Address - Xgi i abm
Field Name Data Type Index Type Index Max Chars Index Algorithm Shareable Share Name = Add Field

v | AddressiD integer unique 58 Compatibie true AddressD -
FirstNames siring true FirstNames Deinte Fiod
Surname siring true Surname s =
Addressi siring true Addressi |
Address2 siring true Address2 oK
Address3 siring true Addressd
Addressd siring true Addressd i Apply
City string true City
Region siring true Region Cancel
Postcode siring true PostCode
CountryCode airing true CountryCode
Telephane siring true Telephone
Fax siring true Fax
Email siring true Email
FRemarks siring true Remaris

The Addr ess| Dentry after changing the data type and adding an index.

Finally, change the display format from the huge list of 9s to something a little more friendly and
clear, such as six O's, either directly or via the Display Format button. Now click on the OK button
to save the table definition off. The final result should now be shown in Superbase NG Personal in
Record View, as shown here:

Building the Form

&

File Edit View Data Lhilities Options Windew Help

[Address x| [addrescin =1 M| 4> p] 2 fan]iv]

[=EE

AdelressID |

Firsthames
Sumame
Address 1
Address2
Address3
Address4
Oty
Regan
Postcode
CountryCode
Telephane

Superbase NG Personal after saving the table definition for the Addr ess table.

Building the Form

Now that our basic database table has been created, it is time to create a form so that we can manage

the data effectively and for creating our application. Select File - New — Form... from the menu to
create a new form. Then double-click the left mouse button and select the Use system colors check

box and click on OK.

This time, we are going to add a number of controls in one step. Select the edit control tool from the

tool bar, or choose Draw — Editable Text from the menu, and then starting roughly in the center of the
form horizontally and near the top vertically, drag arectangle and then let go. In the Properties dialog,
select the Data Table combo box and from there, select the Addr ess table entry. Then drag select
theentriesfrom Fi r st Names through Post code. Then while holding the Ctrl key depressed, also
select the entries: Tel ephone, Fax, Emai | , and Remar ks. When all are selected, click on the
check box below thefield list entitled: Createfield label. The window should look something like this:

57

Building the Form

Left 57 Top 55 Diata Table
Width 163 Height | 313 Bound Field [N
¥ Visbie ¥ Enabled

¥ Use System Colors
Background Calor | CLR_wINDOW v D
Text Calor crvmoowea] [

Fant M5 Shell Dig 2;8;n;n; [¥ Create fiekd lzbel
|mmﬁmmﬁam Algnment
left -
™ Horizontal scrolbar
Evers I~ Multine
Ll |* I Readony
= E| I™ Password (*====)
onlostfoous Maximum length |
anmouse | -
. n] v
onmousemask
(D00 1 OMM_LEFTBTNDOWMN -
00002 OMM_LEFTETNUP IF |
D004 OMM_LEFTBTNDELCLK -
0500 10 OMM_MIDDLESTNDCWN -
[o] o |

The Properties dialog selecting multiple fields for the edit control.

Now click onthe OK button. On the form, atext control for the label and an edit control for the content
will be created for each selected field in the list. They are al created with the same foreground and
background colors, so the text controls will need to be adjusted.

Fle Edit View Draw Define Help
I b | | | | = | 0| 2 | | = | /|0 A|O|O)

Firsthlames [
Surname [
Address1
Address2
Address3
Ad*sa-![

o |
Pm&[
qu:han[
Fax [

e
Remarks [

The form after adding multiple controls at once.

Toresolvethis, click and drag arectangle around only the label controls. Once all have been selected,
click with the right button and from the menu select the Graphic Propertiesitem. In the dialog window,
change the Background Color entry to CLR_BTNFACE and then click on the Set Back Color button.
Now change the Text Color entry to CLR_BTNTEXT and click on the Set Text Color button. Click
on either the Cancel or the Close gadget to exit.

Now we can position the content, and add the remaining fields. The Addr ess| D field content is
meant to be created programmatically, so it should be added as a bound text control instead of an edit

Building the Form

control. Create the label and content as separate steps. Move the labels and edit controlsinto position
by selecting the group and then grabbing the widget at the center (it may not be visible, but the cursor
will change appropriately). For the Count r y Code field add acombo box control. Inthedialog, select
the Count r yCode field from the Bound Field list.

Mame [combobexsz
Tedtp [

Left 83 Tep 224 Data Table |Address -
wadth [180 Heght [21 Bound Fieki -

¥ Visbie M Enabled
¥ Use System Colors

sadgrand Color [CR vmoow]| |
Text Color [cr vroowTET +] .
Font M5 Shell Dig 2;8:n;n;

| AZBbCcDdEeFfagHh 123456 7830

Events
Function Name

anfil
angotfocus
onlestfoos
ormouse

M b
enmousemask

0oc000 1 OMM_LEFTETNDOWM
00002 OMM_LEFTETNUP
00004 OMM_LEFTETNDELCLK
00010 OMM_MIDDLESTNDOWN

The Properties dialog for the combo box control.

Now click on the Contents... button. In the resulting dialog window, from the List Source Type combo
box, select the st at i ¢ entry. Now in the blank edit control at the bottom of the list, add the value
Canada, then click on the Insert button. Continue with the values: Fr ance, Ger many, | tal y,
Spai n,Uni ted Ki ngdomandUnited States. Alsoclick onthe check box entitled: Assign
alternate value if selected. Now in the Value List Contents section, add the following values in the
sameway as before: CA, FR, DE, | T, ES, GB, and US. The dialog window should ook similar to this:

R —
List Contents
List Source Type I sortust
stabc b ¥ Assign alternate value if selected
List Contents Value List Contents
Canada CA
France Insert Fr Ingert
Germarny DE
Italy Change T Change
Spain ES
Uinited Kingdom GB
United States e us QM’"

The List Contents dialog for the combo box control.

The only change remaining is to size the Remar ks control larger, and then double-click on it and
tick the Multiline check box so that formatted text can be added into the control. After rearranging
the controls, and resizing the form (assigning the name addressform to both form and page names),
the screen looks like this:

59

The Program Code

e ————
[| abe| |)| =i| @ | = | EB| 28| 8| | =g ~ | /| T A9/ O

Frsthames [

Thefinal look of the form.

To make things abit more friendly, we will want to put the focusinto thefirst field when anew record
is created, and to make that easier, we should give the dataformledit control a more useful name, so
double-click on that and change the control nametot bFi r st nanmes. Now click the OK button.

Thefinal bit of tweaking isto modify the tab order. Every single control is part of the tab order, since

in SIMPOL, the tab order and the z-order are the same. Click on the Define — Tab Sequenceitem and
thelist of controls will be shown with their names. Now we haven't bothered to assign special names
to the controls this time, so the names won't be terribly meaningful, but as the controls are selected in
thelist, a colored border is placed around each item on the form. Multiple controls can be selected at
once, and moved as a block up or down. Use thistool to arrange the controlsin the order desired. Any
changes are not permanent until the OK button is clicked. Save the form as a form (not a program)
into our project source directory, which is the directory of the same name as the project below the
root project directory. So if the project is called Addr essBook, then it will bein adirectory called
Addr essBook and that will have two subdirectories, bi n and Addr essBook. The second of these
is the source directory.

WEell, so far so good. The form has been created and we are ready to start diving into the code, which
we will do in the next section.

The Program Code

The good newsisthat thereisn't actually much program code to write. Infact, thisexampleisprovided
inthePr oj ect s\t ut ori al \ addr essbook directory, asare the other samplesfrom thisbook if
they are not found el sewhere. The other good newsisthat if you were building a different application,
you would still have very little coding to do, since the piecesthat make up theaddr essbook project
can be used as the basis of any database-based GUI project.

In this chapter, we won't go into all the program code, instead we will work with the main pieces that
are affected. For the full story, thereis no substitute for opening the actual project and reading through
the source and the comments there.

Thermai n() Function

The mai n() Function

Themai n() function of the program is where the code execution begins. When it exits this function
the program should normally end (unless there are still separate threads running that have not yet
exited).

Example 6.1. Themai n() function of the program

function main()
addr essbookappl i cati on app
appw ndow appw
string cd, fornfilenane, dirsep
i nteger e
wxmenubar nb
wxt ool bar tb
wxst at usbar sb
point It, br
syscol ors col ors

di rsep = getdirectorysepchar()

cd = getcurrentdirectory()

fornfilenane = cd + dirsep + "addressform sxf"
colors =@syscol ors. new)

e =0
nb =@ nmai nnenu()
if nb '@ .nul
sb =@ wxst at usbar. new(err or =e)
if sb '@ .nul
tb =@ bui | di conbar (col ors)
if tb '@ .nul
app =@ addr essbookapplicati on. new(nb, th, sb, "", "")
if app ! @ . nul
appw =@ app. wi ndows. get first ()
if not fileexists(fornfil enane)
wxrmessagedi al og(appw.w, "Formfile 'addressform sxf' \
not found", sAPPMSGTITLE, "ok", \
"error")
el se
appw. openf orndi rect (fornfil enane, sAPPNMSGII TLE)
if appw.form! @ . nul
pr epaddr essbhookf or n{ appw)
appw. r esi zewi ndowt of or m{()

It =@ poi nt.new(0, 0)

br =@ poi nt.new(0, 0)

get cent er edwi ndow ect (appw. out erwi dt h, \
appw. out erheight, It, br, \
error =e)

if e==0

appw. setposition(lt.x, It.y)

end if

appw. set cur r ent pat h(cd)

sel ectrecord(appw, "selectcurrent", silent=.true)

appw. w. set st at e(vi si bl e=. true)

app. run()
end if

61

The addressbhookapplication Type

end if
app. exit ()
end if
end if
end if
end if

end function

Starting from the top, we declare avariable of type addressbookapplication (more on that later), plusa
variable of type appwindow. The appwindow typeis provided by the appf r amewor k. s library.
The other variables should be relatively self-explanatory: menu bar, tool bar, and status bar. The point
is used for centering the window on the display.

After initializing the path name for the form file, the program attempts to create the menu bar, the sta-
tus bar, and the tool bar. If al of those are created successfully (and they should be), theapp variable
is assigned the newly created addressbookapplication object. Assuming it was created successfully,
we retrieve thefirst (and currently only) appwindow object and open the form file we created earlier.
Assuming that worked correctly, we prepare the form (by assigning certain event handlers), then we
resize the window to fit the form, center the window on the display, and reselect the current record
(which helpsif there are form-based cal culations that need to be recal culated now that the event han-
dlers might bein place. Finally, we enter ther un() method of the addressbookapplication object.

The addressbookapplication Type

In the design of this program, akey component is the addressbookapplication type. So let's ook at it:

Example 6.2. The addressbookapplication type

type addressbookapplication (application)
ref erence
application __app resol ve
type(dblt abl e) address

end type

That doesn't really explain much, but that is because this is an enhancement to the application type
that is supplied by the appf r amewor k. sni library. Let's have alook at that one now too:

Example 6.3. The application type

type application (application) export
enbed
string title
dri ng wi ndows
dri ng dat asources
bool ean runni ng
string inifil enane
i nt eger ostype
event onexitrequest

ref erence

type(*) _
type(*) __ resolve

wxbi t map Wi ndowi con
ppcstypel ppcs

62

The addressbookapplication Type

sysi nfo system nfo

| ocal ei nfool d SBLI ocal e

| ocal ei nfo | ocal e

ayformats di spl ayf ormats

t di spl
functi
functi
functi
functi
functi
functi
functi

end type

on
on
on
on
on
on

run
exit

adddat asour ce

cl osedat asource
dat asour ceunused
finddat asrc

on opendat asour ce

There, that's a little more meaty. On closer examination we can discover ther un() method listed in
thetype. That isthe main loop for the application framework. The program sitsin that function all the
time waiting for events. Theexi t () method is not used. The rest are used to open, find, and close
data sources. Aslong as the running property is set to . t r ue, the program will remain in the main
loopinther un() method.

N

Note

So why did we bother to create our own type, why not just use the application type as it
is? In the current example it wasn't absolutely necessary. However, it turns out that it is
useful. When we created the table we al so set up one field as aunique index, and we will
need a way of creating that value (SIMPOL does not currently do that for us). During
the function that will handle the onnewrecord event, easy access to the addr ess table
will make the code easier to write.

Therefore, we created our own type, placed an application property into it and made it
reference (so that we have to initidize it), and resolve (so that its properties resolve as
properties of the addressbookapplication object). Since we declared the application type
asresolve, we can also declare the addressbookapplication typeto have atypetag of ap-
pl i cati on. Thisalows variablesto be declared like this: t ype(appl i cati on),
which means they can contain any variable that is tagged with theappl i cat i on tag.
Good design dictates that we should then make sure that anything tagged this way can
be used as if it were the application type.

Now we should look at the most significant function here, the new() method of the addressbookap-
plication type. That is where the majority of the initialization takes place.

Example 6.4. The Codeto Create a New addressbookapplication

functi on addressbookappl i cati on. new(addr essbookappl i cati on nme, \

wxnenubar nb, wxtool bar tb, \
wxst at usbar sb, \

string iconname, \

string i coni maget ype)

appwi ndow appw

dat asour cei nfo src
type(dbltable) t

i nteger e

bool ean ok

ok = .fal se

=0

e
me. app =@ appl i cati on. new appi confil e=makenot nul | (i connane), \

i coni maget ype=\

63

The addressbhookapplication Type

makenot nul | (i coni maget ype), \

inifilename="", apptitle=sAPPTI TLE)
nme. __app. __ =@ne
nme. onexi t request. function =@exit
me.running = .true

appw =@ appw ndow. new(ne, vi si bl e=.fal se, nb=nb, tb=tb, sb=sb)
if appw =@ . nul

wxmessagedi al og(nessage="Error creating wi ndow', capti ontext=\

SAPPMSGTI TLE, style="ok", icon="error")

el se

i ni t mai nmenu(appw. nb, mne)

appw. onmanagemnmenu. f uncti on =@ nanagenenu

i nittool bar (appw. tb, appw)

appw. onnmanaget ool bar . functi on =@ nanaget ool bar

src =@ ne. opendat asour ce("sbnmel", "address.sbni, appw, error=e)
if src =@ . nul
wxmessagedi al og(appw. w, "Error opening the address.sbm\
file", SAPPMSGII TLE, "ok", "error")
el se
t =@ appw. opendat at abl e(src, "Address", error=e)
if t =@ .nul
wxmessagedi al og(appw. w, "Error opening the 'Address' \
tabl e", sAPPMSGTI TLE, "ok", "error")
el se
nme. address =@t
ok = .true
end if
end if
end if

i f not ok
me =@ . nul
end if
end function ne

Starting from the top, the first thing the code does is create a new application object and assign the
reference to that object to the me.__app property. That ensures that al of the properties and methods
of the application object are also available as part of the addressbookapplication type. The next rather
arcane looking bit is the assignment of a reference to the ne variable to the _ (double underscore)
property of the application object that we just created. This somewhat circular reference is quite im-
portant, sinceit meansthat all of the properties of the wrapper addressbookapplication object are also
available to the application object.

That is a bit convoluted, but in practice it is fairly easy and powerful. To understand it, it helps to
understand the problem it solves. When an event occurs that is associated with the application object,
only the application object is passed to the event handling function. If the function needs accessto the
wrapper object, it needs away to get to that. Although it would be possible to pass the wrapper object
asthe optional reference parameter, that may be needed for something el se. By assigning areferenceto
the wrapper object to the underscore or double-underscore property, the function can have full access
to the capabilities of the wrapper object.

@ Tip
The single and double underscore properties are part of most SIMPOL complex data
types. They were added to allow the user to add their own information to an existing type.
Both properties are r efer ence properties (they refer to an object), but the double under-

64

The Remaining Initialization Code

score property is also marked as resolve, which means that whatever object is assigned
herewill take part in the resol ution of the dot operator. What that meansin practiceisthat
avariable called app that refers to the application object portion of the addressbookap-
plication object, will still be able to reach the address property of the addressbookappli-
cation. Please note that the IDE will not be ableto show this, sinceit happensat runtime.

Returning to our initialization code, we assign a function to handle the onexitrequest event, which
will be called if there are no more visible windows (thisis part of the application object). The running
property isset to . t r ue (setting thisto . f al se will cause the program to initiate shutdown), and
then the initial window of the program is created. To that we pass the menu bar, tool bar, and status
bar objects that we created earlier in the program code. We are creating the window invisibly, since
we won't show it until later once the form has been loaded.

Once we have successfully created the initial window, we then initialize the menu and tool bars, and
assign afunction to handle the onmanagemenu and onmanagetool bar events of the appwindow object.
These are called whenever something has been done that might warrant a change to the menu or tool
bar state, such as opening aform, creating a new record, closing atable, etc.

Finally we open the data source (our addr ess. sbmfile) and the data table (Addr ess). The first
is opened via a method of the application object, since data sources are managed at the application
level, and the table is opened by the appwindow object, since tables are managed at the window level
(the framework is designed to allow each window to open its own table objects). Finally we assign
the table to the property that we defined for it in our wrapper type; the remainder of the function is
self-explanatory.

The Remaining Initialization Code

Therest of the program codeis mainly the definition of the menu and tool bars, plusthe codeto handle
the eventsthat have been defined. Wewill look briefly at the code that creates and initializesthe menu
and tool bars.

Example 6.5. The Code for the Menu Bar

function mai nnenu()
wxmenubar nb

nb =@ wxnmenubar . new()

/1 This section creates the File nmenu.
wxrmenu fil emenu

filenmenu =@ wxnmenu. new()
filemenu.insert("","E&it", name="exit")

// This section creates the Data nenu.
wxmenu dat anenu
dat anenu =@ wxmenu. new)

dat anenu. insert ("", "&Add{9} Ctrl| +N', nane="add")
dat anenu. i nsert ("", "&Save{9}Ctrl| +S", nanme="save")
dat anenu. i nsert ("","&Del ete{9}Ctrl| +Del ", nane="del ete")

/1 This section creates the Hel p menu.

wxmenu hel pmenu

hel prenu =@ wxnmenu. new()

hel prenu. insert("", "&About " + sSAPPTITLE + "...", nane="about")

nb.insert(filenmenu, "&File", nane="file")
nb. i nsert (dat anenu, "&Data", nane="data")
nb. i nsert (hel pnenu, "&Hel p", nane="hel p")

65

The Remaining Initialization Code

end function nb

Creating a menu bar is not particularly complicated, as we can see here. In this particular case, the
definition of the functionality for handling the events when a menu item is selected has not yet been
included. Thisis deliberate, since it alows us to create the menu bar before the window even exists.
Later, when the window has been created, we will call thei ni t nenubar () to add the handlersfor
the events, plus the reference object for each event.

The code here should be fairly clear. We create an empty wxmenubar object. Then we create the top
level wxmenu objects and proceed to fill these with entries. Once all the top-level menus have been
created, they are added to the menu bar. Finaly, the function returns the newly-created menu bar
object asitsreturn value.

Now that the menu bar has been created, let's look at the code to initidize it.

Example 6.6. The Code for the Menu Bar

function initminmenu(wxnenubar nb, addressbhookapplication app)
nb! fil e. menu! exit.onsel ect. functi on =@ exi tvi anenu
nb! file. menu! exit.onsel ect.reference =@ app

nb! dat a. mrenu! add. onsel ect . functi on =@ newr ecord
nb! dat a. menu! add. onsel ect . ref erence =@ app

nb! dat a. mrenu! save. onsel ect. functi on =@ saver ecord
nb! dat a. menu! save. onsel ect . ref erence =@ app

nb! dat a. mrenu! del et e. onsel ect. functi on =@ del et erecord
nb! dat a. menu! del et e. onsel ect.ref erence =@ app

nb! hel p. menu! about . onsel ect. functi on =@ hel pabout
nb! hel p. menu! about . onsel ect. ref erence =@ app
end function

In this function the Data menu events are al directed at standard functions from the
appf ramewor k. sm library. Theexi t vi anmenu() function simply callstheexi t () function,
andthehel pabout () function merely displaysawxnmessagedi al og() call. For full detailslook
at the source code.

Now let's have alook at the tool bar creation code. Like with the menu bar code, the references are
added afterwards in thei ni t t ool bar () function, but unlike the menu bar, the functions are as-
signed during the creation of the tool bar.

Example 6.7. The Codefor the Tool Bar

function buil di conbar (syscol ors systentol ors)
wxbi t map bnp, di sbnp
i nteger e
wxt ool bar thb
wxf orm f

e =0
tb =@ wxt ool bar. new(16, 16, error=e)

if tb @ .nul
f =@ conbos(syst entol ors)
if f '@ .nul

66

The Remaining Initialization Code

I/
I/
I/
I/

tb.insertform(f, nanme="fil
end if

ei ndexcomnbos")

bnmp =@ wxbi t map. new(" 16x16_sel first. png", "png")

di sbnp =@ wxbi t map. newm "16x16_sel first_di sabl ed. png”,

tb.insert(bnp, disbnp, enabl

record"”, name="tSel First")
tb!'tSel First.onclick.function =@selrec

bmp =@ wxbi t map. new(" 16x16_sel rwnd. png", "png")

di sbnp =@ wxbi t map. newm "16x16_sel rwnd_di sabl ed. png"”,

tb.insert(bnp, disbnp, enabl

rewi nd", name="t Sel Rwnd")
tb!'t Sel Rand. oncl i ck. functi on =@ sel rec

bmp =@ wxbi t map. new(" 16x16_sel prev. png", "png")

di sbnp =@ wxbi t map. newm " 16x16_sel prev_di sabl ed. png"”,

tb.insert(bnp, disbnp, enabl
previ ous record”,

tb!'tSel Prev. onclick. function =@ sel rec

bnmp =@ wxbi t map. new(" 16x16_sel cur. png”, "png")

di sbnp =@ wxbi t map. newm " 16x16_sel cur _di sabl ed. png",

tb.insert(bnp, disbnp, enabl

current record", name="t Sel Curr")
tb!'tSel Curr.onclick. function =@ sel rec

bmp =@ wxbi t map. new(" 16x16_sel next. png", "png")

di sbnp =@ wxbi t map. newm " 16x16_sel next _di sabl ed. png"”,

tb.insert(bnp, disbnp, enabl

" png")
ed=.fal se, tooltip="Select first \

" png”)
ed=.fal se, tooltip="Sel ect \

" png”)
ed=.fal se, tooltip="Sel ect \
nane="t Sel Prev")

" png")
ed=.fal se, tooltip="Sel ect \

" png”)

ed=.fal se, tooltip="Sel ect next \
record”, name="t Sel Next")
tb!'t Sel Next.onclick. function =@ sel rec

bnmp =@ wxbi t map. new(" 16x16_sel ffwd. png", "png")

di sbnp =@ wxbi t map. newm " 16x16_sel f f w d_di sabl ed. png",

tb.insert(bnp, disbnp, enabl

ed=.fal se, tooltip="Sel ect f

forward", name="t Sel Ff wd")
tb!'t Sel Ffwd. oncl i ck. functi on =@ sel rec

bmp =@ wxbi t map. new(" 16x16_sel | ast. png", "png")

di sbnp =@ wxbi t map. newm "16x16_sel | ast _di sabl ed. png",

tb.insert(bnp, disbnp, enabl

ed=.fal se, tooltip="Sel ect |

record”, name="t Sel Last")
tb!'tSel Last.onclick. function =@ sel rec

bnmp =@ wxbi t map. new(" 16x16_sel key. png", "png")

di sbnp =@ wxbi t map. newm " 16x16_sel key di sabl ed. png",

tb.insert(bnp, disbnp, enabl
record by val ue",
t b!'t Sel Key. oncl i ck. functi on

/Il Enable these if the form
/'l changepage() function is

"png*)

ast \

"png*)

ast \

"png*)

ed=.fal se, tooltip="Select a \

nane="t Sel Key")
=@sel rec

has mul tipl e pages; the
al ready provided

bmp =@ wxbi t map. new(" 16x16_pagepr ev. png", "png")
di sbnp =@ wxbi t map. newm " 16x16_pagepr ev_di sabl ed. png",
tb.insert(bnp, disbnp, enabl ed=.false, tooltip="Show \

previ ous page",

nane="t PagePrev")

"png*)

67

The Remaining Initialization Code

/1 t b! t PagePrev. oncl i ck. functi on =@ changepage
/1
/1 bmp =@ wxbi t map. new(" 16x16_pagenext . png", "png")
/1 di sbnp =@ wxbi t map. newm " 16x16_pagenext _di sabl ed. png", "png")
/1 tb.insert(bnp, disbnp, enabl ed=.false, tooltip="Show next \
/1 page", name="t PageNext")
/1 t b! t PageNext . oncl i ck. functi on =@ changepage
end if
end function tb

As with the menu bar creation code, the tool bar code is also not particularly complex. The basic
approach is to create the empty tool bar, and then add the tools into the tool bar in the order they
should appear. Since the very first things that are shown are the table and index combo boxes, and
since these are not native tools for the tool bar, they are added by creating a form to host them and
then theform isinserted into the tool bar. Following on from there, the tools used for selecting records
are all added to the tool bar. Each tool uses two images, one showing what it looks like when it is
enabled, and another for when it isdisabled. All of the selection functions use the same event handling
function, called sel r ec()) . The final two items are disabled here, since there is only one page in
the form in this example.

The code that creates the combos is very straightforward. It uses a function to create the form and
return it to the caller.

Example 6.8. The Codefor the Tool Bar Combo Boxes

function conbos(syscol ors systentol ors)
wxf orm f
wxfont fontl
t ype(wxfornctontrol) fc
sysrgb btnface, conboback, conbotext
i nteger e

e =0

fontl =@wxfont. new("Ms Sans Serif", 9, error=e)
bt nface =@ syst entol ors. col or s| COLOR_BTNFACE]
conboback =@ syst entol ors. col or s[COLOR_W NDOW
conbot ext =@ syst entol ors. col or s[COLOR_W NDOANTEXT]

f =@ wxf orm new(w dt h=311, hei ght =24)

f . set backgr oundr gb(bt nf ace. val ue)

fc =@f.addcont rol (wxfornconbo, 1, 1, 150, 19, \
edittype="droplist", name="cbFil es")

fc. onsel ecti onchange. functi on =@t ool bar conmboevent s

f c. set backgr oundr gb(conboback. val ue)

fc.settextrgb(conbot ext. val ue)

fc.setfont (fontl)

fc.setenabl ed(.fal se)

fc.settooltip("Select the table to view')

fc =@f.addcont rol (wxf orntonbo, 156, 1, 150, 19, \
edittype="droplist", name="cbl ndexes")

fc. onsel ecti onchange. functi on =@t ool bar conmboevent s

f c. set backgr oundr gb(conboback. val ue)

fc.settextrgb(conbot ext. val ue)

fc.setfont (fontl)

fc.setenabl ed(.fal se)

fc.settooltip("Select the current index for the current table, \

Preparing the Form

or none for sequential access")
end function f

As can be seen here, the form controls and the form use the system colors to ensure that they blend
in with the system colors as much as possible. They also set tool tip values, like the tools in the tool
bar code earlier.

Thelast piece of thisinitialization code isthe function that initializes the tool bar. It is quite similar to
that used to initialize the menu bar, except for the fact that it passes in the appwindow object instead
of the application object as areference. Thisis primarily because in the case of the tool bar the events
more often need fast access to the components of the appwindow object, whereas in the more complex
menu routines the application object can be more useful.

Example 6.9. The Codefor the Tool Bar Initialization

function inittool bar (wxt ool bar tb, appw ndow appw)

tb!'tSel First.onclick.reference =@ appw

t b! t Sel Rwnd. oncl i ck. ref erence =@ appw

tb!'t Sel Prev. onclick. reference =@ appw

tb!'tSel Curr.onclick.reference =@ appw

t b! t Sel Next . onclick. reference =@ appw

t b!t Sel Ff wd. oncl i ck. ref erence =@ appw

tb!t Sel Last. onclick. reference =@ appw

t b!t Sel Key. oncl i ck.reference =@ appw

/1 Only uncomment these if the objects have al so been created above
/1 tb!tPagePrev.onclick.reference =@ appw
/1 tb!tPageNext.onclick.reference =@ appw

tb!fil ei ndexconbos! cbFil es. onsel ecti onchange. r ef erence =@ appw
tb! filei ndexconbos! cbl ndexes. onsel ecti onchange. ref erence =@ appw
end function

Since in the code that creates the tool bar the functions were already assigned, in this function there
are only a set of statements assigning the appwindow object as the reference for each event handler.
As was the case with the definition of the tool bar earlier, there are some lines commented out for
working with changing pages. These also need to be uncommented if the form has multiple pages.

Preparing the Form

One of the last thingsto be done, after initializing the program and opening the form, isto prepare the
form for one very important task. Thereis still a need when creating records to create the unique key,
and this will be done in the onnewrecord event of the dataforml object. This section has two main
parts, the code that prepares the form, and the code that creates the unique key value.

Example 6.10. The pr epaddr essbookf or () Function

functi on prepaddr essbookf or m(appwi ndow appw)
datafornl form

form =@ appw. form
f orm onnew ecord. functi on =@ ab_onnew ecord
f orm onnew ecor d. ref erence =@ appw

69

The Finished Product

end funct

i on

Thisfunction is very short. It is used only to assign the function and reference to the event. The only
reason for separating it into afunction isthat later there may be other event handlers, asthe application
growsin complexity, and thisway thereisalready aplace for them without overcrowding themai n()
function. The more important part is the function that handles this event. Let's look at it now.

Example 6.11. Theab_onnewr ecor d() Function

function

ab_onnewr ecord(dat af orml ne, appw ndow appw)

type(dblrecord) r

i nt eger

i, e

sbmelt abl e addr ess

e =0

addr ess =@ appw. app. addr ess
r =@ addr ess! Addr essl D. i ndex. sel ect (| astrecord=.true, error=e)
if r =@ . nul

i

i
el se
i =

end if
ne. mast
me. refr
me! t bFi
end funct

addr ess. recordcount ()

+ 1
Il AddressI D + 1

errecord. record! AddressI D = i
esh()

rst nanes. set f ocus()

i on

This function is not particularly clever, and it shouldn't be used for a networked application, but in
single-user programs it will work just fine. What it does is fairly obvious, it retrieves the last record

according to

the Addr essl D field's index, and increments that value by one. It then refreshes the

form and sets focus to the control that is at the start of the tab order.

@

Tip

Creating areally powerful function for generating almost perfectly sequential numbersis
afairly non-trivial exercise. Especialy if the user can discard the record after creating it.
M ost approaches use adatabase table to hold the serial numbers. Typically onerecord for
each table. This allows the standard locking mechanisms to be used to prevent multiple
users getting the same number. One approach is to only retrieve the value at the end,
while saving, but this can be problematic, especially if there are dependent records that
need to have a matching key value inserted. Another approach requires two tables, one
for the serial numbers and one for the numbers that have been discarded. It also requires
code to handle the discard of arecord, so that the number can be placed in the discards
table. The discards are then always used first in preference to the main serial number
table. In abusy system, there still might be holesin the end of the sequence at any given
point, however.

The Finished Product

After all of that work, when we finally runit it shows up looking like the image below:

70

A Word About Linux

Address

Address ID
First Names
Surname
Address1
Address2
Address3
Address4
City
Region

Postcode

7| SIMPOL Address Book Sample
File Data Help

AddresslD
1
Jack
Robinson

The Ramblings
123 Station Road

Shrewsbury
Shropshire
5Y11AC

Country | United Kingdom

JHUaCCarBH?

Telephone §1743-555555
Fax p1743-555556

Email jack.robinson 123@gmail. com
Remarks

The finished Address Book application

Aswe can see, everything is now in place. Making changes to the application would be as simple as
modifying the form or adding more forms and loading them based on button selections or menu or
tool bar items.

A Word About Linux

When moving an applicationto Linux, it isimportant to recognizethat different fontswill be available.
Even more important though, isthat some Linux window managerswill change thefontsto the current
theme setting completely replacing the fonts that are used in the form. Also, they may remove or not
support attributeslike right alignment. Asaresult, if you intend to produce a version that runs on both
platforms, you should either plan your fonts and design accordingly, or use two different forms, one
for each platform and design each using the fonts and font sizes for that platform. For example, on
Windows the form was designed with 8 point fonts. The font used was actually a placeholder name:
"MS Shell DIg 2", which will become different fonts on different version of Windows. On Ubuntu
Linux, the default font was Ubuntu and the size was 11 points. The size, more than the font choice
will impact the design, as seen below:

= SIMPOL Address Book Sample O
File Data Help
[AddressiD B EFEE N
Address 1
First [ack | Telephon (01743555555

Surname [Robinson | Fax (01743555556

Address1[The Ramblings Email [jack.robinson123@gmail.com

Address: [123 Station Road Remarks |

Address: |

Address¢ |

Cil:yI [Shrewsbury
Region [Shropshire]
Postcode [SYL1AC |

Country [United Kingdom | ~ |

The finished Address Book application on Ubuntu Linux

The Ubuntu fonts can be installed on Windows as well, which makes the task of designing the form
using the Form Designer much easier. After some basic adjustments, including modifying the code

71

Summary

that creates the combo boxes in the tool bar to increase the font size if the OS is not Windows, the
new result on Ubuntu Linux can be seen below:

C! SIMPOL Address Book Sample =
File Data Help

AddressID v/ M W 4 a P> MH?
Address ID 1
First Names [Jad(—] Telephone [01743-555555 |
surname [(Robinson | Fax (01743-555556 |
Address1 [TheRamblings :I Email [jack.robinson123@gmail.com
Address2 (123 Station Road | Remarks
Address3 (|
Address4 | |
City [Shrewsbury :|
Region [shropshire |
Postcode [sy11ac |
Country [United Kingdom | v

The updated Address Book application on Ubuntu Linux

Summary

In this chapter we have built a database container, and atable to hold our data. We then built aform to
allow usto perform easy data-entry. Finally, we wrapped the whole thing in some program code that
creates the window, the menu and tool bars, and which can run as a standalone program and act asthe
basisfor amuch larger and more complex system. Although we may choose to do somethingsslightly
differently in alarger or in anetworked program, we now have a sound foundation on which to build.

More importantly though, by using the supplied sample application together with the
appf ramewor k. sm library, it is possible to quickly build a working prototype application with
data-aware forms. The only areas that must be modified are:

e The name of the form being opened in function mai n()

e The name of the daa source and table being opened in method
addr essbookappl i cati on. new()

» The content of thefunctionab_onnewr ecor d() (if required — otherwise remove the call to the
pr epaddr essbookf or n() from function mai n())

The following items should be changed as well for along-term project:
» The name of the addressbookapplication type should correctly reflect the application being built.

e Thepr epaddr essbookf orm() andab_onnewr ecor d() functionsshould bereplaced with
appropriately named functions.

e The hel pabout () function should show the correct information, and could be replaced with a
modal dialog.

Hopefully this chapter and the chapters up until now will have provided you with the tools that you
need to makeafast startintheworld of SIMPOL programming. Likein agood book, thereissomething
to appreciate right at the start, but the more you investigate, the more there is to discover, if you wish
to go there. Post your investigations and questions in the online forum and as a community we can
go there together.

72

Advanced Topics

Advanced Topics

Now that you have gotten abasic single form and database table package running in single user mode,
it isworth thinking about where to go from here. There are a couple of steps that come next:

 Loading other forms
» Changing to a multi-user system

Loading other forms tuns out to be fairly easy. The basic «cdl s
appw. openf orndi rect (" myform sxf"). The framework takes care of the rest. It is a good
idea to open all the required database tables during initialization of the application and ensure they
are part of the appwindow object.

Changing to a multi-user system is a bit more complicated. First the database tables need to be
opened and shared using a PPCS server. A sample server isincluded with Superbase NG. It islocat-
edinthe SI MPCL\ Ut i | i ti es\sinpol server directory. Also in that directory is afile called
readme. t xt . That file discusses everything necessary to share the database files via PPCS. Once
the files are shared, the remaining change that is required is to open them using a PPCS data source.

i f bUSEPPCS
ne. ppcs =@ ppcst ypel. new(udpport=. nul, error=e)
if ne.ppcs =@ . nul
wxnmessagedi al og(appw. w, "Error starting PPCS', sAPPNMSGTI TLE, \

"ok", "error")
el se
src =@ ne. opendat asour ce(" ppcstypel", "127.0.0.1:4000", appw, \
error=e)

if src =@ .nul
wxnmessagedi al og(appw. w, "Error opening the PPCS server", \
SAPPMSGTI TLE, "ok", "error")

end if
end if
el se
src =@ ne. opendat asource("sbnel", "address.sbni, appw, error=e)

if src =@ .nul
wxnmessagedi al og(appw. w, "Error opening the address.sbmfile", \
SAPPMSGTI TLE, "ok", "error")
end if
end if

if src ! @ .nul
t =@ appw. opendat at abl e(src, "Address", error=e)
if t =@ .nul
wxnmessagedi al og(appw. w, "Error opening the 'Address' table", \
SAPPMSGTI TLE, "ok", "error")

el se
ne. address =@t
ok = .true
end if
end if

The above program listing assumesthat a bool ean constant called b USEPPCS has been defined earlier
inthe program. That isal that is required to switch the program to run as amultiple user system, other
than a fully licensed database engine, though the 3-user license that is provided with Superbase NG
for testing should be sufficient while doing devel opment.

73

74

Chapter 7. SIMPOL Business

Introduction

All of the chapters up until now have been leading to a more comprehensive, complex, but also more
realistic example of the kind of program people need to build in the average organization. This chapter
will have much less text and code, but for that it has a very well documented example program that
demonstrates many of the features required of a modern database-based application program.

@ Tip
Before reading and getting heavily involved in this chapter, it is agood ideato at least
read through Chapter 5, Dialog-Style Programs and Chapter 6, GUI-Style Database Pro-
grams. Many of the techniques for working with the Form Designer and for creating
database-oriented programs are covered in those chapters.

In this chapter we will discuss the features and special techniques used in the SIMPOL Business
example program. This example consists of several database tables, four forms, and both a Quick
Report and a Graphic Report. The basic design is a typical order entry system with the usual four
tables plus a couple of extras. Hereis alist of the database tables that are included:

*+ COUNTRY
+ CUSTOMER
*+ ORDERDTL
*» ORDERMST
* PRODUCT
+ SERNO

The main tables are the CUSTOMER, ORDERDTL, ORDRMST, and PRODUCT. The COUNTRY
tableisavery carefully designed table that contains all of the current world country names, 1SO-3166
2-character code, internet domain code, CEPT Code, capital city, currency code (3-letter), and the
vehicle license plate international 1D code. Only the country code is stored in the records from the
CUSTOMER and ORDERMST tables. The SERNO table containsarecord for each of the other tables,
with the table name as the unique key and the current serial number value as the only other field.

There are also the four forms, one each for the CUSTOMER, PRODUCT, and ORDERMST tables
with adetail block on the ORDERMST form containing the order lines from the ORDERDTL table.
The fourth form is used for creating and editing entries in the ORDERDTL table and is called from
buttons on the ORDERMST form.

Special Features

In comparison with the simpler Address Book example from the previous chapter, the SIMPOL Busi-
ness application adds a number of new capabilities:

» Switching forms and selecting arelated record in the target table
» Using preventfocusmode in an application to control user accessto the data

 Using the onsave event to do cal culations when saving arecord and to hide some buttons and enable
others on the form

» Using the onchangerecord event to detect entering data-entry mode to disable and show buttons
on theform

75

Working With the
dataformidetailblock

 Using the ondelete event to ensure that all the related detail recordsin ORDERDTL can be deleted
before allowing the record in ORDERMST to be deleted

» Adding, editing, and deleting recordsin a detail block
» Using a Graphic Report for an invoice
» Using a Quick Report as a sales report

» Using a labels definition to output customer mailing labels, includig using a call to the new
choi cel i st di al og() for the output destination

* Integrating record view, table view, form view, field selection lists, the filter GUI, and the Quick
Report GUI

* Getting the user to select arecord using thenew dri | | down() function

» Using a seria number table to retrieve a unique serial number for reliability even in a network
environment

» Showing one value in acombo box list but assigning an alternate
 Using the correct public data directory on modern Windows operating systems

All of these features are well-documented in the source code of the SIMPOL Business application.
However we will still discuss afew of the more interesting features in the following sections.

Working With the dataformldetailblock
About the Design of Detail Blocks

Inour initial design and implementation of detail blocksin SIMPOL we recognized that in the original
version in Superbase some things had not gone well. Although it was possible to add records as long
as there were less records than visible rows, once the visible rows were filled adding records became
difficult. There was also no support for deleting records from the detail block. The ability to nest them
up to 8 levels deep was troublesome when trying to use them for reliable data-entry.

As aresult many Superbase users have been forced to come up with their own solutions to these
problems over the years. The solutions usually were either to use adialog for adding and editing data,
or to add aspecial set of controls on the form where data was created or modified. Most solutions also
added a set of buttons to the left of the rows to edit or delete the row data.

During our initial design and implementation for SIMPOL, we decided to make the detail block read-
only to avoid the need to wrestle with these issues since, to start with, we just wanted to get areliably
working read-only implementation. There are numerous issues to resolve with something like thisif
it is allowed to be read/write. We decided to add the ability to modify the content of the detail block
under program control. The early versions had some limited ability to do this, but with the 1.8 release,
we decided to commit to adetail block that could be completely managed under program control. We
added the necessary methods to add, edit, and delete entries.

Adding New Records to Detail Blocks

For this project we chose to use the dialog method for data-entry. New records are created using the
same dialog window and form (which is a normal dataforml form). The only differenceisthe record
isanew one rather than an existing one. In this design, when the order record is created, we disable
the buttonsthat allow the creation, editing, or deletion of detail block records. After it has been saved,
these buttons are again enabled. This ensures that the detail block records are created based on an
existing order record. Otherwise we would have had the problem of ensuring the records are not saved
until the order itself is saved. Below is an image of the orders form.

76

Adding New Records
to Detail Blocks

[57 stMPOL Business —=cm |
File Dsts Reports Help

OrdSerhio M4 aprppH?HEED

OrdSerfio 0000001 CustSerNo 001147 . OrderedOn 10/03/2014 PurchaseOrderfic

| 5hip to invoice address
InvOrg Non Leo Company ShipToOrg Mo Leo Company
Tvhame 5 ShigToMame Dr. Pearl Salazar
ImvDept

InvAddress 1

ShipToDept Acvertising
3 ShipToAddress1 Ap #349-264 Amet Rd.
InvAddress2 ShipToddress2

InvAddress3 ShipToAddress3
IrvCity Toledo ShipTaGity Toledo

ImPostCode GIG SAS ShipToPostCode GSG 5AS

InvCountry AZ ShpToCountry AZ
+ ProdSerNo Qty Prodhame UnitPrice TaxRate NetTotal Tax Total
#) 2< ooooooz Anse Seed (454g) 13.75 20.00 £27.50 £5.50 £33.00
#| 2<| poonoos 20.00 £26.00 £5.20 £31.20
#| 2<| ooooos1 .00 £14.50 £2.90 £17.40
#| 2<| oo .00 £82.50 £15.50 £99.00
7 <
) <
7| <
Delrvery Nates. Totaks 150.50 £30,10 180.60

The Orders Form from SIMPOL Business.

The key bit of code for both adding and editing records in the detail block can be found in two of
the included functions: addor der | i ne() and edi t order| i ne() . They both cal the function
doedi t addor der | i ne() to actualy present the dialog box and handle the interaction with the
user. At the end that function returns a type(dblrecord) object and sets the boolean saved variable
to. t r ue if the user saved the record. Below istheaddor der | i ne() function.

Example 7.1. The addorderline() function of the SIMPOL Business
program

functi on addorderli ne(dat af or nilbutton ne, appw ndow appw)
bool ean saved
type(dblrecord) r
dat af ormlr ecord rec
dat af or mlt abl e t abl e
i nt eger ordserno, e
dat af or mldet ai | bl ock dtb
dat af or mlLr ecor dset rset

saved = .fal se
e =0
ordserno = ne.form masterrecord. record! O dSer No
r =@ doedi t addorderl i ne(appw, .true, saved=saved, \
or dser no=or dser no)
if saved
/! Here we need to add the row to the detail block and nove
/1 the current row pointer
dtb =@ ne. f or nl dt bOr der Li nes
if dtb !@ .nul
rset =@ dat af or niL.r ecor dset . new()
table =@ne. form fi ndtabl e(r.tabl e.tabl enane)
rec =@ dat af or mlrecord. new(r, table, error=e)
// Here we are placing the record in the record set as the
/1 master record
rset.records[1l] =@ rec

77

Editing Records in a Detail Block

dt b. addr owdat a(rset, error=e)
cal cul ateordertotal s(nme.form dtb, appw)
end if
end if
end function

The important point of thisisthe place in the code where the record is added to the detail block.

E Note
A detail block row isrepresented by adataform2lrecordset object. Thiscontainsarecords
property of type array. Each element in the records array is of type dataformlrecord.
If the detail block contains multiple linked records that are linked 1:1 (for example a
product name that is not stored in the detail record but which is only looked up viathe
product I D), then for each linked table there will be an additional dataformlrecord object
in the records array.

In the example above, we are working with a simple detail block consisting of only the detail table
record in each row. Towrite the new record to the detail block, we create anew record set, create anew
dataf orm2record object using the record that was returned, and then assign the dataf orm2record object
to the first element of the record set's records array. Once our preparation is complete, we call the
addr owdat a() method of the dataformldetailblock object. Also, since we are managing the totals
of several of the columnsin the ORDERMST record, we also call thecal cul at eor dert ot al s()
function that cal culates the totals to update the valuesin that record and to show them on the form.

Editing Records in a Detail Block

The code that handles the editing of the detail block is very similar to that which adds a new record:

Example 7.2. The addorderline() function of the SIMPOL Business
program

function editorderline(dataformnmibutton me, appw ndow appw)
i nteger row, e, orditemo
dat af or nildet ai | bl ock dtb
dat af or niLr ecor dset rset
dat af or mlrecord rec
type(dblrecord) r
bool ean saved
sbappl i cation app

saved = .fal se
app =@ appw. app
e =0

dtb =@ne. f orml dt bOr der Li nes
if dtb ! @ .nul
row = .toval (ne. nane, nondigits(nme.nanme), 10)
if row>= 1 and row <= dtb. rows
rset =@dtb. getrowdata(row, error=e)
if rset =@ . nul
wxnmessagedi al og(appw. w, "Error no row data avail able", \
SAPPMSGTI TLE, "ok", "error")
el se
rec =@rset.records[1]
if rec =@ .nul or rec.record =@ . nul

78

Deleting Recordsin a Detail Block

wxmessagedi al og(appw. w, "Error record not found in the \
row data", sSAPPMSGII TLE, "ok", "error")
el se
r =@rec.record
orditermo = r! OrdltenmNo

r =@ . nul
r =@ doedi t addorderline(appw, .false, orditemmo, saved)
if saved

/1 Update the specific rowin the detail block
rec.record =@r
dt b. setrowdat a(row, rset, error=e)
cal cul ateordertotal s(nme.form dtb, appw)
end if
end if
end if
end if
end if
end function

In the preceding example the name of the button control contains the row number and that isretrieved
by using the . t oval () function and by declaring al of the non-digit content using the nondi g-

i ts() function. Then we call the get r owdat a() method of the detail block passing in the row
number to retrieve the record set representing that row. We access the dataform2record that contains
the detail block record from the record set and use that to read our unique record ID, the value of the
O dl t enNo field.

We then clear the record variable by setting it to . nul and call the doedi t addor der | i ne()

function passing inthe or di t enmo variable. If the user has saved the changesto the record, then we
need to replace the old version of the record in our dataformlrecord object with the updated version.
Then all that is left isto call the set r owdat a() method of the detail block and as with the new
record, weneed to call thecal cul at eor dert ot al s() function to update the totalsin the master
record and display them on the screen.

Deleting Records in a Detail Block

All that remains with our detail block is to be able to delete records from it. The program code that
doesthat isvery similar to that used for editing:

Example 7.3. The addorderline() function of the SSMPOL Business
program

function del et eorderline(dat af ornilbutton ne, appw ndow appw)
i nteger row, e
dat af or nildet ai | bl ock dtb
dat af or niLr ecor dset rset
dat af or mlrecord rec

e =0
dtb =@ ne. f or nl dt bOr der Li nes
if dtb !@ .nul
row = .toval (ne. nane, nondigits(ne.nane), 10)
if row>= 1 and row <= dtb. rows
rset =@dtb. getrowdat a(row, error=e)
if rset =@ .nul
wxnmessagedi al og(appw. w, "Error no row data avail abl e", \
sAPPMSGTI TLE, "ok", "error")

79

Usingthedri | | down() Function

el se
rec =@rset.records[1]
if rec =@ .nul or rec.record =@ . nul
/I wxnmessagedi al og(appw. w, "Error record not found in \

/1 the row data", sAPPMSGII TLE, "ok", \
/1 "error")
el se
rec.| ock(error=e)
if e!=20

wxmessagedi al og(appw. w, "Error |ocking the record", \
SAPPMSGTI TLE, "ok", "error")

el se
rec. del et e(error=e)
if e!=0

wxmessagedi al og(appw. w, "Error deleting the record”,\
SAPPMSGTI TLE, "ok", "error")
el se
dt b. renrover owdat a(r ow, error=e)
cal cul ateordertotal s(nme.form dtb, appw)
end if
end if
end if
end if
end if
end if
end function

Just aswas donein the edit code, first we transform the control nameinto the row number and then we
use that to retrieve the record set representing that row. After extracting the dataform2record object
from the record set, we lock it and assuming that succeeded, we call the del et e() method of the
dataformlrecord object. If that also succeeds (it should), the r enover owdat a() method of the

detail block object iscalled to remove the actual record set for that row and to adjust the scroll position
of the visible rows on the form.

Using thedri | | down() Function

To make it easy to select the correct customer for an order, the new dri | | down() function was
brought into the project. It requires a bit of set up, but provides afast and efficient method of finding
atarget record. An example of it can be seen below.

Select a customer @
Customer list

Salazar, Pearl Mon Leo Company Toledo G9G 5A5 AZ | oK |

Lastf City PostCode Cour # | = |

Salas, Tians Enim Mi Tempor Consulting 2566PG 10 | _

Salas, Melanie Witae Purus Consulting Alappuzha RHI9OYZ ES 1

Salas, Troy Rhoncus LLC Alcorecdn 20115 (3]

Salas, Teus Aliguam Consulting Ria Grands TP ZA

Salazar, Denise Sed Et Libero LLC Luzidnia 5273 SR

Salazar, Pearl [Mon Lea Company Toledo GG 545 AZ

Salazar, Steel Nisi Mauris Incorparated Balsas 47004 51

Salinas, Nehru Aliguet Sem Ut Incorporated Morth Barrackpur 4212 &H

Salinas, Pandora Velit Institute Purmerend 6245 ER

Salinas, Walker Luctus Aliquet Odio Corp. 90550037 TW

The drill down window searching for a customer

80

Usingthedri | | down() Function

Asthe user typesin the top edit control, the system detects that and searches against the index passed
as the search index. It then fills the grid with data up to the maximum number of desired rows. The
code that does thisis shown here:

Example 7.4. Thef i ndcust oner () Function for the Orders Form

function findcustoner(dataformlbutton nme, appw ndow appw)
type(dblrecord) r
t ype(dbli ndex) i dx
sbappl i cation app
tdi spl ayf ormats di spfm
array dispflds, colw dths
i nteger e

if not ne.form preventfocus
app =@ appw. app
di spfmt =@ app. di spl ayf or mat s
i dx =@ app.tabl es. cust oner! Last Fi r st Nane. i ndex
di spflds =@array. new)
di spflds[1] =@ app.tabl es. cust omer! Last Fi r st Nane
di spflds[2] =@ app. tabl es. custonmer! Or gani zati on
di spflds[3] =@app.tables.custoner!City
di spfl ds[4] =@ app. tabl es. cust omer! Post Code
di spfl ds[5] =@ app.tabl es. cust oner! Count r yCode

colw dths =@array. new)

col wi dt hs[1] = 150

colw dt hs[2] = 220

colwi dt hs[3] = 150

col wi dt hs[4] = 60

col wi dt hs[5] = 50

e =0

r =@drilldown(appw. w, 730, 400, idx, 100, 1, "Select a \
custonmer", "Custonmer list", \
di spfl ds=di spfl ds, colw dt hs=col wi dt hs, \
def bool ean=di spf nt . def bool ean, \
def i nt eger =di spf nt . defi nt eger, \
def nunber =di spf nt . def nunber, \
def dat e=di spf nt . def date, \
defti me=di spfnt.deftinme, \
def dat et i ne=di spf nt . def dateti me, \
dat el ocal e=app. SBLI ocal e. dat el ocal e, \
num ocal e=app. SBLI ocal e. num ocal e, error=e)

if r '@ .nul

updat ecust onorderform(nme.form r, appw)
end if
end if

end function

The code should be fairly obvious, we first check to make sure we are in data-entry mode by testing
theme.form.preventfocusvalue. If itisequal to. t r ue then we are not in data-entry, soignoreclicks.

81

Storing Data Correctly in
Modern Windows Systems

@ Note

In preventfocusmode in the ongotfocus event of the dataforml controlsif the preventfo-
cus property is equal to . t r ue then nothing happens and focus is ignored. This does
not prevent the onclick event of buttons from firing, however, so if they should not fire
at all timesit is necessary to test for the state of this property.

To reduce the amount of typing we declared the di spfnt variable and assigned the
app.displayformats property to it. We then acquire a reference to the index object we wish to use for
searching, produce an array to hold the field object references for the fields we wish to display in the
grid, and assign the column widths to the col wi dt hs array. The col wi dt hs array isoptional. If
they are not passed the column widths will be derived from the table information. Finally the call is
made to the dri | | down() function and if the user clicks on OK, then it will return the selected
record object, otherwise it will return . nul .

Storing Data Correctly in Modern Windows
Systems

As of Windows Vista it became difficult to modify data stored in the Pr ogr am Fi | es directory.
Although the system doesn't cause an error when a program writes data there, what actually happens
isthe datais not written to that location, but instead it is written to alocation below the user directory.
The location istypically something like: \ User \ AppDat a\ Local \ Vi r t ual St or e\ Program
Fi | es\ ... Although that may not matter in a single-user system (though you may not be backing up
the data correctly), in a multi-user system, where more than one person logs onto the same PC, that
would mean that each user would have their own copy of the data, and changes from one would not
appear in the data of the other.

The solution to this mess, isto store the datain a publicly accessible location. On Vistaand later, that
isthe\ User s\ Publ i c\ Document s directory. There is a function in the application framework
called get publ i cdat adi r () that can be used for this purpose. A small part of the initialization
code from the sbappl i cati on. new() method demonstrates how this is used in the SIMPOL
Business application.

Example 7.5. Thef i ndcust oner () Function for the Orders Form

e=0
dat adi r = get publicdatadir(error=e)
if datadir <= ""

wxmessagedi al og(appw. w, "Error retrieving data directory", \
SAPPMSGTI TLE, "ok", "error")
el se
di rsep = getdirectorysepchar()
me. di rsep = dirsep
ne.startdir = trailingdirsep(getcurrentdirectory())
datadir = trailingdirsep(datadir) + sSAPPNAME + dirsep

The preceding fragment of code shows the approach. The dat adi r is constructed by combining
thereturn value from get publ i cdat adi r () with the application name followed by the directory
separator character. On most systems this will be: C: \ User s\ Publ i ¢\ Docunent s\ SI MPOL
Busi ness\ . The installer will have created this directory and copied the database files plus the
SI MPOL Busi ness. i ni fileintoit.

82

Summary

Summary

In this chapter we have discussed some of the more interesting techniques used in the SIMPOL Busi-
ness sample application. There are more to be discovered, and the easiest way to do that is by opening
the project in the IDE and looking at the source code. Try running it in debug mode and see how
variousthingswork. Thereisno substitute for getting into the code. It isthe best method to |earn about
how things work. An interesting thing to do would be to change the parameters to use PPCS and set
up the database with the si npol ser ver . exe and an appropriate configuration file.

83

Chapter 8. SIMPOL Server
About the SIMPOL PPCS Server Programs

In this chapter we will discuss the multi-user database server programs currently shipped with SIM-
POL, si npol server. exe/si npol server. snp and gui si npol server. exe. Thefirstis
designed to run without a user-interface, from a command line prompt or as a service (more later).
The second is designed to run on a logged in server as a window program with buttons for sharing
the tables, stopping sharing, reorganizing the tables, backing them up and restoring from the back up.
Both take a single parameter on the command line to tell them which configuration file to load. Both
do the job fine. Using these or variations of these we have been deploying systems for years on both
Windows and Linux. In the next sections we will go into each of them in more detail. Before we do
that though, since both make use of the same configuration file format, let's examine that.

The Configuration File

The configuration file used by both serversis based on the ini file format. There are two sectionsin
this file. Below is an example of the file format. The file format has changed since earlier versions,
but the old format is still supported. Just don't includeacf gver si on parameter and don't make use
of any of the new parameters.

Example 8.1. A Sample SIMPOL Server Configuration File

[Server]

cf gversi on=2

port 1=4000

t xfact or1=0

#port 2=4001

#t xf act or 2=6

t cpport =4002

| ogfi | ename=sanpl el og. t xt

bz2l i bdl | =c: \ si npol \ bi n\ bzi p2. dl |
ar chi ver oot =S| MPCL Dat a Backup
backupdi r =C: \ User s\ Publ i c\ Docunent s\ SI MPOL\ backup
title=SI MPOL Server

def | ockt i meout =10000000

[Files]
1=c:\sinpol\utilities\sinpolserver\adrb.sbm | ockti meout=120000000

The [Server] Section of the Config File

IntheSer ver section, theport entry can berepeated multipletimes, but each must end in adifferent
sequential value starting with 1. The server will listen on each of the ports listed. The t xf act or
valueisused to reduce the transmission speed of the server. Thisisimportant especially when working
with Superbase clients, wherethe client cannot processthe datafast enough to keep up, resulting in lost
packets. Also, when debugging it may be necessary to slow down for SIMPOL to 6 or even 9 or 10.
Thet cpport isused so that the serverclose.smp (or .exe) can regquest the simpol server to shutdown.

As can be seen above, the entries for por t 2 and t xf act or 2 are commented out. Y ou don't need
port 2 andt xf act or 2 (but you always need both together), unless you are coping with systems
with differing network access speeds, like a LAN and a WAN. You might set the LAN txfactor to
0 and the WAN txfactor to 6, for example. Tables with larger numbers of fields can take longer per

85

The[Fi | es] Sec-
tion of the Config File

record, so you may need to increase the txfactor to support the time it takes for the record or file
definition to be processed.

Thet cpport isusedto host a TCP/IP server that can be contacted using the ser ver cl ose. exe
(or .smp) file. Asaseurity precaution, it must be run on the same physical machineor it will beignored.
The command it sendsis simply a QUI T message, but this ensures that the server will correctly shut
down and flush all changes to disk.

If thel ogf i | ename parameter is assigned, then alog will be produced and written to a file of the
same name.

When using the gui sinpol server.exe or the sinpolserver.exe with the
si mpol serverclient. exe, the following three entries are required for doing back up and re-
store of data:

e bz2libdl |

e archi ver oot

* backupdir

Thefirst provides the name and location of the BZip2 DLL that is used for compressing and decom-
pressing the datafiles. Thear chi ver oot definesthe root file name to which the date and time will

be appended. The last item identifies the location where the back up files will be stored.

Thedef | ockt i meout entry allowsthelock time out valueto be set to a standard value, which will
beinherited by al of theentriesinthe[Fi | es] section, unless expressly overridden.

The [Fi | es] Section of the Config File

The format of the Fi | es entriesis as follows: <i ndex val ue>=<path and fil enane>,
| ockti meout =.inf, hidden=f, reccount=f, codepage=850, r=, rc=, rl=,
rlc=, rlms, rld=, rlcd=, rlcne, rlnd=, rlcnd=.Herethey arelisted out:

* <index val ue>

* <path and fil ename>

* | ockti meout

* hi dden

e reccount

e codepage

er

erc

e rlcd

86

Working with
si npol server. exe

e rlcm
e rlnmd
e rlcnd

Thei ndex value must be in sequential order starting with 1 and not contain duplicates. As soon as
avalue is missed the program stops reading files.

The path and file name for each *. sbmfile adds that container file and all of its tables (except for
the system tables) to the server.

Thel ockt i meout value defaultsto . i nf (never unlocks from the server side), unlessit is over-
ridden with avalue assigned to the def | ockt i meout entry inthe[Ser ver] section. Thisvalue
should be set to be appropriate for the individual table and its use. The value is in microseconds, so
to automatically unlock in 12 seconds, use: 12000000. It applies to all tables located in the same
container file.

The default hi dden valueisf (false). To enableit, setittot (true). Tables can be hidden so that
someone connecting to the PPCS server cannot list them. If they know the table name, then they can
till open theit, unlessit is password protected.

Ther eccount default valueist . To suppress the determination of the record count for atable, set
ittof (false). Thiswill assign the maximum record count to the table and not try to calculate it. On
very large tables cal culating the record count can take some time, making server starts slow.

PPCS operates in the DOS code page normally (for historical reasons having to do with compatibility
with the PPCS protocol of its predecessor (Superbase). The default code page for PPCSis 850 (Latin
1). This can be changed to another code page by setting this parameter. Thisis the list of supported
code pages: 437, 720, 737, 775, 850, 852, 855, 857, 862, 866, 874, 1258.

Ther=,rc=rl=rlc=rlinme rld=rlcd=rlcms rl md=, rl cnd= parameters are al
passwords. To password protect the database table purely for access, it is only necessary to apply a
read password. More fine-grained control can be had using the other password combinations, if de-
sired. The letters stand for the following capabilities with respect to records:

e r —read

» C —create
o | —lock

e m-modify
e d—delete

Please notethat if you decideto use multiple passwords to access these tables from different userswith
different accessrights, then the program code needs to be able to cope with any errorsthat may occur.

Working with si npol server. exe

The si npol server. exe program is designed to run without any user interface. It takes a single
argument on the command line, which is the name of the configuration file from which it should read
theinformation it needsto run: which port number(s) to listen on, the name of thelog fileto create, the
name(s) of the database files that should be shared and the parameters for each of them. If it is started
without any parametersit will search for thefile si npol ser veri nf o. cf g in the same directory
from where the exe file was started. If it hits an error starting up it will output that information as a
return value to the console and if it got far enough there may be some information in the log file.

87

Working with
gui si npol server. exe

It can also berun using the si npol ser ver . snp file, in which case it should definitely be run by
passing the configuration file nameto it as a parameter. This is the program to use when running on
Linux.

When running this program, there is a companion program that can provide the user-interface for
the server. That program is delivered as si nmpol servercl i ent. exe. It is currently only avail-
able for Windows. It will present a user-interface that looks more or less identical to that of the
gui si mpol ser ver . exe program, but it acts only as a front-end to the server version. It can also
start and stop the sharing of tables, aswell as perform areorganize, back up, restore and can view the
log. The si npol servercl i ent. exe takes a single parameter, which is the TCP/IP port where
the server islistening. If no parameter is provided, it will search the directory where the exe file was
located when it started for afile called si npol serveri nf o. cf g and if it finds it will read the
TCP/IP port value from there.

Working with gui si npol server. exe

Thegui si npol server . exe program was designed as a desktop program to be run on alogged-
in server. It gives much more fine-grained control than our original si mpol ser ver . snp program.
With the release of the new version of the si npol server. exe and its ability to be controlled
using si npol servercl i ent. exe, there are fewer reasons to choose this version, though itisa
much simpler design and may have less issues in aworking environment. For one thing, itisall self-
contained. On the other hand, if left running for avery long time, it might be less stable than aversion
that does not have the user-interface components included and running. For now, pick the one that
suitsyou best. Sincethey both support the same configuration fileformat, thereisno difficulty moving
from one version to another. Below is an image showing the user-interface. This image is from the
si mpol serverclient. exe program, but there is no obvious difference between them.

£ SIMPOL PPCS Server Contrel o] @ =

Table List

Stop Serving

Show Log

The user interface for gui si npol server andsi npol serverclient

Running si npol server. exe as a Service

In a production environment, you would ideally want the database server to start when the serv-
er starts, and to shut down gracefully when the server shuts down. Using Linux, this is quite
easy depending on your distribution. It is fairly trivia to add / usr/ bi n/ snprun /hone/
nme/ si npol server. snmp / hone/ nme/ si npol serveri nf o. cf g to the start up of the serv-
er and / usr/ bi n/ snprun /hone/ ne/ servercl ose. snp 12345 to the shut down of
the server (typically something like | ocal . start and | ocal . stop in/etc/conf.d/ or
basel ayout 1. start and basel ayout 1. stopin/etc/ | ocal . d/). Linux makes alot of

88

Running si npol server. exe
asaService

things easier, which is why we only have one loader program for both console and windowing pro-
grams. On Windows, thisis all much more complicated.

We created a special program that can run aspecified program as a service, with asecond program that
can berunto stop the service. The programiscalled svcr unnr . exe. Toinstal the service running
program, from the command linerunthis: svcr unnr . exe -i nst al | . Toremovethe service, use
this command line: svcrunnr. exe -renove. Before you start the service, it is useful to check
that everything is correctly configured.

Once the service isinstalled, it is important to check its configuration file. The name of that fileis:
svcrunnr. exe. i ni . Thisisavery simplefileand it needs to be located in the same directory as
thesvcrunnr. exe program. It contains two sections, each with only one entry:

Example 8.2. A Samplesvcr unnr . exe Configuration File

[Startup]
Comand=C: \ SI MPOL\ bi n\ si npol server. exe

[Shut down]
Command=C: \ SI MPQOL\ bi n\ ser ver cl ose. exe

Normally, there should be no reason to change this configuration file unlessthe locations are incorrect.
It is specific to the installation of the si npol ser ver . exe suite of programs.

@ Note
Only one instance of this service can be running and/or installed concurrently, so there
is no easy use that can be made of the service runner for other purposes. At some point
we will release amore powerful service loader for SIMPOL.

After checking the configuration file and after making sure that the si npol serveri nfo. cfgis
correctly set up (because this method will always use thisfile name), if the server should run automat-
ically, then it needs to be set to do so. Uponsinstallation it is set up to run manually only. To change
this, in aconsolewindow, or inthe Start menu enter ser vi ces. nsc inthe search window and press
Enter. The services program will start. Navigate in the list to the S| MPCL Scri pted start/
st op entry as shown below:

Senvices E=m|FoE <"
Eile Action Niew Help
&= ([L2 . Heo|l v mnon
Senvices (Local) ~ . Services (Local)

SIMPOL Scripted start/stop Mame - Description Status Startup Type Log On As -

R . Remacte Registry Enables rem.. Manual Local Service

Rt the service Routing and Remote Access Offers routi... Disabled Local System
RPC Endpoint Mapper Resolves RP... Started Automatic Metwork Service
Scrybe Updater Updates yo.. Disabled Local System
Secondary Legon Enables star... Manual Lecal System
Secure Socket Tunneling Pr... Provides su... Manual Local Service
Security Accounts Manager The startup ... Started Automatic Local System
Security Center The WSCSV... Started Automatic (D... Local Service
Server Supports fil.. Started Automatic Local System
Shell Hardware Detection Provides no... Started Austornatic Lecal System
Skype Updater Enables the ... Automatic Local System
Smart Card Manages ac... Manual Local Service L
Smart Card Removal Policy Allows the s... Manual Local System]
SNMP Trap Receives tra... Manual Local Service
Software Protection Enables the ... Automatic (D... MNetwork Senvice
SPP Notification Service Provides So... Manual Local Service
SSDP Discovery Discovers n... Started Manual Local Service
Storage Service Enforces gr.. Manual Local System
Superfetch Maintains a... Started Automatic Local System
System Event Motification 5... Monitors sy... Started Austomatic Lecal System

'\ Estended /, Standard I_r"

The Services window showing the svcrunnr entry

89

SIMPOL Server Summary

Double-click on the entry in the list and in the pop up window change the startup type to Automatic
so that it runs when the computer starts, then click on the Start button to start it running. See theimage
bel ow:

SIMPOL Scripted start/stop Properties (Local Computer) @
General | Log On | Recovery | Dependencees

Servica name: SIMPOLScript Service

Dhaplay name: SIMPOL Seripted sta./stop

Descnption

Path to executable:
eASIMPOL bin'\svennnr exe

Startup typg

Service stalus
[zat

You can speciy the start parameters that apply when you statt the service
From here.

Start parameters

[ok Cancel

TheSI MPOL Scri pted start/ stop window showing the set up

That's it! The database engine will now run automatically when the server starts, and will auto-
matically shutdown when the server is shutdown. To see what is happening and to control it, the
si mpol servercl i ent. exe program can be run.

SIMPOL Server Summary

In this chapter we have learned about the multi-user database server programs supplied with the SIM-
POL product. We have learned how to configure them, start them, stop them, and use them for doing
data back up and restore, as well as table maintenance using the reorganize command. Finaly, we
havelearned how to usethesvcr unnr . exe programtorunthesi nmpol server. exe asaservice
so that it will always be available, even when the computer hasjust started and has not been logged in.

90

Chapter 9. Web Server Programs

Introducing World Wide Web Server Pro-
gramming

SIMPOL's earliest interactive program capabilities were as a web server application. This was done
becauseit wasthe easiest way to build programsthat were ableto interact with the user, sincewedidn't
need to worry about building user interface components. As part of the implementation, we decided
to support the CGI standard, ISAPI (Microsoft's proprietary interface for 11S) and something called
Fast-CGl, which is a high-performance version of CGI that can handle larger loads. It does this by
allowing the program code to remain loaded for a certain amount of time, so that subseguent callsto
the same program do not need to also go through initialization.

Therearetypically two approachesto web application programming, page-centered and program-cen-
tered. Examples of page-centered programming are typically found in PHP and ASP programs. The
page is the focus of the development. This works well for people who are mainly graphics designers
and who want to add alittle bit of codeto their pages. The other approach tends to be much more about
the application code, which will, based on the current state, display any of a number of pages. Both
are valid methods of working, though application programmers may find the page-centric approach
difficult to follow.

SIMPOL supports to some degree both styles. The IDE has support for afile format called *. snz
which is aform of HTML with embedded SIMPOL code. During the compilation phase these files
are converted to program code with embedded HTML. In the standard versions used in ASP and PHP,
these pages are processed by the server when they are requested, whereasin SIMPOL they are already
compiled to byte code.

The hardest part about web server programming is debugging something like this, which runsin the
server, since you can't control the execution. We solved this problem way back in 2003, by building
a special program to act as the loader for the CGI program, and which then connects to the SIMPOL
I DE to debug the program. This works extremely well and makes debugging the program quite easy.
Thisloader programiscaled sbngi decal | er. exe.

Styles of Web Server Application

There are a number of differences between the different web server loading methods. Both the CGlI
and | SAPI approachesuseamai n() functionthat takesacgicall cgi parameter. The main difference
between the two is what the current directory is. For CGI programs, the current directory is the same
asthe location of the program that is being loaded, while for ISAPI programs, they normally start in
the %5YS32 directory.

The Fast-CGI program is quite different to the other two, though like with CGl, the location of the
program fileisalso thelocation of the current directory. Instead of amai n() , there are three separate
functions. They are: f cgi i ni t (), which takes no parameters, f cgi () , which takesacgical cgi
parameter, and an optional type(*) <par ammamne> parameter, which is the return value from the
fcgiinit() function. Finaly, thereisanf cgi t er m() function that takes the return value from
thef cgi i nit () functionto alow any required clean up to take place. One example of this might
beif adynamically loaded library isopened during initialization and in that some memory is reserved.
Then during the clean up phase that memory could be rel eased. In most SIMPOL web server programs,
there will be little need for the final function, except as an empty function so that it can be called
although it will do nothing.

It is also worth mentioning that with advent of what has been called Web 2.0 that by using client-side
JavaScript and a capability known as AJAX (Asynchronous JavaScript and XML) a new approach to
web server applications has arisen, that are more about handling data requests and sending back the

91

Valuable Reading References With-
in the SIMPOL Documentation

data in a specific form. This technique makes use of the XMLHt t pRequest which, in spite of its
name, does not need to use XML. It can transfer datain other ways beside using XML. Theinteresting
part of this approach is that of sending pages back every time a call is made to the web server, the
application running in the web browser may only send out data requests to refresh what is shown on
the page being displayed. Thisisfar more efficient than sending along the entire page each time you
send the data. There are two aspects of Web 2.0 redlly, one isrelated to this ability to update the data
on the page without resending the page, the other has to do with the use of amodern set of librariesto
make web applications look more like desktop applications and is embedded into various JavaScript
frameworks. JavaScript is still a frustratingly messy language, but it is showing signs of growth. It
remains to be seen how long it will take before it becomes easy to create an application the way you
want, rather than the way they want.

Valuable Reading References Within the SIM-
POL Documentation

The SMPOL IDE Users Guide contains a section in Chapter 3, The SMPOL Project, dedicated to
what iscalled “SIMPOL Server Pages’. Thisfairly extensive section discusses the various aspects of
working with the IDE and web server applications.

In the SMPOL IDE Quick Start Manual, in Chapter 3 Writing Web Server Programs With SMPOL,
a complete example of writing a web server program is presented, including setting up the Apache
web server and debugging the application. Thisiswell worth aread.

Sample Web Server Applications Shipped
with SIMPOL

The \ SI MPOL\ Pr oj ect s\ ssp directory contains a group of sample programs that demonstrate
how to create and run applications from the web server. These include samplesthat are interlinked in
some cases. It also includes both database and non-database related programs. The sbi scal endar
project produces a simple calendar. The current day of the month is highlighted in a different color.
Thereisalso auseful tool for examining the environment variables that are available to the program-
ming environment, called sbi senvvar s. The following demonstrate basic database usage:

* shi scont act

* shi scontactdi spl ay
* shi scont act post

* shi sreport

e shisreportfast

The starting point is the first item. To try it out a http://ww. si npol . conl cgi - bi n/
shi scont act . snmp. These can al be set up to run on aloca web server running on your develop-
ment computer. The easiest approachistoinstall alocal copy of the Apache web server. Then you will
need to modify the local target in each project to match your system architecture. If the installer was
abletofind apache, it may have already modified the programs. The programslook for thesbi s. i ni
file, so that may need to be modified, as will the basehr ef inthe header . ht mfile. All of the
items that are needed for the web server can be found in the apache inside of the ssp directory. It
isagood ideato also run alocal PPCS server to host the database. The samples ship with everything
required inthe ppcsser ver directory in the project folder.

Finally thereisaframe sample, which isadmittedly someone outdated in terms of modern web design,
but still may have some use. Torunit, start thesbi sf r anesanpl e. snp inyour browser using the
correct URL ortry itat ht t p: / / www. si npol . coni cgi - bi n/ sbi sfranmesanpl e. snp.

92

The Web Server "Sandwich" Method

The Web Server "Sandwich" Method

Web

Many web server applications can be seen as the filling inside of a web page. The part of the web
page that precedes the place in the content where the output of the program is placed is the top piece
of bread, and the part that follows the content is the bottom piece of bread. In some cases it may be
necessary to have 3 chunks of HTML that represent the page, the top part, from the initial HTML
declaration down to the place in the header where the basehr ef isinserted, then the remainder of
the header plusthe start of the body, and finally the remainder of the body and the footer. In SIMPOL
we use this approach quite heavily. A program can be made to look like a part of any target system
by taking atypical page from that system, dividing it into the necessary chunks, and then using the
SBI Sl ncl ude()) function to read those chunksof HTML from the storage mediawhen the program
isrun on the web server. Itisfast and efficient.

Server Application Summary

In this chapter we have discussed the development of web server applications using SIMPOL. We
haven't gone into detail about how to actually program these, since the mechanics of programming a
web server application are covered in two other placesin the SIMPOL documentation, and a group of
sample programs demonstrating various aspects of web server application programming are included
with the sample projects. Thisisjust the beginning of ajourney. Web server programming is a large
an growing topic, but by using thisfacility within SIMPOL you can feel confident that you can deploy
web server applicationsthat use databases stored in your system and that may even be used by desktop
program in-house. We use this sort of approach ourselves, with a basic web system for use by our
customers and an expanded desktop system written in SIMPOL for in-house use.

Thetools are there, where you want to take it, is really up to you!

93

94

Chapter 10. Server Programs

About Server Programs

This chapter is meant to discuss the approach to building server programs. A server program may, or
may not have a user-interface in the traditional sense. An example of a server program would be a
program that accepts TCP/I P connections and then responded to requests by carrying out some process
and thenreturning aresult tothe caller. A web server, adedicated XML server that actsasagateway to
adatabase, amail server, a payment gateway, a graphics server that converts images from one format
to another, afile update system; these are all typical server programs.

Accessing Server Programs

There are a few different ways of accessing a server program. Most modern systems will use either
TCP/IP, UDP/IP, a communications port (COM1, USB001, OLE2, DDE, etc.), the file drop method
(monitor a directory and when a file appears in the directory read and process it), or they may use
some other intermediary such asanini file. Currently SIMPOL can be used to implement such systems
using TCP/IP, file drop, or ini files (SIMPOL supports OLE2, but only as a client program).

Sample TCP/IP Server and Client Programs

Two sample programs are shipped with SIMPOL. They can be found in the\ SI MPOL\ Pr oj ect s
\ socket s directory. Oneiscalled cl i ent sanpl e and the other isser ver sanpl e. Together
they implement a very rudimentary file transfer system that could fairly easily be built into a live
update type of mechanism.

They each containar ecei vestri ng() function that was taken directly from acommercial appli-
cation built in-house. This particular function design requires that the other end respond with a car-
riage-return linefeed pair or alinefeed alone (should work fine on Windows, Linux, and OS-X). The
function was designed so that it can also work together with directly typed input, such asfrom Telnet.
The server simply sits there doing nothing until a connection is made. At that point a new thread is
spawned and passed to thedi spat ch() function, along with the incoming socket object.

Withinthedi spat ch() functionaHEL Oissenttoidentify the server asaresponseto the connection.
A loopisentered to process the commands supported by the server. If nothing arrives within a specific
amount of time, then the loop will time out and the connection will be closed. The client receives the
HEL O and then requests the time by sending the TI ME command. After receiving the time from the
server, it sends the GET command and the server responds by opening and then transmitting its own
program file, prefaced with aminimal header to tell the client the amount of databeing sent. The client
receivesthedatausingther ecei vebl ob() functionand storesit. It then sendsthe QUI T command
to allow the server to exit the loop immediately rather than waiting for atime out.

Server Programs Conclusion

Although the sample program is quite basic, it is actually very powerful. With minor modifications it
could easily send whichever file was requested. It could modify the header to send the file name, size,
date and time of last modification, and even optionally send the data compressed and/or encrypted,
using existing library code supplied with SIMPOL. With minor modifications it could also provide a
guery mechanism wherethe client sendsa Ll ST command, for example, and it would then examine a
designated directory and return the file name and last modified date and timefor each fileto theclient.
Theclient could then compare these with its own copy of each and request any file that was newer than
the copy it already holds (plus any missing ones). Using the ability of the UTOSdirectoryentry object
to set the date and time, the client could make sure that the local copy always has the same date and
time as the server one. This sort of application could also be implemented as aweb server program.

95

96

Chapter 11. Converting Legacy
Superbase

Where to Begin?

Explaining how to convert from a product that is as multi-faceted as the legacy Superbase product
is not an easy task. The number of different ways that people have used the product means that any
detailed set of instructions will be certain to fail the needs of alarge percentage of those interested.
Instead, this chapter will discuss some guidelines and techniques for conversion.

It is probably easiest to start with what things can be converted fairly easily. That list is asfollows:
» Database files (assuming they are not encrypted)

» Display forms(currently Di spl ay Text Box objects are not supported — rotated editable text box-
es)

 Print forms (these are the same forms in legacy Superbase, but are primarily meant to be printed
and are handled separately in Superbase NG)

» Didog definitions (the Di al ogFr ane object is not currently supported)
» Menu programs (as saved from the Superbase Menu Editor)
* Graphic Reports (some hand-tweaking may be required in the resulting XML)

What is noticeably lacking from all of the above is any mention of program code. Legacy Superbase
supports three distinct styles of BASIC programming:

» Early QuickBasic with only global variables, and GOTO, GOSUB, and RETURN, with both line
numbers and symbolic label names.

» Procedural BASIC with SUB main() local and global variables, user-defined functions, and an
event handling mechanism for creating event-driven programs.

» Object BASIC with supplied objectsfor the GUI components, like forms, and form controls, dialogs
and dialog controls.

That list mirrors a clear progression in the development of programming languages over the course
of time. The problem is, legacy Superbase allowed the use of these different styles of programming
concurrently. That isn't so bad for the final two, since the object BASIC is layered over the top of the
procedural BASIC anyway. The problem isthe original BASIC, and the excessive use of the GOTO
and global variables.

Thereisnothing inherently wrong withthe GOT O command (although some might argue very strong-
ly about that), if it is used carefully (and sparingly) in the hands of a skilled programmer, but unfortu-
nately it changesthe direction of program execution permanently, and often cannot easily be followed
by someone (or a program) reading the source code. Often the original author of the code will no
longer understand how it works within even afew months of having written it.

Needlessto say, if the original author no longer understands how their program works, the likelihood
of any program understanding it, even onethat is designed to convert source code, isvery low. Having
said that, it is not as bad asit sounds. Please read on.

How Superbase NG Differs

When SIMPOL was designed, one of the strongest factors in the design of the language was to make
the code easy to learn, easy to use, and easy to maintain later. An unfortunately common scenario

97

How Superbase NG Differs

that has played out far too often in many places using tools like legacy Superbase, iswhere an island
solution built by an inspired layman programmer achieves a degree of success. Then as its star rises,
it requires additional professional assistance to make it to the next level of usability. At that point,
the professional s investigate the software and discover that it iswritten in away that is non-standard,
complicated to understand, and possibly built using a tool that they personally have no experience
using. At which point they decide to discard the original and start over again. The problem is the
original solution probably took one dedicated person 1-3 years of work to build using avery powerful
tool. The new version usually is estimated to require 3-5 people several years to produce, and would
cost afortune to achieve it. At which point the whole project might be scrapped as too expensive.

To prevent the solutions that were built by non-expert programmers from being discarded as unmain-
tainable or unsupportable once they reached this level, every effort was made to avoid thisresult. All
the factors that were bars to entry for quickly learning the language were discarded. As much as pos-
sible, redundancy was removed from the design. The keyword set was reduced to the bare minimum
and everything was turned into a type or a function. There is also no way to jump out of any block
statement, so it is always clear how the code flows, and there are no global variables.

Not having global variables is one place where SIMPOL strongly differs from many languages. The
choice to not alow them went back to the problems that are commonly associated with them:

» Random unexplained changes in one module as aresult of calling code in some other module
» Assignment to apparent local variables changing the value of global variables

» The constant search for anew and valid name for aglobal variable

» Theinahility to distinguish in the code between alocal variable and a global one

So what was the gain for SIMPOL by not having them, and how does it cope with certain situations
that appear to require them? By not having global variables, all variable changes are specific to the
function in which they are created. If avalue is need in a function from outside the function, it must
be passed into the function as a parameter. It is always clear where the values are coming from.

But what about event handlers? How do we get the data we need into an event handler if we don't
call it directly? That is handled by every event having an additional property called reference. This
property isdeclaredto beof t ype (*), whichisaspecia placeholder that allows avariable to hold
areferenceto any datatype. Thisisthe mechanism used to pass quasi-global datato an event handling
function. With that, the loop is closed and there is no other need for global variables.

Every SIMPOL program startsin the function mai n() and ends when that function is exited (unless
the program is multi-threaded and one or more threads are still executing at that time).

That all sounds like loads of work, if there is alot of legacy Superbase code to change. The reality
is a little different. As it turns out, much of what people code is about working around how their
environment works. Legacy Superbase is no different. The easy route is to move the data and the
forms, migrate the menus, and then see what works and what is missing. Then add the code as event
handlers for the various event types.

One important difference to note is that Superbase database files allow the definition of calculations,
constants, and validations as part of the field definition. Theinitial Superbase NG database engine is
a pure storage engine, and it does not cater for these field-level operations. This may seem to be a
significant drawback, but in fact, most of the more advanced | egacy Superbase devel opers had stopped
using these in their projects quite some time ago, since in any complex project these sorts of things
could get in the way and cause as much trouble as they provided help.

Toresolvethisin SIMPOL, it is necessary to migrate those settings into afunction or set of functions.
In an earlier chapter, Chapter 6, GUI-Style Database Programs, a special function was built to create
the serial number when a new record is created in a table on a form. A similar function would be
needed for each timearecord is created in any table that needs constantsto be generated at that time. A

98

So What's the Good News?

similar function would be needed for calculations, which could be called every time arecord is saved
(it could also be called during the onlostfocus event of certain controls).

So What's the Good News?

If the legacy Superbase content is primarily data and forms, with afew reports, the conversion should
be pretty quick and painless. If there is alarge amount of code, then the process can use the phased
migration approach.

What phased migration means, is that there is a methodology where the data can be converted to
use the new Superbase NG database format, the legacy Superbase application can be converted to
use the PPCS method for accessing the data, and then over time, modules of the Superbase program
can be converted into Superbase NG and called from the legacy Superbase program. Depending on
the design of the legacy Superbase application, some items might be ready to convert sooner than
others. Also, since both Superbase and Superbase NG can access data via the PPCS protocol, web
server applications written in SIMPOL can be used to provide browser-based access to aspects of
the converted Superbase datain real time. This capability to keep the origina application in legacy
Superbase and to gradually migrate it over the course of timeisnot availablewith other toals. It hasthe
advantage that the existing software can be maintained and updated (wherever possible building new
modules only in SIMPOL) and gradually more and more of it will actually be in SIMPOL. The key
to thisisthat both can share the same database concurrently. Changing an existing legacy Superbase
program to use PPCS instead of the normal method of accessing data rarely takes more than asingle
day, no matter how complicated the program is. PPCS was designed to be an easy move for legacy
Superbase programmers. It doesrequirethe user to be on afairly recent version of thelegacy Superbase
product, though. No lessthan version 3.6i, preferably as of build 496. Many of the supplied conversion
tools need to run on the Superbase 2001 version or later.

Converting Superbase Databases to Super-
base NG

Thereisavery useful tool suppliedintheUti | iti es directory called sbf 2sbm snp, which con-
verts legacy Superbase database files into Superbase NG's *. sbmformat. This reads the data file
directly, so it does not require any extra action to make it available, with one exception. It cannot
read encrypted Superbase database files. In that case the file needs to be converted to a non-encrypted
database file. Just as a note, currently there is no encrypted file format for Superbase NG database
files. At the sametime, since multi-user accessisonly via PPCS, thelocation of the physical datadoes
not need to be accessible to every user as is the case with the older Superbase LAN and Distributed
LAN networking.

Running the SBF2sbm tool presents a dialog window like the one below:

5 SIMPOL SBF to sbm Database Converter -
SBF Files Add .

Destnation Directary
| -

[¥ Lowercase *.sbe names (recommended)

[Uppercase table names (recommended)

[¥ Use a separate *.sbm file for each table frecommended)
[Create system tables [recommended)

[Gwerwrite existing fles

¥ Copy data

99

Converting Superbase Data-
bases to Superbase NG

Image of the SBF2sbm dial og.

As an experiment, we are going to import the database tables from the Superbase Air example that
ships with all versions of Superbase 3.x (Superbase 95, Superbase 3.01, Superbase 3.02, Superbase
3.2, Superbase 3.5, Superbase 3.6i, Superbase 2001, and Superbase Classic).

To start with, we click on the Add button, which let's us select the * . sbmfiles and add them to the
list for conversion. The dialog supports multiple selection, so we can select al the files at once. Then
click on the ... button to select the target directory (by default it will be set to the same as the most
recent source directory).

" ' SIMPOL SEF to sbm Database Converter [=l @

nat |

0. SEF
SENGR. 58F

+\simpol prajec s tbin\sbfs\PASS 5
X: \empol prajects\tools \sbf 2sbm bin b \SCHEDULE. SBF

Destnation Directory
1 isimpol iprojects ools b f2shm \binsh fs I Convert *.5BF Files to *.shm

¥ Lowercase *,sbm names (recommended)

W Uppercase table names (recommended)
W Use a separate *.sbm fie for each table (recommended)
¥ Create system tables (recommendad)

™ Overwrite existing fles

_ Exit
W Copy data

Image of the SBF2sbm dialog ready to convert.

L eavethe settingsat their default valuesfor the most successful conversion. Below each of the settings
is explained.

L owercase *.sbm names (recommended) — This makes sure that if the tables are being converted
into separate container files, one per Superbase file, that the file names will be forced to lowercase,
otherwise they will be in uppercase (like the original files from Superbase).

Uppercase table names (recommended) — This ensures that the tables are created with uppercase
names. This is important if working on a hybrid solution, since SIMPOL is case-sensitive when
opening the tables.

Use aseparate *.sbm file for each table (recommended) — Although SIMPOL database containers
can support multiple tables, there are good, performance related reasons for keeping each tablein a
separate container. It also makesit easier when doing updates of specific tables, or if reorganizing
only onetable.

Create system tables (recommended) — Unlike Superbase, SIMPOL database fields only have a
data type, and whether they are indexed or not (plusif they are, an index algorithm and precision).
Things like the display format are not part of the core field definition, but the system tables store
additional information such asthe display format, help string, share name (which can be different to
the field name) and other useful bits. Using the system tables means that the standard PPCS server
program can automatically share the table and have it look just like the original from Superbase
(minus calculations, etc.).

Overwrite existing files — If selected, it overwrites an existing file without asking. If it is not
selected, it will not ask, and will not overwrite.

Copy data— This determines if the tableis created empty, or if al the datais also transferred.

@ Note
One thing that it is important to understand, is that this tool cannot resolve the calcula-

tions for avirtual field. If the table definition has virtua calculated fields, and if those

100

Converting the Forms

fieldsare uniqueindexes, then theimport of that tablewill fail. Thiswasthe case withthe
SCHEDULE. SBF, since it turned out to have multiple virtual calculated fields, one of
which had aunique index on it. In order to successfully import the table, the fields need
to be changed to normal fields (not virtual), and the content needs to be updated by doing
a Superbase UPDATE that specifically sets each of these fields to be equal to itself.

Converting the Forms

Now that the datais in Superbase NG format, we can convert the forms. The form conversion tool is
a SIMPOL program. This program reads the * . sbv files directly. It is also the only way to recover
embedded images that are in the form itself. To run this tool, from the Start menu, select Superbase
NG - Superbase Classic Conversion Tools. Thiswill launch the tool that hosts the various Superbase
conversion tools. Select the one for converting the forms. It will ook very similar to the one we used

for converting databases. Select the form(s) you wish to convert and provide atarget directory. Click
on the Convert Forms button and the forms will be converted into the target directory.

In this example, we will be converting the CHECKI N. SBV. The original is shown below.

[E| Form - CHECKIN =1
Aug 142003 Passenger Check-In
| Flight No. sup003 SFO Depats 805 Amives 14:30 |
Personal Title: First Name Last Name Ref. Na.
Details Ms Ronnie Lopez 00200
Nationalty
> Mal
usa & :a:ﬂ [smoker?

Baggege over 15.53
20 kilos: Charge First
85 per kil ®) Business Save and Print

Information 7 Economy 126

Image of the CHECKIN form prior to conversion.

The following image is of the converted form, without any modifications done to it, merely opened
asisin Superbase NG Personal.

101

Converting the Forms

£

File Edit Yiew Data LUtilities Options Window Help

bm - SIMPOL Personal

= |2 =

| [Fightpate BRI LI 12
Nov 30 199

| Flight Mo SuPM Departs Amves ‘
Personal Titie First Name Last Name Ret. No.
Details Ms |Helga | Lindsytram [00201

Nationalgy N

[Danish L Male [~ Smake

* Femak

Baggage Vieight Seating Class Seat No. Hotes |
e [2100 | |Information & ecconomy BRJSEA
20 kitos: Charge e
55 per kilo [500 " Business Save and Print

Image of the CHECKIN form after conversion.

Aswe can see from the converted form, it looks different in anumber of ways. That isin part because
the controls on a Superbase form are not native controls. Instead they are al drawn by Superbase.
Also, the original form was not sized correctly, it is actually much longer than it needs to be. Also,
in Superbase the background of alabel could be optionally turned off. Thisis not an option with real
Windows controls. The rest are relatively minor adjustments. One thing that the conversion program
does not yet do, is transfer the tab order. That is because tab order works quite differently between
the two. Eventually this may also be added to the converter. That was hand adjusted as part of the
work in the Form Designer.

Another thing that is different is the Superbase text boxes in the original form that have no border,
and are not recessed. Thisoption is not available in standard Windows controls. SIMPOL hasits own
trick here though: dataformltext controls are data-aware (can be bound to afield), labelsin Superbase
are not. Also note that the buttons are using a different color schemeto the rest. That is because they
were defined as using the standard color scheme. In Superbase the colors are fixed. In SIMPOL, they
can betied to the current theme.

Another problem is the missing image. The reason it is missing is that the image was pasted into the
form from the clipboard, and there is no way to extract the image from the form programmatically. In
fact, the only way to do it isto capture it off the form.

By opening the form in Superbase NG Personal and modifying it in the SIMPOL Form Designer, the
resulting form looks like this. Thisis being shown in Superbase NG Personal.

102

Creating the Application

&

File Edit Yiew Data LUtilities Options Window Help

I -] [Passengriemia BRI 2

Aug 142003] Passenger Check-In 4‘@

= SIMPOL Personal

= | =

Flight Na SUP003 | SFO Depats 805 Amves 14:30 l
Personal Title First Name Last Name Ref. Mo
Details Ms Ronnie Lopez [o0z00
Nationaliy .
USA Male [Smeker?
& Female
Baggage Weight Seating Class Scat No Notes
hrr——r 15.53 Information " Economy 128

i First

20 kilos:
5 per kil + Business

Charge
85 per kilo

Save and Print

Image of the CHECKIN form after repair in the Form Designer.

Aswe can seeg, it now looks very much like the original. In some ways, it looks better. It now uses
the system theme for the vast mgjority of colors (not al, however, since some text was blue, and it is
not supported to have the text color using system colors and the background color using fixed colors).
The information in the Flight No. section of the form that is in blue is actually looked up from the
FLI GHT tableusing the Fl i ght No asthelink.

Creating the Application

The steps to turn this into an application of its own are quite simple really. As described in the sec-
tion called “Summary”, al it really takes is to create a project, which | called sbai r . | then copied
all the program files from the addr essbook program into the new project directory, renaming the
one called addr essbook. sma tosbai r. sma. | dso copied al the toolbar images from the ad-
dr essbhook\ bi n directory into the sbai r\ bi n directory. Into the same directory | copied the
converted database files (at this point we only need passengr. sbmand fl i ght. sbn), and the
converted and reworked form: checki n. sxf .

In terms of changes to the program code, all the suggestions made in the section called “ Summary”
were applied. The resulting program came up immediately and can be seen below. The copying and
code changes took less than ten minutes, including compiling and fixing things that were forgotten.

| SIMPOL SBAir Sample = | = =
File Data Help
I | [Pssenofioio <] M| la]p]m]n] 2]
14 2
Aug 142003] Passenger Check-In '4‘@
Flight No SUP003 | SFO Depats 805 Amives 14:30 ‘
Personal Title First Name Last Name Ref. No.
Details Ms Ronnie Lopez 00200
Nationaliy i
flusa L I Smoker?
* Female
Baggage Wieight Seating Class Seat No HNotes
Bomsgocwer [1663 | | Information oy TR
20 kilos: Charge C Frst
85 per kilo | * Business Save and Print

Image of the CHECKIN form in the new SB Air application.

Thisis, of course, just the beginning. A full conversion would convert each of theforms, add navigation
to the menu, add functions to support the buttons on the forms, add functions to handle constants and
calculations for the tables, etc. The goa here was only to demonstrate the approach, not do a full
conversion.

103

Summary

Summary

In this chapter we discussed the issues facing a conversion from Superbase to SIMPOL. We aso
looked at various scenarios and discussed why SIMPOL offers the easiest conversion solution for
existing Superbase projects, especialy the advantage of doing a phased conversion where over the
conversion period thereisahybrid Superbase/SIMPOL application that starts out wholey in Superbase
and eventually bit by bit becomes completely SIMPOL.

Then using the tools, we converted a portion of a standard sample shipped as part of the Superbase
3.x series, including converting the database tables and one form. That form we then cleaned up inthe
SIMPOL Form Designer and finally we built a standalone application for it in just a few minutes by
stealing most of the code from a standard sample program.

104

	Superbase NG Quick Start Guide
	Table of Contents
	Important
	Copyright Information
	Disclaimer
	New Versions of this Document
	Software Used

	Chapter 1. Introduction
	Who Should Read This Book
	Superbase NG and SIMPOL
	Conventions Used in This Book
	Why SIMPOL?
	Running Superbase NG Programs
	Deploying Superbase NG Programs
	Summary

	Chapter 2. What's in the Package?
	Overview of the Product
	The Superbase NG IDE
	Superbase NG Personal
	C-Language Components and Runtime Files
	SIMPOL Language Libraries and Samples
	SIMPOL Language Libraries (*.sml)
	Supplied Superbase NG Projects
	Console Projects
	XML Document Object Model (DOM)
	Examples
	Forms Examples
	Games
	Libraries
	SBME Database Examples
	SIMPOL Tutorial Examples
	SIMPOL Web Server Programs
	Tests

	Documentation
	Utilities
	Superbase Conversion Utilities

	Chapter 3. Getting Started
	The Essentials
	Preparing Our Environment
	Command Line Programs
	Dialog-Style Programs
	Database GUI Applications
	Web Server Applications
	Server Applications
	Converting from Superbase

	Chapter 4. Command Line Programs
	Building a Command Line Program
	First Steps
	Understanding the Code
	Running Our Project
	Improving Our Program
	Running the Final Version
	Summary

	Chapter 5. Dialog-Style Programs
	What's a Dialog Program?
	The Sample Program
	Creating the Project
	Creating the Design
	Setting the Stage
	Adding the Controls to the Form
	Cleaning Things Up
	Saving the Form

	Adding the Form Source to the Project
	Setting Up the Program
	Getting the Basic Form Running
	Finishing the Color Lab Program
	Summary

	Chapter 6. GUI-Style Database Programs
	Introduction
	Creating the Project
	Create the Database
	Building the Form
	The Program Code
	The main() Function
	The addressbookapplication Type
	The Remaining Initialization Code
	Preparing the Form

	The Finished Product
	A Word About Linux

	Summary
	Advanced Topics

	Chapter 7. SIMPOL Business
	Introduction
	Special Features
	Working With the dataform1detailblock
	About the Design of Detail Blocks
	Adding New Records to Detail Blocks
	Editing Records in a Detail Block
	Deleting Records in a Detail Block

	Using the drilldown() Function
	Storing Data Correctly in Modern Windows Systems
	Summary

	Chapter 8. SIMPOL Server
	About the SIMPOL PPCS Server Programs
	The Configuration File
	The [Server] Section of the Config File
	The [Files] Section of the Config File

	Working with simpolserver.exe
	Working with guisimpolserver.exe
	Running simpolserver.exe as a Service
	SIMPOL Server Summary

	Chapter 9. Web Server Programs
	Introducing World Wide Web Server Programming
	Styles of Web Server Application
	Valuable Reading References Within the SIMPOL Documentation
	Sample Web Server Applications Shipped with SIMPOL
	The Web Server "Sandwich" Method
	Web Server Application Summary

	Chapter 10. Server Programs
	About Server Programs
	Accessing Server Programs
	Sample TCP/IP Server and Client Programs
	Server Programs Conclusion

	Chapter 11. Converting Legacy Superbase
	Where to Begin?
	How Superbase NG Differs
	So What's the Good News?
	Converting Superbase Databases to Superbase NG
	Converting the Forms
	Creating the Application
	Summary

