Superbase NG Quick Start Guide

A Fast Introduction to Devel-
opment with Superbase NG

Neil Robinson

Superbase NG Quick Start Guide: A Fast Introduction to Development

with Superbase NG

by Neil Robinson
Copyright © 2009-2017 Superbase Software Limited

All rights reserved. The programs and documentation in this book are not guaranteed to be without defect, nor are they declared to be fit for any
specific purpose other than instruction in the use of the programming language SIMPOL. It is entirely possible (though not probable) that use of
any sample program code in this book could reformat your hard disk, disable your computer forever, fry your dog in a microwave oven, and even
cause acomputer virus to infect you by touching the keyboard, though none of these thingsis terribly likely (after all, amost anything is possible).
It isjust that most things are extremely improbable.

Table of Contents

Fpq] 0l 4= o | TP PP Xi
Copyright TNFOMMBLTON ...t e e Xi

D1 o F= 11111 ST OO OPPRTR Xi

New Versions of thisS DOCUMENTcocuueuiiiiii et Xi
SOFIWAIE USEO ...ttt ettt ettt e e na e e enaas Xi

O | gL oo (8 1o o R PO PRSPPI 1
Who Should Read ThiS BOOKccuuuiiiiiiiiiiiii e 1
Superbase NG and SIMPOLcooiiiiieiii ettt 1
Conventions Used in ThiS BOOKcouuuuiiiiiiiieiii e 1

WY SIMPOL? <.t ettt e e e e e e et e e e 1
RuNNing SUPErbase NG PrOOraMSccouuueeiiiiieeieie ettt 2
Deploying SUPerbase NG PrOgramseieueueieiie ettt e s 2
SUMIMIBIY ettt ettt et et e e et ettt e e et et et e e e e e et n e e e eee s 3

2. What's in the PECKAGE? ..ottt e e 5
OVENVIEW Of the ProOUCEooeviiiiiii et 5

The SUPErDASE NG IDE ...ttt e s 5
SUPErDAsE NG PEISONELuuiieiiiiie ettt 5
C-Language Components and RUNEIME FIlEScoouuiiiiiiiii e 5
SIMPOL Language Libraries and SampPleScooeuiiiieiiiiiiieiiii e 6
SIMPOL Language Libraries (*. S) ... 7

Supplied SUPerbase NG PrOJECEScoieiiieiiiiie e 11
DOCUMENEALION ...ttt ettt et e e et e e et e e e e e e e nea e e enaens 19

L6 L= TSP UPPPPTTRPPPIN 19

Superbase Conversion ULHTITIESooiuueiiiiii e 20

3. GEING SEAIMTE ...ttt ettt 21
THE ESSENTIAIS ... ettt 21
Preparing Our ENVIFONMENTiiiiiiiiii e e e 21
Command Line Programscceuuu ittt e e e e 22
Dial0g-StYI€ PrOQraMS ...ttt ettt 22
Database GUI APPIICALTIONScceeiiieeiiiie ettt 22

WED Server APPHICALIONS ... ittt e e eeees 22
SEVEr APPIICAIIONS ...eeeeeeeeee et 23
Converting from SUPEIDASEoovuiiiiiii e e e 23

4. CoOMMENG LiNE PrOgIaITIS .. .ceittiiiiti ettt ettt ettt e e et e e et e e et et e e e ent e e e eataaaeeens 25
Building @ Command Ling Programuueiiiiiieiiiie ettt e 25

TS S = oL PP UPPPTR 25
Understanding the COOEuiiiiiii e 28
RUNNING OUI PIrOJECE ...ttt ettt e e e eeaa s 29
IMProVING OUP PIrOGIEIM ... ieiiti ettt et ettt et e e e eae e e eeeens 29
RUNNING the FINal VEISIONiiiiiiieie et 32
SUMIMIBIY ettt et ettt et et r et et e e et e r et e e e e et e e e e erans 33

5. DialOg-StYI€ PrOQIaIMS .. ccvuuieiiiii ettt ettt ettt e et e et e e e et e e e e aa s 35
What's @ Dialog Program? oot 35

The SaMPIE PrOGramottt e e et e e e et e e e ent e eeees 35
Creating the PrOJECE ittt 35
Creating the DESIONuieiiiii ettt 36
SEtiNG the SEAOE ... eeeee e 38

Adding the ControlS t0 the FOIMuuiiii e 38

Cleaning ThiNGS UP ...uuuiiiiiieiie et 42

SAVING ThE FOIM .eeiei et 47

Adding the Form Source to the Projectccouuiiiiiiiiiii e 47

Superbase NG Quick Start Guide

Setting UP the PrOgramu.iiii e e e e e e e e e e e e e eaa s 49
Getting the Basic FOrM RUNNINGoouuiiiiieii e e e e e e e et e e e e e eanees 50
Finishing the Color Lab Programccoouiiiiiiii e e e 52

RSl 001 0= Y PP 56

6. GUI-Style Database PrOgraMSvuu. i e e e e e e e e e e e e e e e et e e aa e aan s 57
g1 [0 ot [o PO 57
Creating the PrOJECE ...uuiii e e e e e e e e e e e 57
Create the Datahaseooveviiiei e 57
BUITAING the FOMM ... e e e e e e e 61

B T oo =1 0o [64

The MAI N() FUNCHONii e e e e e e e e eaaees 65

The addresshookappliCation TYPEuuiiii i e ea s 66

The Remaining INitialization COOEcouuiiiiiiiiii e 69

Preparing the FOMM ... e e 74

The FINISNed ProdUCLiiiiiiiice e e et e e et e e et e eaees 75

A WO ADOUL LINUX eevtieiiiiiie et e et e et e e et e e e b e e e e e 76

SUIMIMIBIY ettt e e e et e et e e e et 77

W07 0ot o [0] o o= PPN 77

7. SIMPOL BUSINESSttuiiiititeeietieeetetis e e et s e e et s e e e et e e e e et s e e e et e e e e et e e e e et e e e e st aeeeatnnaeas 79
g1 [0 ot [o PO 79

S o Lc o = 1 =N 79
Working With the dataformldetaillblockc.oviiiiiiiiii e 80
About the Design of Detail BIOCKSiiiiiiiiicii e e 80

Adding New Records to Detail BIOCKScccuviiiiiiiiiiciii e, 81

Editing Records in a Detail BIOCKcocvuiiiiiiiiiii e e e 82

Deleting Records in a Detail BIOCKcooviiiiiiiiiiici e 83
Usingthedri | 1 down() FUNCLONcooviiiiic e e 85
Storing Data Correctly in Modern Windows SYyStEMSccuueiiiieiiiieiiiiecieeeieeeeiee e, 86
SUIMIMIBIY .ttt e e e e et e et e et e e e e et 87

S Y @ I o= PPN 89
About the SIMPOL PPCS Server PrOgramsoeiuuieeiiieiiiieeeiieeeieeeine e e et eesaneesanes 89

The Configuration FilEiiiii e e e e aeas 89
The[Server] Section of the Config Filecoovviiiiiiiiii e 89

The[Fil es] Section of the Config Filecooviiiiiiiii e 20

Working With Si MPOI SEI VI . X iiiiiiiiii it 92
Working With gui Si MPOI SEI VeI . EXE iiiviiiiii i e e 92
RUNNING Si MPOl SErVer. Xe @S A SEIVICE ..ivuu i 93
SIMPOL SEIVEr SUMIMEIY ©.iviiiitieeiie ettt e e e e e e e et et et a et e e e eneeens 94

9. WED SEIVEN PrOGIaIMSiiiiieiiiieiiii e e et e et e e e e e e et e e et e e et e e et e e et e e et eean e e et e eeanaesennaes 95
Introducing World Wide Web Server Programmingoveviieeiinieeiiieeiineeieeeeieeeeneeeen 95
Styles of Web Server APpliCationoiiiiiiii e 95
Vauable Reading References Within the SIMPOL Documentationc.cceevvvveviineeennennnn. 96
Sample Web Server Applications Shipped with SIMPOLccoooiiiiiiiiiiiicie e 96

The Web Server "Sandwich" MethOdoviiiiiiiiiii e 97

Web Server AppliCation SUMMBIYcoouiiiiieiii e e e e e e e e ean s 97

J0. SEIVEr PrOQIaIMS ...ttt e e e e et e e e et e e e e et e e e e 99
ADOUL SENVEr PrOgIaMS . .ovuuiiiiiiii e e e e e e e e et e e e e e e e e e e et e e et e e st e e et e e et eeannaees 99
ACCESSING SEIVEL PrOGIaIMS . .ovvuiiiiiieiiieeit e e te e e e et e e e e e et e e et e et e e et e e et e estn e eannaaannaees 99
Sample TCP/IP Server and Client Programscoovuieiiii i e e e e e 99
Server Programs CONCIUSIONiuuieiiiieei e e e e e e e e e e e e e e e e et e e st e e et e e st eeenneaaenees 99

11. Converting Legacy SUPErDESEoiiiiiiiii e 101
RTAY g T= = (O TN 2= o 1 o 1 101

HOW SUPErbase NG DiIffarscouuiiiii e e e e 102

SO What's the GOOU NEWS?ceeeiiiiiiiiiie e e e e e e e 103

Superbase NG Quick Start Guide

Converting Superbase Databases to Superbase NGccocoiiiiiiiiii e, 103
ConVErting the FOMMS ... coii i e e e e e e e an s 105
Creating the APPHICALIONoiiiiii e e e e e e e e aaaas 107
RSl 0010 0= YT 108

Vi

List of Tables

1.1. Superbase NG RUNIME LOAOENSuiiiiiiieiiii ettt et e e e e e 2
1.2. Superbase NG RUNtIME COMPONENESovvuiieiiitieeeiiti e eeet e ettt e eeeet e e e eat e e eent e eeennnaeeeens 2
5.1. Control Naming CONVENTIONSc.uuuiiiiitieeeiiti e eeei e eeit e et e e et et e e e ee s eeeera e eeentaaaeees 40
5.2. Event Handling Function Naming CONVENTIONSuuiiiiiiiieiiiiieeeeiie e 51

Vii

viii

List of Examples

4.1 Initial version of Ur T AU, SITB .ooeuuniiiii e 27
4.2. Updated USage() FUNCLIONiiiiiiiiii ettt 29
4.3. THE PArAMELENS TYPE ... eieitieeeeet ettt ettt ettt et ettt e et et e et e e e e e ean e eeenans 30
4.4. The Final Version of the mai () FUNCLONcoooiiiiiiiii e 31
4.5, SAMPIE COMMANGceiiiieeeeie ettt e e e et e e et e e e 32
5.1. Themai n() Function of the colorlab Program ..o 49
5.2. The remaining Empty Functions of the colorlad Program ... 50
5.3. The Full Implementation of the adj ust f or ntol orval s() Functioncccooeveieinnnnen. 52
5.4. The Code for the hexval _ol f () and decval _ol f () Functionscccevuiieieiinnnennnns 53
5.5. Handling the Events for the Color Edit CONtrolScooiivviiiiiiiic e 54
5.6. Handling the SCroll Bar EVENEScoeuiiiiiiii e e eees 55
5.7. Extracting the Digits from String VaIUEScouuiiiiiiiiiii e 55
6.1. The mai n() function Of the Programu i 65
6.2. The addressookappliCation TYPE i eiieii e 66
6.3. The apPIICALION TYPE ... ettt ettt e e e e e e e ennens 66
6.4. The Code to Create a New addresshookappliCationccceuuiieiiiiiieiii e 67
6.5. The Code fOr the MENU Baroiiiiiiiiiiiiii e e et 69
6.6. The Code fOr the MENU Baroiiiiiiiiiiiiii et 70
6.7. The Code fOr the TOOI Barciieiiiiiiiii e 71
6.8. The Code for the Tool Bar COmMBO BOXESciiiviiiiiiiiiieieei e 72
6.9. The Code for the Tool Bar INitializationoooviiiiiiiiiiiiee e 73
6.10. The pr epaddr essbookf or M) FUNCHIONcoouuiiiiiiiieii e 74
6.11. The ab_onnewr ecor d() FUNCHIONuuiiiiiiiieiiii e e 74
7.1. Theaddor der | i ne() function of the SIMPOL BUSINESS Programcceevvureeeeuinneeenns 81
7.2. Theaddor der | i ne() function of the SIMPOL BUSINESS Programcceevvureeeeninneeenns 82
7.3. Theaddor der | i ne() function of the SIMPOL BUSINESS Programcceeuuureeeeuinneeenns 84
7.4. Thefi ndcust omer () Function for the Orders FOrmcoovveviiiiiiiiiiii i 85
7.5. Thefi ndcust ormer () Function for the Orders FOrmcooveeviiiiiiiiiiiiiiee e 87
8.1. A Sample SIMPOL Server Configuration Filecooiiiiiiiiiiiii e 89
8.2. A Sample svcrunnr. exe Configuration Fileooiiiiiiiiiiiiii e 93

Important

Copyright Information

This document is copyrighted (c) 2009-2016 Superbase Software Limited and is not permitted to be dis-
tributed by anyone other than Superbase Software Limited and its licencees.

All trandations, derivative works, or aggregate works incorporating any of the information in this docu-
ment must be cleared with the copyright holder except as provided for under normal copyright law.

If you have any questions, please contact <i nf o@i npol . conp

Disclaimer

New

No liability for the contents of this document can be accepted. Use the concepts, examples and other
content at your own risk. Asthisis anew edition of this document, there may be errors and inaccuracies,
that may of course be damaging to your system. Proceed with caution, and although thisis highly unlikely,
the author(s) do not take any responsibility for that.

All copyrights are held by their by their respective owners, unless specifically noted otherwise. Use of a
term in this document should not be regarded as affecting the validity of any trademark or service mark.

Naming of particular products or brands should not be seen as endorsements.

You are strongly recommended to take a backup of your system before major installation and backups
at regular intervals.

Versions of this Document

Newer versions of this document will undoubtedly be released from time to time. It is recommended that
you aways ensure that you have the latest version of the documentation. Normally the latest version will
be included with any update of the main product.

Software Used

This book was written using DocBook v5. It was initially written and edited in the <oXygen/> editor. A
single source in XML is used to produce the book in HTML, HTML Help, and in PDF formats.

Xi

Xii

Chapter 1. Introduction

Thisbook provides aquickstart guide for doing development using Superbase NG. It isintended asaquick
introduction to the various components that make up the Superbase NG package, as well as providing a
number of introductions for various methods of using the product.

Who Should Read This Book

If you are just getting into Superbase NG devel opment and want a high-level introduction to the parts that
come with the Superbase NG product, then this book is a good place to start. It begins by describing the
various pieces of the product and then goes on to explain various approaches to working with the package
depending on the type of project the user is planning.

Superbase NG and SIMPOL

The name of the product is Superbase NG. That includes the development environment, Superbase NG
Personal, the compiler, the code libraries, runtime system, etc. The name of the programming language
is SIMPOL. As such, you may see things talk about SIMPOL instead of Superbase NG but they will
be normally discussing the language, not the product. Still it is safe to think of the two as being almost
interchangeable. Much of the Superbase NG product is built using the SIMPOL programming language.

Conventions Used in This Book

Throughout the book, various conventions are used to identify items such as program code, file names,
datatypes, etc. A f i xed- pi t ch font is used for those sorts of things. Blocks of code are normally set
off as a separate section, and have a gray background. Emphasized items are typically in an italic font.

Why SIMPOL?

The design ideas behind the SIMPOL programming language and the devel opment tools associated with
Superbase NG are adirect result of years of exposure to customer program code. We have looked at what
worked well, at what caused problems, and have made many very strongly discussed decisions about fine
pointsin the product. The goal for SIMPOL isto provide a powerful, yet easy-to-learn and use program-
ming language. A common problem in the past has been that the programming languages that were easiest
to start with did not enforce enough discipline to ensure that the products that often grew from those early
simple programs were able to be maintained and extended. As aresult, a powerful product might wither
from alack of resources to improve and support it, beyond a certain level of complexity. The design of
SIMPOL promotes code reuse, careful design, and at the same time does not require an understanding of
fairly arcane conceptsin order to get started. It allowsfor both object-oriented and functional programming
styles, and these can be mixed and matched where appropriate.

Another guiding principle for SIMPOL was that of being cross-platform. By designing the language to
hide the vast majority of platform-specific issues, applications can be written once and run without change
on other platforms.

Finally, in the heritage of numerous products from the mid-80's through the mid-90's, a conscious effort
was made to provide higher level tools that assist people who may not have been trained programmers to
succeed in solving their own problems. At the same time, we chose to build the toolsin SIMPOL itself, so
that they can be easily extended. By producing various layers of decreasing complexity within the same
tool chain, people can enter into the development process at the level with which they are comfortable,
and still grow and progress over time to more complex layers of the product if they choose. We found that

Running Superbase NG Programs

although there are products that exist that allow easy development, they often become dead ends when the
desires of the user exceed the capabilities of the tools. At the other end of the spectrum, there are many
complex tools available on the market for doing development, but most are simply too difficult for people
who are not programming for aliving.

Running Superbase NG Programs

When Superbase NG isinstalled on Windows, an association is created between the* . snp file extension
and the location of the snpr un32. exe loader program. That means that any SIMPOL program can be
run from the command line simply by typing its name, or by double-clicking it in Windows Explorer. If
the program is a GUI-style program, then it will display atermina window when the program is run. To
avoid this, you can create a shortcut for the program that uses the snpwi n32. exe loader program.

OnLinux, thebinary executablesshould normally beplacedinthe/ usr / bi n/ directory, and theloadable
librariesinthe/ usr/ | i b/ directory. That meansthat programs can be run ssimply by using thesnpr un
loader program without referring to itslocation. Thereisno special GUI loader program for Linux, asnone
isrequired. If desired, a shebang line can be added to the beginning of the *. snp file and the file made
executable, and then the program can be run directly, as on Windows.

Deploying Superbase NG Programs

Once you have completed a program using Superbase NG and wish to distribute the results, you need to
make sure that you include all the pieces necessary together with your compiled program. Since Superbase
NG provides a component architecture, only the components required to run your application need to be
redistributed with it. These files can be found in the si npol \ r edi st directory. The essential compo-
nents include the application loader, the core SIMPOL language library, and your program. In addition,
if you used any components, then the associated library files must also be included. There are various
loaders, depending on the type of program you are running. Below isalist of them:

Table 1.1. Superbase NG Runtime L oaders

Application Type Loader for Win32 L oader for
Linux x86
CGI —Web Server Applications snpcgi 32. exe snpcgi
Fast-CGl — Web Server Applications snf cgi 32. exe snf cgi
ISAPI —11S Web Server Applications sm sap32. dl | N/A
Console Programs snmprun32. exe snprun
GUI Programs snpwi n32. exe snprun
Loader to call SIMPOL Functionsas DLL Calls snmexec32.dl | N/A

Therearetwo different loadersfor regular programs on Windows; thisisbecause Windows differs between
programs that have their own window, and programs that do not. On Linux, al programs share the same
loader program (except for specialized programs such as web server applications). The list of required
libraries, arranged by component, is shown below:

Table 1.2. Superbase NG Runtime Components

Component Required File(s) Win32 Required File(s)
Linux x86
Web Server Applications sntgi 32. dl | I'i bsnpol cgi . so

Summary

Component Required File(s) Win32 Required File(s)
Linux x86
LXML — XML Doc- sm xm 32.dl |, ['i bsmpol | xm . so,
ument Object Model iconv.dll,libxm2.dlI, Uses the libxml2 sup-
[ibxslt.dll,zlibl.dll port from the distribution
ODBC —SIMPOL ODBC Client snmodbc32. dl |
PPCS - SIMPOL Mul- snmppcs32. dl | [i bsnpol ppcs. so
ti-User Database Client
PPSR — SIMPOL Mul- snmppsr 32.dl | [i bsnpol ppsr. so

ti-User Database Server

SBME - SIMPOL Sin-
gle-User Database Client

snmsbne32. dl |

I i bspol sbne. so

SLIB — SIMPOL Shared Li- snsl i b32. dl | i bsmpol slib. so
brary Access (*.DLL, *.s0)
SOCK — SIMPOL snsock32. dl | I i bsmpol sock. so

TCP/1P Socket Support

UTOS - SIMPOL
File System Support

snmut 0s32. dl |

[i bsnpol ut os. so

WXWN - SIMPOL
GUI Components

smwwn32. dl |,
wxbase28u_vc_si npol . dl I,

wxmsw28u_adv_vc_si npol . dl I,
wxmsw28u_core_vc_si npol . dl |

I i bsnpol wxwn. so,
pl us the wxW d-
gets runtime
package for
2.8.x for the
di stribution

Note

K

The only item listed above that cannot be distributed ssmply as a library file is the PPSR

component. This is the code that implements the multi-user database server. To distribute
the server, it is necessary to buy the appropriate database license and then use that registra-
tion number to install the Superbase NG database server engine on the customer's computer.
Copying the PPSR component's DLL will result in the engine ssmply not working at al. It

requires a correct installation with avalid registration number.

Summary

Sincethisisaquick start guide, asastarting point, it may be agood ideato take aquick look at what came
in the package, and to divide it up into various areas.

Chapter 2. What's in the Package?

Overview of the Product

Superbase NG includes the following major sections:
» The Superbase NG IDE

» Superbase NG Personal

The C-Language Components and Runtime Files

The SIMPOL Language Libraries and Samples
» The Documentation
» Genera Utilities and Conversion Utilities for Legacy Superbase

Let'slook at each of these items in more detail.

The Superbase NG IDE

The Superbase NG IDE is the place where program coding, compiling, and debugging are done. It isa
carefully designed environment that closely supportsthe efforts of the programmer. For more information
about thistool, it isrecommended to read the first chapter of the SIMPOL IDE Quick Start Manual [http://
www.simpol.com/docs/tutorial/], and for specifics about configuring the IDE see the Superbase NG IDE
Users Guide [http://www.simpol.com/docs/ide/].

Superbase NG Personal

Superbase NG Personal isused for various things. It hosts the rapid application devel opment (RAD) tools,
such as the database table creation/modification tool, the display and print form designers, the graphic
report designer, and a front-end for the reporting system. It also supplies a number of useful facilities,
such as import/export, the ability to do basic data-entry into database tables (either through forms or in
record view), reorganize utility, data update tool, labels system, etc.. In many cases, projects will begin
in Superbase NG Personal and after the database tables, forms, and reports have been created, then the
programmer will switch to building a basic program in the IDE to display the forms and to respond to
events. Superbase NG Personal is not currently available as a separate package and it cannot currently be
copied to other computers, it is part of the full development product.

C-Language Components and Runtime Files

SIMPOL is designed as a component-based architecture. Only the components required for a given pro-
gram need to be distributed with that program. The pure minimum for a SIMPOL program is a loader
and the core language library. The various components are listed below, including the Win32 and Linux
filenames (when available):

» smpol — core language library — (snpol 32. dI | ,1i bsnpol . so)

e shsort — sorting orders for database components (ppcs, ppsr, sbme) — (shsort32.dl 1,
| i bsbsort01. so)

http://www.simpol.com/docs/tutorial/
http://www.simpol.com/docs/tutorial/
http://www.simpol.com/docs/tutorial/
http://www.simpol.com/docs/ide/
http://www.simpol.com/docs/ide/
http://www.simpol.com/docs/ide/

SIMPOL Language Li-
braries and Samples

CGI — CGil support — (sntgi 32. dl | ,1i bsnpol cgi . so)
ISAP — ISAPI support (Windows-only) — (sni sap32. dl)
LXML — XML and HTML DOM support — (sm xm 32. dl | ,1i bsnpol | xm . so)

ODBC — ODBC client support (Windows-only) — (snodbc32. dl |)

PPCS — multi-user database access using the PPCS protocol — (snmppcs32.dl1,
I i bsnpol ppcs. so)

PPSR — multi-user database server providing the PPCS protocol — (snppsr32.dl1,
| i bsnpol ppsr. so)

SBME — single-user database engine— (snsbnme32. dl | , | i bsnpol sbne. so)

SLIB — shared-library function access (*.dll's and *.so's) — (snmslib32.dl1,
I'i bsmpol sl i b. so)

SOCK — TCP/IP socket objects, client and server — (snmsock32. dI 1,11 bsnpol sock. so)
UTOS — utilitiesfor file and operating systems— (snmut 0s32. dl | , | i bsnpol ut 0s. so)
WXWN — GUI objects and functions using wxWidgets— (smwxwn32. dl | , 1 i bsnpol wxwn. so)

Of the items listed above, only the PPSR component requires a separate license (and installer) for distri-
bution.

Thefollowing list containsthe various|oaders; again thefile namesare provided, first the Win32 file name
and then the Linux file name. The debugging versions of the loaders are not intended for redistribution:

smexec — the DLL loader program for loading SIMPOL language libraries from other programming
languages — (smexec32. dl |)

smpcgi — the CGI loader program — (snpcgi 32. exe, snpcgi)

smgdl — the debug CGlI loader program — (sngdl_32. exe,sngdl)

smfcgi — the Fast-CGl loader program — (snf cgi 32. exe, snf cgi)

fcgdl — the debug Fast-CGl loader program — (f cgd1_32. exe,fcgdl)

smprun — the console loader program — (snpr un32. exe, snpr un)

smpdl_ — the debug console loader program — (snpdl1_32. exe, snpdl)

smpwin — the Windows GUI loader program (not needed by Linux) — (smpwi n32. exe)

smpwl — the debug Windows GUI loader program — (snpwl_32. exe)

SIMPOL Language Libraries and Samples

In keeping with our company philosophy of making sure that we use our own products (to keep us in
touch with the needs of the customers), many of the lower level and higher level objects and functions
are written in the SIMPOL programming language. Many of these are provided as full source code with
the entire project code as samples.

SIMPOL Language
Libraries(*. sm)

The SIMPOL language componentsarefoundinthe\ | i b directory for inclusionin projects. Most of them
have equivalent SIMPOL language projectsinthe\ pr oj ect s directory. Programming samples are also
primarily found inthe\ pr oj ect s directory. Inthe\ sanpl es directory there are three subdirectories,
each of which contains SIMPOL sourcefiles (but not projects), except for onethat contains SBL programs.
The SBL programs demonstrate methods of calling SIMPOL from SBL, one of which determines the
dimensions of a JPEG image, the other makes the operating system "File Open" and "File Save" dialogs
usablefrom an SBL application. There are also agroup of bitmap resourcesinthe\ r esour ces directory.
Finally, in the\'i ncl ude directory are includable SIMPOL source files for defining useful constants,
such as standard error values, or for working with specific libraries. Thelist of standard libraries continues
to grow. In the following sections we will look at what is provided in more detail.

SIMPOL Language Libraries (*. snl)

abs. sm — Implementsthe ABS() function for returning the absolute value of a number or integer

appf ramewor k. smi — Implementsafairly powerful application framework for creating GUI-style
database-based applications

bool str. sm — Thisprovidesfunctionsfor converting boolean and datetime valuesinto strings and
aso thereverse

bzi p2. sm — Thisprovides functions that wrap the BZi p2. dl I compression library

cal ceval . sm — Provides afunction that can evaluate a string containing aformula and return the
result

cal cl i b. sm — Providesabasic calculator that can be popped up and which returnsthe final result
codepagesl! i b. sm — Codepage conversion library for converting to and from various code pages
col or pal ette. sm — Provides ablob based storage for an image palette

commonr eport gui . sml — Library containing the types and functions used to produce el ements
for the report system, such asthe filter dialog, calculation dialog, and the sort order dialog

conflib.sm — Library of functions for reading from and writing to configuration files in the Mi-
crosoft INI file format

consol el i b. sm — Library containing the tConsole type for creating console-style progams that
allow interaction with the user.

dat abasef or ns. sm — Data-aware form library providing the primary interface for working with
data-aware forms and form controls

datetinelib.sm — Collection of functions and types used to provide conversions from and to
dates, times, and datetimes, in various formats

dblli b. sm — Basic stub library that should never be called directly but which acts as a supplier of
information to the IDE during development when using thet ype(db1t abl e) family of typetags

dblutil.sm — Databaseutilitieslibrary with routinesfor copying records, creating and maintaining
system tables, etc.

dbconverter. sm — Import/Export conversion library with support for ASCII-Delimited, CSV,
XML, SBM, and PPCS

di spl ayf or mat . sm — Diaogs for retrieving the desired display format for various data types

SIMPOL Language
Libraries(*. sm)

drill down. sm — Dialog for allowing interactive search against an index in a database table with
display of requested columns and return of selected record

dxflib.sm — Functionto convert AutoCAD DXF files of a specific style into Windows bitmaps

errornsgs_en. sm — Library that converts an error code into aan English-language message that
describes the error

fastset.sm — A set object that allows elements to be string indexed objects of any type, imple-
mented using red/black trees

filesyslib.sm — Functions for working with elements of a file system, such as parsing path-
names, retrieving the current directory, etc.

filtergui.sm — Providesthe selection filter GUI functionality

form ib.sm — Functions and typesfor loading and saving data-aware forms and for saving forms
as source code

gaugel i b. sm — Provides various progress gauge dialog types

graphi creportlib. sm — Provides types and functions that implement a banded report writer
for use with SIMPOL databases for output to window or printer

httpclientlib.sm — Objectsfor retrieving items from the web using GET or POST

i eeel i b. sm — Containsfunction for converting to and from 4-byte and 8-byte | EEE floating point
format

i magel i b. sm — Functions and types for reading and writing imagesin BMP and XPM format
i nt.sm — Implementsthel NT() function for converting a number to an integer

j peglib.sm — Currently only supplies functions for determining the dimensions of an image in
JPEG format

j son. sm — Provides functions and types to work with JSON-encoded data, including converting
to and from SIMPOL

| abel slib.sm — Implements a mailing labels package including defining, saving, loading, and
printing of labels

I'i bxm . sm — Implementsthe Document Object Model CoreLevel 1 and 2 and part of 3plus XSLT
transforms and XPATH by working with the LXML component

l'ists.sm — Utility library providing various strutural types, such as nodes, lists, rings, queues,
and stacks

| ogmanager . sm — Utility library providing a mechanism to allow multiple threads to write to a
text-based log file by providing a queuing system and a function to process the queue

Itrimsm — Implementsthe LTRI M) function to trim spaces from the left of a string

mat hl i b. sm — Containsvarious math functionssuchaspi (),sqrt (),si n(),cos(),tan(),
and more

mrul i b. sm — Provides alibrary of types and functions for working with most-recently-used lists,
including loading and saving to INI files and managing a submenu

SIMPOL Language
Libraries(*. sm)

netinfolib.sm — Contains functions like get user nane() and
get conput er nanme_wi n32()

obj set. sm — An early implementation of a set object based on binary trees, but new code should
usethef ast set. snl library or theinterna set type

odbc2. sm — Helper library for working with the ODBC client functionality that is part of the SIM-
POL ODBC component

pad. sm — Implements the PAD() function to right-fill a string with spaces to a specified size (or
to truncate if it exceeds that size)

par senum snl — Isacontribution from amember of the SIMPOL community and provides afunc-
tion that converts numbers into words (in English), commonly used in check writing programs

printformib.sm — Contains useful functions for printing to window or printer, like pri nt -
wxform(),printrecord(),andprinttext()

propertybrowser. sm — Thisimplements aruntime property browser that can be very useful in
tracking down the value of objects at runtime (supervisor functionality)

gl. sm — Thisisthelibrary that implements the query optimizer for the SIMPOL report engine

qui ckreportlib. sm — Contains types and functions that implement the light-weight reporting
functionality called Quick Report that can output to window, printer, database, clipboard, and other
targets and which can create, save, and load the reports

random sm — Provides the random type for use in generating pseudo-random numbers
recor dvi ew. sm — Provides arecord view implementation used by the application framework

regi strylib. sm — Containsthewin32registry typethat provides methodsfor reading and writing
the Windows registry

reorglib. sm — Functionsfor reorganizing (repacking) databasesin the SIMPOL database engine
format (*. shn)

repgui | i b. sm — This provides the Quick Report front-end for user programs

repl ace. sm — Providesther epl ace() functionfor replacing all instances of one substring with
another in atarget string

reportlib.sm — Contains the types and functions that implement a base reporting system used
by more sophisticated wrappers such as Graphic Report and Quick Report

rsal i b. sm — Contains functions and types for working with RSA encryption, including key gen-
eration, encryption and decryption

sbi slib.sm — Functions for working in a CGI environment, such as Ht m | ncl ude(), or
Ht M Read()

sbl dat el i b. sm — Implementsfunctionsfor working with dates and for formatting dates as strings

sbl ext en. sm — Includes a conversion of functions from a Superbase sample library of the same
name and which may be helpful when converting from Superbase

sbl i b. sm — Functions are provided that represent various FN-style functions from SBL, such as
FN Dec(),FN Fact (), etc.

SIMPOL Language
Libraries(*. sm)

sbl | ocal edat ei nf 0. sm — Containsthe SBLIocal edateinfo type for use with the date formatting
functionsinsbl dat el i b. smi

sbl tinelib.sm — Functions for formatting times as strings and converting strings back to time
values

sbngl i b. sm — Contains useful types and functions for interfacing with Superbase NG Personal,
such asrings of data sources and tables, and an object for managing wxformoption objects

sendkeys. sm — Thislibrary implements a SENDKEY S functionality for Win32

sendmail .sm — Provides the sendmail () easy wrapper function to the
smpclientlib.sm functionality for sending text-based SMTP emails

serialize.sm — Thislibrary implements a serialization mechanism for storing objects at runtime
and reloading them later

sessi oni d. sm — Functions and typesfor creating and manipulating session | Ds using cookies for
web applications

sessi oni d2. sm — Functions and typesfor creating and manipulating session | Ds without cookies
for web applications

shel | execut e. sm — Wrapper around the Windows API call for loading the appropriate exe-
cutable for agiven file type, ie. Acrobat Reader for * . pdf files

si nmpol | i b. smM — Contains functions that use meta-capabilities of SIMPOL to provide functions
like: fi ndfuncti on() andi sproperty()

smpclientlib.sm — Email functionality viaSMTP

snt pdat el i b. sm — Implementation of adate formatting function that acceptsformat stringsusing
the standard SMTP date format

sortlib.sm — Various sorting algorithms such as Insertion sort, Quick Sort (iterative and recur-
sive), etc.

soundl i b. sm — Provides sound playback functionality that is currently Windows only
sql 1. sm — Thelibrary providing a SQL92 report engine for SIMPOL databases
str.sm — Providesthe STR() for formatting a numeric value as a string using a pattern

stringlib.sm — Numerousfunctionsthat implement useful string handling functionality, includ-
ing par set oken(),ltrin(),rtrin(),etc.

t abl evi ew. sm — Provides atable view implementation used by the application framework

timer.sm — Provides atimer type that can call an event handler either once or at intervals and
which runs in a separate thread

trimsm — Containsthe TRI M) function

ui syshel p. sm — Various functions and types for providing standard system defaults, such as
system colors, default fonts, display size, etc.

uni ttest.sm — Basic unit testing library that helps in running regression tests

10

Supplied Superbase NG Projects

ur | endecode. sm — Functions for doing URL-encoding and URL-decoding

urllib.sm — Providesthe URL type and the par seur | () function for parsing a URL into its
component parts

ut f 8l i b. smM — Functions for converting from and to UTF-8 format

uuencode. sm — Functions for doing uuencode, uudecode, base 64 encoding and decoding and
quoted printable encoding

val . sm — Implementsthe VAL() function

vol at abl e. sml — Provides afairly full implementation of a database that only exists in memory.
Compatible to the shmel family except for table modification

wi ndowsenai | | i b. sm — Contains adatatype for sending email by using the Windows scripting
host

wi nfil edl g. sm — Providesawrapper to the open and save dia ogs from the operating system that
can be called viathe smexec32. dl | from a program such as Superbase

xm |'i b. sm — Provides a number of useful programs for parsing and evaluating XML strings and
can be used to enhance the functionality provided by | i bxml . sm

Supplied Superbase NG Projects

Superbase NG ships with alarge number of sample projects. Many if not most of the librarieslisted above
are included as source code projects. Below is a basic description of the directories containing projects:

Console Projects

Theconsol e directory houses projects that demonstrate basic functionality and are meant to be run from
the console:

convert — Demonstrates acommand line program for converting end of line charactersin text files
from DOS (CRLF) to Linux (LF) annd aso to the older Macintosh format (CR)

hel | 0 — Theusual "Hello World" program

ppcssel ect key — A command line program for selecting a specific record from atable on a PPCS
server and then showing the content of that record.

ur | dunp — A command line program for retrieving a page from the World Wide Web and either
storing it in afile or dumping it to the console.

XML Document Object Model (DOM)

The DOMdirectory contains a sample program that fully exercisesthe XML DOM

I'i bxm _exanpl e — Contains 14 tests that demonstrate the various features of the XML DOM sup-
port in SIMPOL

Examples

The exanpl es directory contains GUI programs, TCP/IP sockets programs, and samples of using the
lists.sm library. To begin with, the sockets examples are apair of projects. Thecl i ent project and

11

Supplied Superbase NG Projects

the ser ver project are designed to work together to demonstrate transferring a file from a server to a
client upon request of the client.

» cli ent — Demonstrates using a TCP/IP-based client program to connect to a server and to commu-
nicate with it, including receiving both text and binary data.

» server — Shows how to create a custom TCP/IP-based server program that implements a basic pro-
tocol and which then acts upon connections and can send and receive text data and which then sends
binary data.

There are four samplesthat demonstrate the use of varioustypesfromthel i st s. sm library. Theseare:

e | i st sanpl e — This example demonstrates how to use the list and listnode types in order to wrap
existing objects and possibly add information to them in addition to managing them in alist.

e ri ngsanpl e — This example demonstrates how to use the ring and listnode types in order to wrap
existing objects and possibly add information to them in addition to managing them in alist.

o dl i st sanpl e — Thisexample demonstrates how to use the dlist and dlistnode typesin order to wrap
existing objects and possibly add information to them in addition to managing them in alist. Both dlist
and dring types are better choices when you need to insert or delete from thelist or ring, since they are
more efficient in these operations.

» dri ngsanpl e — This example demonstrates how to use the dring and dlistnode types in order to
wrap existing objects and possibly add information to them in addition to managing them in alist. Both
dlist and dring types are better choices when you need to insert or delete from the list or ring, since they
are more efficient in these operations.

Thereisasingle example that shows the use of the dataform1 type family and which loads any valid form
stored as an *. sxf file (opening the data sources that are referenced in the form) and then allows the
browsing of records using the form. That exampleis:

» dat af or ms — Loads and allows the browsing of datain any valid form

Theudt nenber opsanpl e project explains the implementation and use of the SIMPOL member oper-
ator (1) in a user-defined type. It is an advanced topic, but can be useful depending on the complexity of
the application being devel oped.

* udt menber opsanpl e — demonstrates the use of the SIMPOL member operator in a user-defined
type

The remaining projects in this directory all demonstrate various capabilities within the GUI controls pro-

vided via the wxWidgets library.

» ol e2excel — is asample program that demonstrates the use of OLE2 automation to open Excel,
create an Excel workbook, add data, select and calculate that data, create a chart, and then read the
results back out into SIMPOL

» wxdi al og —isavery small program that demonstrates the use of the wxdialog type to create a modal
dialog and wait until it is closed or the OK is pressed.?

» wxdi al og2 —isavery small program that demonstrates the use of the wxdial og typeto create anon-
modal dialog and wait until it is closed or the OK is pressed.

e wxdi al 0g3 — isavery small program that demonstrates the use of the wxdialog type to create a
modal dialog using the standard buttons feature, and then waits until it is closed or the OK is pressed.

12

Supplied Superbase NG Projects

* wxdi al og4 —isavery small program that demonstrates the use of the wxdial og type to create a non-
modal dialog using the standard buttons feature, and then waits until it is closed or the OK is pressed.

o wxf or ns — isaminimal program that demonstrates the use of the wxform and wxwindow types to
display aform in awindow and then wait for events.

o wxf or n82 —isasmall program that demonstratesthe use of the wxform and wxwindow typestogether
with a group of form controls on the form that allow modification and include sample data. Pressing
the button will evaluate the selections and content from the various form controls, close the window
and return that as aresult.

* wxgri d— isasmall program that demonstrates the use of the wxgrid including various aspects of
using the grid control.

o WXImenu — isaminimal program that demonstrates the use of the wxmenubar, wxmenu, and wxme-
nuitem types to create a basic menu bar that shows the various features supported and to add that to
awindow.

* wxWi ndows — demonstrates the minimal amount required to create awindow on the screen and then
wait for events.

* wxWi ndows?2 — creates four different windows of various styles. Closing any of the windows closes
all of them and ends the program.

Forms Examples

The f or ms directory contains some more sophisticated form-based GUI examples. One of them shows
various controls in a number of configurations, the other is a dedicated import program that can import
from PPCS data sources into SBME. It was originaly designed to assist the conversion of applications
from Superbase into SIMPOL.

» denmpb — demonstrates the use of the various features that SIMPOL provides via wxWidgets.

» i mport ppcs2sbne — implements an import program that makes use of PPCS, SBME, plusthe GUI
components via wxWidgets.

Games

The ganes directory is meant to contain example game programs. The first one included shows the ob-
ject-oriented implementation of the classic worm game.

* wor m— Usesaminimal set of librariesto produce a basic version of the classic worm game.

Libraries

Thelargest number of samplescan befoundinthelLi bs directory, which contains projectsthat implement
reusable functionality either as functions or types.

» ABS — implementsthe ABS(') function for returning the absolute value of a number or integer

» appf ramewor k — provides a fairly powerful application framework for creating GUI-style data-
base-based applications

» bool st r — formatting library for converting boolean and datetime values to string and back

e bzi p2 — compression library wrapper for the BZip2 compression format and the BZi p2. di |

13

Supplied Superbase NG Projects

cal ceval — library for evaluating a string and parsing and carrying out the calculation formula and
returning the result

cal cl i b —library that displays a calculator and that returns the result of the calculation
codepages! i b — code page conversion library for converting to and from various code pages

confli b — library of functions for reading from and writing to configuration files in the Microsoft
INI file format

consol el i b — library that implements a basic console window for creating console programs that
interact with the user

dat abasef or ns — library of typesand functionsthat provide the full implementation of data-aware
display and print forms for SIMPOL

dat et i nel i b — library of functionsfor converting to and from dates, times, and datetimes (includes
various other libraries plusits own functions)

dbll i b — library that implements a stub class to match the dbl type tag family so that the IDE will
provide useful information when working with variables that are defined ast ype(dblt abl e) for
example

dbluti | — database utilitieslibrary with routines for copying records, creating and maintaining sys-
tem tables, etc.

dri | I down — user-interface component that provides an interactive search capability with a display
of resultsin agrid control and return of the selected record

dxfl i b — function for converting a specific style of *. dxf file into a Windows bitmap (includes
ahelper DLL)

f ast set — aset implementation compatible with the objset type but faster using red-black trees

filesyslib — functions for working with elements of a file system, such as parsing pathnames,
retrieving the current directory, etc.

form i b — types and functions for loading, saving and saving as source code dataforml and print-
form1 objects

gaugel i b — provides various progress gauge dialog types

httpclientlib— objectsfor retrieving items from the web using GET or POST

i magel i b — functions and types for reading and writing imagesin BMP and XPM format

I NT — implementsthe | NT() function for converting a number to an integer

i pl i b —library for hosting functions and types associated with working with the Internet protocol

j pegl i b — currently only supplies functions for determining the dimensions of an image in JPEG
format

| i st s — utility library providing various structural types, such asnodes, lists, rings, queues, and stacks

LTRI M— implementsthe LTRI M) function to trim spaces from the |eft of a string

14

Supplied Superbase NG Projects

mat hl i b — contains various math functions such aspi (), sqrt(),sin(),cos(),tan(),and
more

nr ul i b — providesalibrary of typesand functions for working with most-recently-used lists, includ-
ing loading and saving to INI files and managing a submenu

neti nfol i b — containsfunctionslike get user nane() and get conput er name_wi n32()

obj set — an early implementation of a set object based on binary trees, but new code should use the
fastset.sm library or theinterna set type

PAD— implementsthe PAD() functionto right-fill astring with spacesto aspecified size (or totruncate
if it exceeds that size)

par senum— is a contribution from a member of the SIMPOL community and provides a function
that converts numbers into words (in English), commonly used in check writing programs

printformib — contains useful functions for printing to window or printer, like pri nt wx-
form(),printrecord(),andprinttext()

r andom— provides the random type for use in generating pseudo-random numbers
regi stryl i b — contains functions for working with the Windows registry

r epl ace — providesther epl ace() function for replacing all instances of one substring with an-
other in atarget string

r sal i b — contains functions and types for working with RSA encryption, including key generation,
encryption and decryption

sbi sl i b — functions for working in a CGI environment, such as Ht ml | ncl ude(), or Ht M -
Read()

SBLDat eLi b — implements functions for working with dates and for formatting dates as strings

sbl ext en — includes a conversion of functions from a Superbase sample library of the same name
and which may be helpful when converting from Superbase

sbl | i b — functions are provided that represent various FN-style functions from SBL, such as
FN Dec(),FN Fact (), etc.

SBLI ocal edat ei nf o — containsthe SBLIocaledateinfo type for use with the date formatting func-
tionsinsbl dat el i b. sm

SBLTi meLi b — functions for formatting times as strings and converting strings back to time values

sbngl i b — contains important types used throughout much of SIMPOL, such as datasourceinfo and
thinfo as well as the types and functions used to provide option groups for wxformoption types

sendmai | —providesthesendnmai | () easy wrapper functiontothesnt pcli entli b. sm func-
tionality for sending text-based SMTP emails

seri al i ze — provides the ability to serialize an object to afile and then read the data from the file
and recreate the object at alater point in time

shel | execut e — wrapper around the Windows API call for loading the appropriate executable for
agiven filetype, ie. Acrobat Reader for *. pdf files

15

Supplied Superbase NG Projects

e sinpol | i b — contains functions that use meta-capabilities of SIMPOL to provide functions like:
findfunction() andi sproperty()

* smtpclientlib—email functionality viaSMTP

* snt pdat el i b — implementation of a date formatting function that accepts format strings using the
standard SMTP date format

» sortli b — varioussorting algorithms such as Insertion sort, Quick Sort (iterative and recursive), etc.

» soundl i b — Library with the long-term plan to be the host for sound playback routines, currently
supports Windows sound playback

e STR— providesthe STR() for formatting a numeric value as a string using a pattern

e stringlib — numerous functions that implement useful string handling functionality, including
parsetoken(),ltrim(),rtrim(),etc.

* timer — provides a timer type that can call an event handler either once or at intervals and which
runsin a separate thread

* TRI M— containsthe TRI M) function

» ui syshel p — various functions and types for providing standard system defaults, such as system
colors, default fonts, display size, etc.

e unittest — basic unit testing library that helps in running regression tests
» url endecode — functions for doing URL-encoding and URL -decoding

e urllib— gplit out of asmall library containing atype and function for parsing a URL from a string
into its component parts

o ut f 8l i b — functionsfor converting from and to UTF-8 format

» uuencode — functions for doing uuencode, uudecode, base 64 encoding and decoding and quoted
printable encoding

e VAL — implementsthe VAL() function
e wi ndowsenai | | i b — datatype for sending email by using the Windows scripting host

* wi nfil edl g— providesawrapper to the open and save dialogs from the operating system that can
be called viathesnmexec32. dl | from aprogram such as Superbase

e xm | i b — provides a number of useful programs for parsing and evaluating XML strings and can be
used to enhance the functionality provided by I i bxmi . smi

SBME Database Examples

A series of command line programs that make use of the single-user database engine can be found in the
sbne directory. Thisincludestwo utility programs for doing database maintenance and repair.

e jdktutorial — wasinspired by one of our users. It provides a basic tutorial on using the shmel
family of typesto first create, then populate atable in a container file. Then to open lock and modify
records in that container file.

16

Supplied Superbase NG Projects

e reorgani ze — provides a command line front-end to the functionality in reorgli b. sm for
repacking one or more database tables.

» shnecust — readsrecords from the CUST table at simpol.com port 1280 and creates an * . sbmfile
with the same table.

» shnecust 2 — providesatiming test for reading records from onetable and creating with them another
table.

* shnecust 3 — demonstrates creating a duplicate table in the the same container as the original table.

e shnereadcust — shows how to read records from a table and output them to a text filein XML
format.

» shner epai r — provides acommand line based repair program to fix a database table in the unlikely
event that it may have become corrupted.

SIMPOL Tutorial Examples

All of the sample programs used in thisbook that are not located el sewhere can befoundinthe Pr oj ect s
\tutorial directory.

» addr essbook — implements abasic address book application using data-aware forms and the appli-
cation framework.

» col or| ab — demonstrates a dial og-style application program.
* qui ckreport sanpl e — shows how to create a Quick Report program in source code.

» sbai r — containstheform, program, and required database tablesfrom the Superbase Airlines sample
that is converted in the Chapter 11, Converting Legacy Superbase chapter.

* si npol busi ness — containsthe forms, reports, program, and required database tablesfor the SIM-
POL Business sample from the Chapter 7, SMPOL Business chapter.

SIMPOL Web Server Programs

A full suite of web server programs, which work using CGI or ISAPI are contained in the ssp directory.
To use the samples, make sure that the items from the Apache directory are placed in the appropriate
locations. The items from the ht docs directory include the items in the css directory and the images
that arelocated in thei mages directory. Theitemsin the cgi - bi n should be placed in the appropriate
cgi-bin location in your system. These items are used by the web server sample projects. Thereisalso a
directory called: i ncl ude, which contains chunks of code used by more than one project in this group.
Theppcsser ver directory contains a Superbase server program and associated database files, as well
as a SIMPOL server program (si npol ser ver . snp) together with the necessary database container
files and the configuration file for the server (sspsanpl es. cf g — read ther eadne. t xt torunor
stop the server).

The examples in this section do not demonstrate particularly attractive web pages. They are very basic
in their look and fedl. Designing attractive web pages is better done in an HTML authoring tool. These
examples demonstrate how to use SIMPOL to dynamically create pages, as well as showing how to in-
teract with the database and to accept data over the web. Most of the more interesting SIMPOL -based
web applications are normally designed using CSS and XHTML in a proper authoring tool, and then the
template pages are migrated into SIMPOL and set up to use parameters so that they can be output with
varying content by the programs.

17

Supplied Superbase NG Projects

Tests

@ Note
All of the samplesthat begin with "shis" were trandated from the original samplesincluded
with the Superbase Internet Server program (SBIS).

hel | ocgi — isdesigned using the "server page" approach. That usesafilecalled hel | ocgi . sne,
which is an HTML file containing special comments that are processed by the SIMPOL IDE into a
SIMPOL program file with the same name. This is then compiled as part (or in this case as all) of the
program.

sbi scal endar — demonstrates creating and outputting a calendar using atable.

sbi scont act — isasample contact database with the ability to view the records in a simple record
view format. It also allows browsing with First, Previous, Next, and Last buttons. These all call the
same program with specific parameters. On the right-hand side are another set of buttons: Add, Search,
Report, and Report2. These buttons call either directly or indirectly other programs in the group.

sbi scont act di spl ay — displaysaselected record (found as aresult of searching using the Search
button. If the selected record is not found, it redisplays the search page.

sbi scont act post — handles the posting of a new record as a result of a cal to the Add function
insbi scont act .

sbhi scont ent sf rame —ispart of thesbi sf r amesanpl e, although frames have now gone very
out of fashion in web design.

sbi senvvar s — outputs all the various CGl variable values (plus those supplied by ISAPI if called
from 11S) that can be retrieved viathe cgicall type'sget var i abl e() method.

sbi sf ramesanpl e — uses various SIMPOL programs to provide different frame content for each
of the various frames. Frames are no longer particularly popular in modern web design, but can till
have their uses.

sbi si mragesanpl e — demonstrates a dynamic page that shows an image.

sbi si ncl udesanpl e — showsthe method of including an external HTML fileinto the output going
back from the program to the browser.

sbi smai nf r anme — is part of the sbi sf r amesanpl e, although frames have now gone very out
of fashion in web design.

sbi sreport — runsan unoptimized report that shows itsresultsin atable and does athree-level sort
of the results. Each line of the results can be clicked on to call the shi scont act di spl ay code to
show the record for the resulting selection.

sbhi sreport fast — runsan optimized report that showsits resultsin atable and does a three-level
sort of the results. Each line of the results can be clicked onto call thesbi scont act di spl ay code
to show the record for the resulting selection.

sbi stitl ef rame —ispart of thesbi sfranmesanpl e, athough frames have now gone very out
of fashion in web design.

A few basic test programs can be found in thet est s directory.

18

Documentation

cal ceval test — tests the various capabilities of the cal ceval () function using the
unittest.snl library.

chart est — could actually becalled echo, sinceit returnswhatever text ispassed in thefirst parameter
to the function.

consol et est — isasimple demonstration program that shows how to usetheconsol el i b. s
library to create a simple tet-based program that can interact with the user.

dat el i bt est — isatest suite using theuni ttest. sm to implement regression testing for the
DATESTR() andstri ng2dat e() functions.

fcaset est — isatest suite using the uni ttest. sm to implement regression testing for the
fcase() function.

filetypetest —isatestsuiteusingtheuni ttest.sm toimplement regression testing for the
filetype() function.

fi xtest —isatestsuiteusingtheuni tt est. sm toimplement regression testing for the. fi x()
function.

string2val t est —isatest suiteusingtheuni ttest. sm toimplement regression testing for
thestri ng2val () function.

STRt est —isatest suiteusingtheuni tt est. s toimplement regression testing for the STR()
function.

timelibtest —isatest suiteusingtheuni ttest.sm toimplement regression testing for the
TI MESTR() , ext TI MESTR() ,and st ri ng2ti me() functions.

Documentation

Superbase NG contains six different books that cover various aspects of using the product. These are:

SIMPOL Quick Start Guide (this book)

Superbase NG IDE Users Guide [http://www.simpol.com/docs/ide/]

SMPOL Language Reference Manual [http://www.simpol.com/docs/langref/]
SMPOL Programmer's Guide [http://www.simpol.com/docs/progbook/]
Superbase NG IDE Quick Start Manual [http://www.simpol.com/docs/tutorial/]

Superbase NG Personal User Guide [http://www.simpol.com/docs/personal/]

Utilities

There are anumber of standalone utility programsincluded with Superbase NG. These include:

i maget ool . snp — providesatool for manipulating images for creating bitmap buttons (contributed
by John Roberts)

proj ect fi xer. smp — aprogram for changing the paths in one or more project filesin a subdirec-
tory tree

19

http://www.simpol.com/docs/ide/
http://www.simpol.com/docs/ide/
http://www.simpol.com/docs/langref/
http://www.simpol.com/docs/langref/
http://www.simpol.com/docs/progbook/
http://www.simpol.com/docs/progbook/
http://www.simpol.com/docs/tutorial/
http://www.simpol.com/docs/tutorial/
http://www.simpol.com/docs/personal/
http://www.simpol.com/docs/personal/

Superbase Conversion Utilities

savei naget obl obgui . snp — aprogram that converts one or more images and writes out a SIM-
POL source code program that for each image provides afunction that contains the image as a blob and
can return it as awxbitmap

sbf 2sbm snp — aprogram for converting alist of Superbase database filesinto SIMPOL database
files

sbm2smagui . snp — a program for converting one or more Superbase NG database tables into a
function that can re-create the table (empty of data), which is useful for generating tables at run time

sber epai r. snp — a program for repairing a database by retrieving al records via their unique
internal record ID (ignores indexes completely and can also ignore sequential linking problems)

sbv2sxf . smp — aprogram for converting alist of Superbase form files into Superbase NG display
formfiles

Superbase Conversion Utilities

To support Superbase programmers and users, there are anumber of conversion toolsthat are provided in
the Superbase SBL programming language. These are:

» dl g2snma. sbp — aconverter for Superbase dial og programs saved from the Superbase Dialog Editor

into SIMPOL source code to create the equivalent form using the wxWidgets-based components

» ngnengen. sbp — converts Superbase menu programs saved from the Superbase Menu Editor into

SIMPOL source code using the wxWidgets-based components

sbv2sxp. sbp — generates a SIMPOL XML print form file that is directly loadable from the SIM-
POL data-aware print form support, assuming that the database tables have been saved as SIMPOL
equivalents, which can be used as the starting point for working with the form in the SIMPOL Print
Form Designer

sbvr 2xm . sbp — generates an imperfect SIMPOL XML graphic report file that requires some mod-
ification under certain circumstances but should then be directly loadable from the SIMPOL graphic
report code, assuming that the database tables have been saved as SIMPOL equivalents, which can be
used in SIMPOL programs as |oadable and runnable Graphic Reports

20

Chapter 3. Getting Started

The Essentials

It must have been clear by then end of the previous chapter, that therearealot of different waysto approach
Superbase NG. The hardest part about getting to know a new product is that there are so many things to
learn. It is generally best to have some clear goals, in order to direct the learning and to provide an early
project or two. As a starting point, it is strongly recommended that the reader at least browse the first
chapter of this book. Also if any real programming is planned it is a good idea to work through Chapter
1 of SIMPOL IDE Quick Start Manual [http://www.simpol.com/docs/tutorial/], which teaches the basics
of using the IDE to create projects, edit, compile, and debug programs, to work with external libraries,
and to set project settings.

Once that is done, the next steps depend greatly on what the reader wishes to accomplish. These might
be any of the following:

» A command line program, see the section called “Command Line Programs”

» A diadog-style application, see the section called “ Dialog-Style Programs”

A GUI-style database program, see the section called “ Database GUI Applications’
» A web server program, see the section called “Web Server Applications’

» A standalone server application, see the section called “ Server Applications”

» A conversion from Superbase, see the section called “ Converting from Superbase”

Each of these is described more thoroughly below. Obviously these are merely starting points, there is
nothing that says that they couldn't be combined in various ways, such as a server application that has a
GUI for controlling it, or database GUI application that also provides a set of web server applications to
allow some users a specific set of functionality via the web to what is otherwise a desktop application.
Another might be a desktop application that usesthe htt pcl i entli b. sm library to access useful
resources on the Internet and provide their functionality to the desktop program.

Preparing Our Environment

Before we start actually developing any programs, it might be a good idea to start out by preparing our
development environment. Thereisn't much to do, and it isn't absolutely essential, but it will savetimeand
aggravation later, especialy if you are using the Windows Vista operating system or alater version. That
is because it is very difficult, bordering on impossible to manage projects as a sub-directory below the
Program Fi | es directory. Thereis a special level of additional protection that prevents applications
from writing to that directory, even if you have administrative rights. As such, it isagood ideato get in
the habit of locating your projects somewhere el se, such as your home directory. In Windows X P and ear-
lier that isnormally the C: \ Docunent s and Settings\username\ My Docunent s directory.
In Vista, it has been changed to C. \ User s\ user nane and even more importantly, the actual home
directory is more usable than it wasin XP.

Inthe SIMPOL IDE select Tools — Options.... In that dialog window, in the edit control for the Working
Project Directory, enter apath nameor click onthe ... next to thefield and select the path from the directory
selection tool. The dialog window can be seen here:

21

http://www.simpol.com/docs/tutorial/
http://www.simpol.com/docs/tutorial/

Command Line Programs

Application Options. E
SIMPOL compiler fle path

|E‘ “\Progiam Files\simpolbin'smpol zmp E] R MuklLanguage
R Optimize Linker Dutput

Werking Freject Directory

[rersimpanproiectss El W Postpracassor

Languages
Add | Language ssitings file path:
C\Prograim FlessimpahbrtSIMPOL ini

File extensions: bdamacemu..

Short descriplion:

P Edk Language... |

fudosave [intempatary path) T
Save praject copy each: [|con File associsbons
asmun rbes o cpes [_SMPOLIDE Lguage. |

¥ Save project documenits before bulkd, rebuld, exectie and debug
W SMA source code file defaul peefersnce
¥ Fegenerats SME fil ahwaps in the buld process Cancel

I™ Lock documents being edied

The IDE Application Options dialog.

Command Line Programs

Getting started with command line programs is probably as easy as it gets in SIMPOL, from a purely
programming perspective. There are a number of examples to show the ropes. Command line programs
can take up to 10 parameters (currently), and can output their results. They do not have access to typical
command line features like stdin, stdout, and stderr, but can still accomplish goals and return results. For
an in-depth look at creating a command line program, see Chapter 4, Command Line Programs.

Dialog-Style Programs

These types of programs are normally not terribly complicated, and are often designed to provide a tool
that accomplishesaspecific goal. The applications are usually hosted in adia og window and are generally
not connected with a database (though they certainly could be). For the complete story, with a working
example, visit Chapter 5, Dialog-Style Programs.

Database GUI Applications

Database programs in SIMPOL tend to start with Superbase NG Personal. Using its table creation tool,
or via the import functionality, a new database table or tables can be created. In the same program the
Form Designer can be found. Once the database tables are created, the Form Designer is used to create
appropriate masks for the screen. These can be saved as forms, as source code, or both. Once the basic
components have been created, they can be quickly turned into asmall program that provides all the tools
for creating, editing, and deleting data from the tables. More can be added to alow the output of datain
various formats. For afull example, see Chapter 6, GUI-Style Database Programs.

Web Server Applications

SIMPOL can also be used to create powerful web server applications and has built-in support for CGlI
(Common Gateway Interface), ISAPI (Internet Server Application Programming Interface), and Fast-CGl,
which is a high-performance version of CGI. One of the more powerful featuresin SIMPOL when devel-
oping web server applications is the ability to do source-level debugging of a web server application as

22

Server Applications

a callback from the web server. Generally this is done using the Apache web server running locally on
Windows. For the compl ete story, go to Chapter 9, Web Server Programs.

Server Applications

Server applications are a specia type of command line program. They are designed to start up and then
wait for clientsto connect to them. At that point, they provide some service. Typically they areusing TCP/
I P to communicate, though a SIMPOL database server program isalso aserver program that iswaiting for
connections from database clients. Any sort of service could be aviable candidate, such as a program that
does some very complex calculations based on a specific set of input, or a program that regularly collects
information from variousweb sites, consolidatesthat, and produces anew set of information based on what
it found and makes that available to clients. Another example might be a dedicated encryption/decryption
service, for communications security. To have alook at creating a server program, see Chapter 10, Server
Programs.

Converting from Superbase

Superbase provided a great set of tools to quickly create applications, similar in style to the database ap-
plications described above. Superbaseis not directly compatible with SIMPOL, but asignificant effort has
been made to ease the path of migration from Superbase to SIMPOL. To that end a number of conversion
tools are included, somein SIMPOL and somein SBL. For awalk through the process of doing a Super-
base to SIMPOL migration, Chapter 11, Converting Legacy Superbase is the best place to start.

23

24

Chapter 4. Command Line Programs

Building a Command Line Program

In this chapter we are going to build a program that based on the parameters passed, downloads a page
from the Internet and storesit in an output file. If it gets an error while retrieving the page it will output an
error message. If run without any parametersit will report the correct method of running the program. The
program is called ur | dunp. snp, and there is a project already located in the Pr oj ect s\ consol e
directory.

Before you run off and start devouring that program though, it would be a good idea to continue reading
here. The areason is that although that program will show you how its done, it won't be able to explain
how it cameto bein that form. That said, it is probably time to do just that.

First Steps

Since every SIMPOL program begins with the function mai n() , that is where we will start. The image
bel ow showsthe beginning of the project. At thisvery early stage, thereisnot much there. The httpresponse
typeisalsonotin blue, but instead it isin black. That isasign that the library is not yet part of the pI‘OjeCt

ESIMPQL [urldump

[} File Edit View Document Project Debug Tools ﬂlndow Help

DERHG| ' 2B S TRAD 2= ABRA|(A%HNE BFELE | » TG0 |5 |@EED:
?WJ! function main(scring sUrl, string sOutfile)
1= 9] wridump 2Tring errtexc

B widump.sma =
at treaxr fpo
ht tpresponse response

if sUzl <= "7
errrext = usage/()
else
end if
end function

« [
7 °3Pmieﬂ\ﬂcn 8 Type Vew I -@Lﬂdﬂm'l.sm...

ﬂ Mare |Vahe |:| ﬂ
E
! » N\ Locals f{ve [| T
x
s
{|[+] [+ output { Debug }, FindinFiks J Ll [
Ready ngCol7 [[[g

Initial stage of theur | dunp. snp project.

To resolve this, we can add the required library to the project. From the Project menu, select the Settings
item to display the Project Settings dialog. Select the second tab, Includes and libraries, and then click on
the Add button next to the (*.sml) Libraries to link; label. From there, enter the SIMPOL | i b directory
and pick theht t pcli entli b. sm file. Theresult should ook like the image below:

25

First Steps

General Includes and libraries lTargetg] CGl]

Include Folders: B E Remove (*.sml) Libraries to link: Add
C:\Program Files"simpol\ib“httpclientlib sml

SIMPOL components:

The Project Settings dialog after addingthehtt pcl i entlib. sni library.

At thispoint, clicking on the OK button will result in awarning dial og being shown. Thisonewarns usthat
thehttpclientlib.sm library requiresthe SIMPOL component sock and therefore this will also
be added to the project. Thisis quite handy, since otherwise the library wouldn't even work. The warning
dialog lookslike this:

The SIMPOL components "sock” will be added to the project because
. they are needed by the project linked libraries (*.sml)

The warning dialog shown when alibrary has been added that re-
quires components that are not currently part of the project.

Depending on the size of the screen area on our computer, it may be useful to turn off acouple of windows
whilewriting the program. This can be done from the View menu, by selecting the Call Stack and Variables
items, for example. After abit more code has been written, and with our new adjusted windows, the result
might look like the following image.

26

First Steps

[_ SIMPOL - [urldumpl.sma - urldum| =

Eﬁsfile Edit View Document Project Debug Teols Window Help |- “x
DER@| 2B & THad | 2= ARA | A 0A BB+ oe | AR
Tl 1 1
& L smpal> 1t SERRTIXT_PAGE "Page '" -
L esocks 1t SERRINT_NOTFOUND "
= L uddumpsmp 1t SERRINT_SUCCESS
< F man 1t SERRINT_FILECPENFAILED
F usage 1t 2CRLF
- L ihttpclentlio smi}
funccion main(string sUrl, string sQucfile) =
SLring Erxtext
r e
ucy trean fpe
LLpresponss response
if 38Uzl <= ""
Errtext = usage|
else
response =2 httpget (sUrl
if response !@= .nul
if response.errorstatus > "7
Srrtext = response.errorstatus
else if sQutfile > "7
e =
fpo =@ fsfilecutputstrear.new (sQutfile, error=e
if fpo =g= .nul or e !~
errtext = sERRTXT_FILECFERFAILED + sCRLF
else
if response.statusccde < or response.statuscode - -
« [b
o8e Wiy |— _Eguddulrptsm...]
2 -
2 Succesafully built
4[4][F] + T output § Debug J, Findin Fies [el |]
Ready | Ln53, Col 58 | A

The project in its more advanced state after also adjust-
ing some of the windows for greater code visibility.

At this point, let's actually have alook at our first version of this program.

Example 4.1. Initial version of ur | dunp. srma

const ant SERRTXT_ PAGE "Page '"

const ant sERRTXT_NOTFOUND "' not found"

const ant sERRTXT_SUCCESS "' successfully retrieved"
const ant sERRTXT_FI LEOPENFAI LED "Error opening output file"
constant sCRLF “{d}{a}"

function main(string sUrl
string errtext
i nt eger e
fsfil eout putstream fpo
ht t pr esponse response

string

if sUl <=
errtext = usage()
el se

response =@ httpget (suUrl)

if response ! @ .nul
if response.errorstatus > ""
errtext = response. errorst
else if sQutfile > ""
e=0
fpo =@fsfil eout putstream
if fpo =@ .nul or e '=0

sQutfile)

at us

new(sQutfile, error=e)

27

Understanding the Code

errtext = SERRTXT_FI LEOPENFAI LED + sCRLF
el se
i f response. statuscode < 200 or \
response. st at uscode >= 300
errtext = sERRTXT_PAGE + sUrl + \
SERRTXT_NOTFOUND + sCRLF

el se
errtext = sERRTXT _PAGE + sUrl + SERRTXT SUCCESS + sCRLF
end if
fpo.putstring(.if(response.entitybody !'= .nul, \
response. entitybody. getstring(1, .inf, 1), ""), 1)
end if
el se

i f response. statuscode < 200 or response. statuscode >= 300
errtext = sERRTXT _PAGE + sUl + sERRTXT NOTFOUND + sCRLF

el se
errtext = ""
end if
errtext = errtext + .if(response.entitybody != .nul, \
response. entitybody. getstring(1, .inf, 1), "")
end if
end if

end if
end function errtext

function usage()
string s

s = "snprun[32.exe] urldunmp.snp <url> <outputfile>{d}{a}"
end function s

Understanding the Code

Although there is not much to this program, it covers a number of concepts that are worth exploring. To
begin with, the command line parameters are aways string variables and they do not allow for default
values, so to set those you will need to write some code for it. At the beginning of the program, thereisa
test for thesUr | variable. If it finds that no value has been passed, then it callsthe usage() function.
This approach makes it quite easy to both document how the program works and also inform the user
when the parameters are not correct.

The next thing to note is the call to the ht t pget () function. That returns an httpresponse object (and
should do so under all circumstances, so the following test for . nul may be unnecessary). The httpre-
sponse object contains all the information that isaresult of the attempt to retrieve the resource represented
by thesUr | variable. Should there have been any unexpected problem with the retrieval of the resource
then the errorstatus property would have some value greater than the empty string (").

The remaining code simply checks whether the output is going to afile or if it will be output as part of the
return value. In each case, it outputs the content of the entitybody property if the retrieval was successful
(a value between 200 and 299 in the statuscode property) then a success string is returned, otherwise an
error string.

28

Running Our Project

Running Our Project

At this point we should build our project (Ctrl+B — Build). Now we can run the program, but if we want
totry it in the IDE we will also need to define the argument that is being passed to the mai n() function.
We can do that in the Project menu by selecting the Settings item again. In the first tab, in the Command
line box, enter the URL:

http://www.google.co.uk/search?hl=en& g=SIMPOL & btnG=Google
+Search& meta=& ag=f& og=

and then click OK to close the dialog.

@ Note
It is always a good idea to click on the Save All icon on the tool bar after making changes
to the project's settings. This ensures that those changes are saved to the project file. If you
don't, and the IDE crashes for some reason, you may lose the changes that you have made.

Now to run the program, press Ctrl+E (Execute). The result should be the page containing the Google
search results for the key word "SI MPOL". The page will be messy and hard to read, since it normally
returns as an unformatted stream of characters without any new line characters. To see a page that may
look a little more familiar, try the URL "www. si npol . cont. That should look like a fairly readable
page of XHTML.

Improving Our Program

Although thisprogramisn't bad, it might be useful if it were alittle moreflexible. Onething we might want
todoisallow it to take parameters, so that it can do not only a GET operation, but also a POST. We could
also decide to allow the program to output the header information that it received from the web server,
which can be very handy when trying to debug routines that retrieve data from aweb server. A method of
handling and validating command line parameters might also be useful. Let's add support for not only the
output file, but also aflag to decide if the header is output, and also support for passing variables through
using the POST method.

As afirst step, we can update our usage() function with the new information. The new version looks
like this:

Example 4.2. Updated usage() Function

function usage()
string s

S "snprun[32. exe] urldunp.snp <url> [--outfile=<fil enane>] \

[- - showheader]{d}{a}"

s =s +' [--vars=<varlist>]{d}{a}{d}{a}"

s =s +" Where the vars need to al ready be URL-encoded and \
if they violate the{d}{a}"

s =s +" shell rules they will also need to be escaped to \
be hidden fromthe{d}{a}"

s =s +" shell. It is reconmended to place quotes around \
the --vars= entry.{d}{a}"

s =s +" The equal s sign and what foll ows CANNOT al |l ow \

29

Improving Our Program

spaces! |f necessary,{d}{a}"
s =s +" surround any entry with quotes.{d}{a}"
end function s

Now that we have decided what the parameters are going to be (and incidentally also the format), we can
add the code to handle the parameters. Thisis probably best done using a specifically designed data type.
Thiswill allow us to offload most of the work to the type itself, without cluttering our existing mai n()
function with all the associated code. It will also makeit easier to lift it and useit again in another program,
or even in the future to create a more versatile type that is more universal. Let's see what that code looks
like:

Example 4.3. The parameters Type

type paraneters
enmbed
string outfil enane
bool ean showheader
string vari abl es
string operation

ref erence
function getparam
end type

function paraneters. new paraneters ne)
nme.outfilenamre = ""
ne. showheader = .fal se
nme. vari abl es
nme. oper ati on
end function ne

n ET"

function paraneters. get paran{paraneters ne, string paraneter)
if paraneter <= ""
/1 do not hi ng

else if .likel(paraneter, "--outfile=*")
nme.outfil ename = .substr(parameter, .instr(paraneter, "=") + \
1, .inf)
else if .likel(paraneter, "--showheader")
ne. showheader = .true
else if .likel(paraneter, "--vars=*")
me.variabl es = .substr(parameter, .instr(paranmeter, "=") +\
1, .inf)
end if

end function

The parameterstype has propertiesto store all the information that we will use for this call to the program.
It defaults to running in GET mode, and will not return the header from the web server. The way the
get par an{) method has been coded requires that each parameter that has a value component must be
separated from the value by an equals (=) sign and no white space to either side. Part of the reason for

30

Improving Our Program

thisis that allowing white space would require a more complex algorithm, since each of the white space
separated items would arrive as separate parameter values from the shell to the mai n() function.

We now have a method of handling the various parameters to the program, and one of the nice features
of this approach is that the order of the parameters does not matter. The only parameter that has a fixed
positionisthe URL itself, sinceit must befirst. Using this approach requires some changesto themai n()
function aswell. Let's have alook at those now.

Example 4.4. The Final Version of themai n() Function

function main(string sUl, string paranml, string paran, \
string paranB)
string errtext
i nteger e
fsfil eout putstream fpo
ht t presponse response
par anmet ers parans

e =0

if sUl <=""
errtext = usage()

el se

params =@ par anet ers. new()
par anms. get par anm(par ani)
par anms. get par an(par an®)
par anms. get par an(par anB)
errtext = ""
i f parans.variables >
response =@ httppost(sUrl, parans.vari abl es)
el se
response =@ httpget (sUrl)
end if

if response ! @ .nul
if response.errorstatus >
errtext = response. errorstatus
else if parans.outfilename > ""
fpo =@fsfil eout putstream new parans. outfil enanme, error=e)
if fpo =@ .nul or e '=0
errtext = SERRTXT_FI LEOPENFAI LED + sCRLF
el se
i f response. statuscode < 200 or \
response. st at uscode >= 300
errtext = sERRTXT _PAGE + sUrl + sSERRTXT _NOTFOUND + \
SCRLF
el se
errtext = sERRTXT _PAGE + sUrl + SERRTXT SUCCESS + sCRLF
end if
f po. putstring(.if(parans.showheader, \
makenot nul | (response. ful | header) + \
SCRLF + sCRLF, "") + \
.if(response.entitybody !'= .nul, \

31

Running the Final Version

response. entitybody. getstring(1, \
.inf, 1),""), 1)
end if
el se
i f response. statuscode < 200 or response. statuscode >= 300
errtext = sERRTXT _PAGE + sU |l + sERRTXT NOTFOUND + sCRLF
el se
errtext
end if
errtext = errtext + nmakenotnull (.if(paranms. showheader, \
response. ful | header + \
SCRLF + sCRLF, "")) + \

.if(response.entitybody !'= .nul, \
response. entitybody. getstring(1, \
.inf, 1),"")
end if
end if
end if

end function errtext

As we can see from the previous code, not a lot has changed from the original version. We now support
the POST operation if we were given variables (which must be URL-encoded when they are passed in).
We can also optionally return the entire header from the web server if requested to do so. All of the actual
handling of the parameters is done by the parameter type and itsget par an{) method.

Running the Final Version

Now that al our coding is done (the final coded version of this example can be found in the supplied
program samples as a console project called ur | dunp. Thisis the command line we will use to try out
the new features:

Example 4.5. Sample Command

url dunp. smp "wwwx. cs. unc. edu/ ~j bs/ aw wwp/ docs/ r esour ces/ per |/
perl-cgi/prograns/cgi_stdin.cgi" --showheader "--vars=nane=Joe&
t ext ar ea=Cool &r adi obut t on=ni ddl eun&checkedbox=pi zza&
sel ecti t emrhanbur ger s"

@ Note
The URL in the previous command was found while searching on the Internet. It may or
may not be there forever, but it is greatly appreciated for providing an opportunity to test
the POST operation in this program. Eventually we may produce a sample program running
from our own web site but anticipate the likely web load of afew people trying this out will
not greatly inconvenience the university site.

The result of running this new version of the program with the command line parameters shown above,
can be seen in the section below:

32

----------------- 20:41:34 13/08/2009 -----------------

Executing "X:\simpol\projects\consol e\urldump\bin\urldump.smp" ...
————————————————————— program result --------------------

HTTP/1.1 200 OK

Date: Thu, 13 Aug 2009 19:41:35 GMT

Server: Apache/2.2.3 (Red Hat)

Connection: close

Content-Type: text/html

<HEAD>

<TITLE>stdin vars.</TITLE>
<H1>Print CGl STDIN Variables</H1>
</HEAD>

<BODY>

<HR>

<H3>STDIN Variables</H3>

<L I>radiobutton = middleun
<L I>checkedbox = pizza
name = Joe Bloggs

<L I>selectitem = hamburgers
<L I>textarea= Cool form dude

</BODY >

Successfully executed

Summary

In this chapter we have developed a command line program to retrieve a page across the Internet using
both GET and POST. We extended the initial version of the program to also take named parameters in
any order. The techniques learned here could also be applied in other programs. The parameter handling
can be reused in other command line programs. Theuse of theht t pcli entli b. sm library could be
added to a web server or desktop program to retrieve information from another location on the Internet,
such as currency exchange rates, stock market values, etc.

33

Chapter 5. Dialog-Style Programs

What's a Dialog Program?

A dialog program in the sense used in this book refersto typically smaller, less complicated programs that
typicaly only require a single window, without a menu or tool bar. These types of programs are common
of smaller utilities. They are not typically connected to a database table, though that doesn't mean they
can't be. Also, the same approach used to create a dial og-style program can be used to create dialog-style
functionality as part of a larger program. In some cases, the stand alone utility program can easily be
converted to provide its functionality within the context of alarger program.

The example program that we will usein this chapter was selected to fulfill anumber of goals:
» The sample should provide some useful functionality

* It should demonstrate the use of the SIMPOL Form Designer

* It should use generated form source code

* It should be possible to incorporate the result in another program if desired

The Sample Program

The sample program we will use in this section is called SIMPOL Color Lab. While thinking about the
program, it was decided to make something that would let the user see the color that corresponds to a
specific web color value. These are normally specified in the format: #A0B0CO where the first character
isan indicator signifying that the following number isin the hexadecimal format and the following values
are interpreted as the three RGB values between 0 and 255 (or in this case between 0 and FF). To make
the tool more interesting, the user should also be able to enter adecimal value, or the values for the three
color components: red, green, and blue. These can be entered by hand or by moving a sliding widget.

Therearemany different design approachesthat can be taken with devel opment of asoftware project, some
of them more formal than others. This sort of project lends itself well to afairly informal and interactive
approach. To get this project moving, it would be agood ideato start with the layout and ook of the dialog
that the user will see. Once the basic design is done, it will only require the additional work to show the
dialog and react to what happens when it is used.

@ Note

The source code for this project isincluded in the Superbase NG product and can be found
inthedirectory \ Proj ects\tutorial \col orl ab.

Creating the Project

As afirst step, it would be a good idea to create the project. That will provide us with a location for
storing the form once we finish designing it. We won't actually write any code until later, though. Start
the SIMPOL IDE and once it is running from the menu, select File . New Project. In the dialog window
that isthen displayed, select an appropriate location for the project, and give it thename col or | ab. See
the New Project window image shown here:

35

36

Creating the Design

Project Dulput Typs Froject Source Code Type:
IV & wmp i zml [& zma i zmu
Propect location:
Project name:
colorlzh
™ ‘Wrapper over SIMPOL code fie:
{]
I~ Get peopesties from project:
{ i

o] _conoel |

Image of the SIMPOL IDE New Project dialog.

Click on the OK button to create the project. Remember this location, we will use it save our form design
later. For now, minimize or close the IDE; we won't need it anymore for awhile yet.

Creating the Design

Tocreatethedesign, start Superbase NG Personal (it can befoundin the main program group for Superbase
NG). Once it has started running, it should look something like this:

Iﬁummhmwmm I

] Tl >]2 |asluv]

Superbase NG Personal just after being started.

Then select File - New — Form from the Superbase NG Personal program to open the Form Designer
and create anew form.

Creating the Design

Starting the Form Designer from the Superbase NG Personal program.

Once that has been done, the SIMPOL Form Designer will open and present a picture similar to the one
that follows. It contains ablank form sized to a percentage of the size of the screen, with no controlsoniit.

Iﬁhﬁﬁﬁﬂhﬂd"!ﬂ* I

U el |l i = | = | 0]))] el = | /| 0] A OO

The SIMPOL Form Designer with a new blank form.

37

Setting the Stage

Setting the Stage

Now that we have a blank form, it is a good idea to set a few default properties and to give the form a

preliminary size. Select File — Page Setup... from the menu, or double-click the left mouse button on the
form to display the Form and Page Properties dialog, which will look something like the one below:
[Form Name | TR
PageMame |Pagel
Width ,F Height ,F

I~ Use System Col
o S e R G B

Background Color | | 290 240 240
oK I Cancel

The Form and Page Properties dialog.

Change the both the Form Name and the Page Nameto col or | ab. Now click on the Use System Colors
check box, which will default to the CLR_BTNFACE entry. What this does is alow the form to inherit
the system settings for the color scheme. By selecting this setting, the settings for the controls will also
default to using system colors. For now, leave the page size asit is.

@ Note
It isnot necessary to work using this approach. If you want to specifically set the colors used
for various parts of theform, feel freeto do so. Just realize that users expect their applications
to look like the other applications that they use and if they do not, they may react negatively
to aprogram, or consider it to be unprofessional.

After al of our changes, the resulting dialog will ook roughly like this:

Form ang Page Properties
' | |

Form Mame | colorab

Page Name coloriab
width [g19 reight [g15
¥ Use System Colors

Background Color |CLR_BTNFACE | |:|
oK I Cancel

The Form and Page Properties dialog after changes.

Adding the Controls to the Form

It is now time to start adding controls to the form. Start by selecting the abc button from the tool bar,

or by selecting Draw - Text from the menu, and then using the mouse click the left mouse button and
while holding the button down, drag a rectangular outline for the form label. Release the mouse button
when the rectangle represents the area desired for the label. When the button is released, the Properties
dialog window is shown. For now, just set the Name field to "l HexCol or Val ue" and the Caption to
"Hexadeci mal Col or Val ue", leaving the rest unchanged. The content will be similar to what is
shown here;

38

Adding the Controls to the Form

'.Pmpem'es
Mame | HexColorvahe Caplion Hexadecimal Color Value
Tool tip
Left 10 Top 0
wdth [138 Heght [17 : :
W visble R Enabied E
¥ Use System Colors
Background Color |CLR_ETNFACE - |:|
Text Color CLR_BTNTEXT 3] |
Font ™S Shell Dig 2;8;n;n;
| AZBbCcDdEeFfagHh 123456 7830 Algnment
left -
Events
Function Name
anmouse
. i ’
onmousemask
00 1 OMM_LEFTETHDOWN
x0002 OMM_LEFTETHUP
(%0004 OMM_LEFTETNDELCLK
0500 10 OMM_MIDDLESTNDCWN -

The Properties dialog for alabel.

Now add an editable text box to the form, by selecting the ab| button from the tool bar, or by selecting

Draw - Editable Text from the menu. In the resulting dialog box, set the Nametot bHexCol or Val ue
and in the Events grid, set the value of the onlostfocus Function Name entry to hexval _ol f . This sets
the name of the function that is to be called when the event occurs. The dialog should then look similar
to the one below:

'.Pmpem'es
Ham thifexColor Vel
Tool tip
Left 157 Top & None v
wdth [126 Heght [22
¥ Visbie W Enabled
¥ Use System Colors
Background Color |CLR_WINDOW - |:|
Text Color CLR_WINDOWTEXT - .
Font ™S Shell Dig 2;8;n;n;
| AZBbCcDdEeFfagHh 123456 7830 Algnment
left -
™ Horizontal scrolbar
Tt I~ Multine
Function Name
= ™ Read Orly
W E| [Password (==
ot Mol
anmoUse -
] M *
onmousemask
000 1 OMM_LEFTETHDOWMN
x0002 OMM_LEFTETHUP
(%0004 OMM_LEFTETNDELCLK
0500 10 OMM_MIDDLESTNDCWN -

The Properties dialog for an editable text box.

@ Note
In the preceding text the two elements have been assigned the names: | HexCol or Val ue
and t bHexCol or Val ue. It isn't absolutely essential to name the elements of the dialog,
the Form Designer will do it for you, but the names won't be very meaningful. Whenever
you expect to actually need to change the content or read the content (or the state — visible,

39

Adding the Controls to the Form

enabled, etc.) or a contral, it is a good idea to give it a meaningful name. Also, using a
convention for the names will help you remember what type of control you are dealing with
in the code. A common convention used in the examplesis:

Table5.1. Control Naming Conventions

Prefix |Explanation
I Label — used for wxformtext objects

tb Text Box — used for wxformedittext objects

b Button — used for wxformbutton objects

bb Bitmap Button — used for wxformbitmapbutton objects
ck Check Box — used for wxformcheckbox objects

ob Option Button — used for wxformoption objects

Ib List Box — used for wxformlist objects

cb Combo Box — used for wxformcombo objects

g Grid — used for wxformgrid objects

sb Scroll Bar — used for wxformscrollbar objects

b Bitmap — used for wxformbitmap objects

Line — used for wxgraphicline objects

Rectangle — used for wxgraphicrectangle objects

=

—

Triangle — used for wxgraphictriangle objects

a Arc — used for wxgraphicarc objects
e Ellipse — used for wxgraphicellipse objects

Y ou may notice that some of the values are used more than once, such asb for both bitmaps
and buttons. Although it may seem like it could be confusing, in practice the name that goes
with the type identifier tends to make a clear distinction. It is also a good practice to use
the same base name for alabel and an edit control that are meant to go together, like in the
example above.

Now we add some more labels and edit controls for: the decimal color value, and the red, green, and blue
color values. The resulting form looks like this so far:

Adding the Controls to the Form

File Edit View Draw Define Help

N | sbe| o | | | % | = | BB EB| 28| mf=g ~| /|0 A0
tHexadeemalColorvae |

Decmal Color Value Ii

Red |

Green I

Blue l—

The state of the form after placing two controls.

Theform isn't particularly pretty yet, but before we do any cleanup, it may be useful to just plant the rest
of the controls on the form. To make things visually more interesting we will use three horizontal scroll
bars for controlling the three color components. Select the scrollbars control from the controls palette on

the tool bar, or select the Draw — Scrollbar item from the menu. Drag a horizontal rectangle on the form
and then set the propertiesin the dialog as shown in the image below:

Range (0-7) [235
Position 255
Pape Size 15
| . Thumb F—

angotfocus L

orlostfoas 1

ormouse

onscrol redscroll_os -

‘ n] »

enmousemask

0000 1 OMM_LEFTETNDOWM -

Che00Z OMM_LEFTETNUP @

0x0004 OMM_LEFTETNDELCLK

00010 OMM_} -

[] cmw |

The Properties dialog for a scrollbar.

41

Cleaning Things Up

Please note that the background color of the red scrollbar was set to red. Now do the same again for the
green and the blue scrollbars. Once they are on the form, add a rectangle to the form (to show the actua
color value). To do this, select the appropriate control from the tool bar or the menu, then drag arectangle

onto the form. The Properties dialog for graphics is considerable simpler in design than that for form
controls. Set the values as shown in the image that follows:

Name: [Eiorder
Portl x [318 v [7
Foriz x [436 y B

I™ Visbie
™ Use System Colors R 6 B

Color 240 240 240

¥ BorderVisile Borderwidth [1

Border Color .uuu
o]| o |

The Properties dialog for arectangle.

Now that we have added much of the form content, let's take alook at the current state of our form.

— ___ S—
= Xsimpol\projectsitutonalicolorlab [P

Fle Edt View Drw Define Help
I abe| | | | @ | = | 0| 2| | | = | /|0 A|O|O)

Hesadecmal Color Valee

Deamal Color Value

Red
Green

Blue

The state of the form after adding most of the controls.

Cleaning Things Up

The form isn't looking too bad, but it just doesn't work very cleanly from a design perspective, so we are
going to rearrange things a bit. Make sure the Arrow button is selected, and then drag a rectangle around
the labels for the red, green, and blue boxes. Make sure they are all sized to not take up too much space
beyond what they require (use the sizing handles for this). Now drag select the edit controls and move
them over to the left. Resize the blue scrollbar to take up more of the space to the left that has now been
made available. The result will look something like the following:

42

Cleaning Things Up

File Edit View Draw Define Help

[| o] | |)| @ | < | 8| cH| o8| o= ~ | /| A[O|O

Hesadecmal Color Valee

The state of the form after moving the color edit controls and during resizing of the blue scrollbar.

Now drag sel ect the other two scrollbars and after clicking on the selected areawith the right mouse button,
select Adjust Size -~ Same Size, then click on the blue scrollbar that was just resized.

File Edit View Draw Define Help

[| o] | |)| @ | < | 8| cH| o8| o= ~ | /| A[O|O

Hexadeomal Color Value |
Dedmal Color Value I

Select All
Move to Front
Move to Back

Align »
Adjust Size 3 Same Width
Distribute » Same Height

Graphic Properties.

Cleaning Things Up

Showing the right-mouse pop-up menu to resize the selection.

Thiswill then resize the selected scrollbars to the same size as the blue one as can be seen in the following
image.

e
[& | abe| e | | | 7 | o | E0|E8| | =g ~ | /O AOIO|

Hesadecmal Color Valee

Decmal Color Value —

]]

S |

The resulting form after the scrollbars have been resized to match.

We have corrected the size, but they are still in the wrong place. By again clicking with the right mouse

button on the still selected items, select the Align — Horizontally — Left choice and then click on the blue

scrollbar. That will realign the scrollbars so that they are all at the same horizontal position on the form.
The image that follows shows the menu selection, and the one after that the result.

Cleaning Things Up

File Edit View Draw Define Help

[| o] | |)| @ | < | 8| cH| o8| o= ~ | /| A[O|O

Select All
Move to Front
Move to Back
Align »
Adjust Size I Vertically v Cen&
Distribute L Right

Graphic Properties

Showing the right-mouse pop-up menu for aligning the selection.

File Edit View Draw Define Help

[N o] | _i| 2| | = | B/ EB) | ol » | /|0 A QIO
Hexadeomal Color Value |
Color Value |—

1B

The resulting form after the scrollbars have been realigned.

Cleaning Things Up

Now, using the resizing, distribution, and alignment tools, plus the ability to select and then drag the

selection around, the form is going to be rearranged. The final result after playing around to get a look

that works, can be seen below:
5 XA\simpol\projects\tutorialo

File Edit View Draw Define

[& | 2bo| | | 2| @ | < | B[28| 28| 0| = = | /|3 A[O|O

texadeomal Colorvake | Decimel Color vaue [

The resulting form after it has been rearranged.

Theformisnearly finished. What would be useful isto provide the user with an OK button as an alternate
way of closing the program. Also we should resize theform to fit around the contents without alot of extra
space. The final resulting form looks like this:

46

Saving the Form

IE!EQEHMMEH# I

[| o] | |)| @ | < | 8| cH| mm| o= ~ | /| AO|O

Thefinal version of the form.

Saving the Form

Tosavetheformin aformat that can be reopened and modified, select File - SaveAs — Form... Savethe
formascol orl ab_f or m sxf inthe project directory that we created earlier in the chapter. The best
location would be the col or | ab\ col or | ab directory, since that is also where our source directory
islocated.

For the purpose of this project, we are going to use the form as source code, so let's also save it off as

SIMPOL source code. To do that, select File - Save As - wxform Program from the menu. Save the
program as col or | ab_f or m sna. This should aso be saved to the source directory fro our project.
We will beusing it in the next section.

That's it! The design portion of our project is done. Now it is time to get on with turning our form into
aworking program.

Adding the Form Source to the Project

Now that the design portion is done, we can start actually getting the program running. If it is still open,
Superbase NG Personal can be closed. Now switch to our minimized | DE from earlier in the chapter (or
reopen the project if it was closed). Thefirst thing we'll do isinclude the form source code:

include "colorlab _formsm"

47

Adding the Form Source to the Project

After adding thisline, save thefile (Ctrl+S or select File — Save from the menu). Y ou will notice that a
dependent entry for thefilecol or | ab_f or m sna appearsin the Project View tree on the | eft. To see
what that looks like, examine the image that follows.

(Bl SIMPOL - [coloriab.sma - coloriab]

file Edit View Document Project Debug Tools Window Help - |[E]
DERE@| BE S Pmed o BRA| 4 =) o il
=
BT include "colorlab_form.sma®
] colodab
[colorab.sma
= & colodab_form sma
[F] uisyshelphdr sme

.] «[m
" oF Project View [®8 Type View (e p—

ﬂ HName [Value =1 |3

T\ Locals [Me [JLel | IO

L%

" output { Debug), FndinFies | 1Kl 5
Ready Ln2 Coll

The SIMPOL |DE after adding the include entry to the project.

Also, another dependent entry appears below that, with a red X over the icon. The source file
ui syshel phdr. sma isincluded by the form source code, but is not visible to the project. To resolve
that, we need to add the i ncl ude directory to the project. We also need to add a library that is used
together with that include file. Thelibrary iscalled ui syshel p. s . To do this, from the menu select

Project - Settings. Then select the second tab, Includes and Libraries. On the left side click on Add and
then locate and select thei ncl ude directory from the SIMPOL installation. On the right side, also click
the Add button. Select the ui syshel p. s fileto add it to the list of libraries. The result can be seen
in the following image.

W—a

General Includes and libraries |Tanggs| ol |

Inciude Folders Add Femove (*.aml) Libranes to bnk: Add Remaove:

SIMPOL components s use

|slib, utoa, wown

The Project Settings dialog after adding items.

Now click on the OK button and that will show a warning dialog informing you that three additional
components will be added to the project: ut os, sli b, wxwn. Seethe equivalent image hereafter.

48

Setting Up the Program

The SIMPOL components "utos, slib, weawn” will be added to the project
B\ becouse they are needed by the project linked libraries (*.smi)

The Project Settings warning dialog adding components.

Thisisdone by detecting the required components from the library. Without those componentsthe library
would not work correctly. As can be seen from the following screen shot, once the update to the Include
Folders has been added, the IDE now shows the entry in the Project View with a normal icon; the red

X isgone.
8 SIMPOL - coloriab sma—colorbl
file Edit View Document Project Debug Tools Window Help - |[E]
DEHG e & PR | o Had + = . 2]
=
(5 B coibam include "colorlab form.sma®
] colodab
[colorab.sma
= & colodab_form sma
B uisyshelphdr sme

" oF Project View [®8 Type View (e p—

Name]Vdue [- | 4

T\ Locals [Me [JLel | IO

L%

" output { Debug), FndinFies | K v
Ready Ln2 Coll

The SIMPOL |IDE showing the updated project.

Setting Up the Program

The first step with getting the program running is to write the code that initializes the program, creates
the form, creates the dialog window, and then waits for events. As it turns out, this does not require an
excessive amount of program code.

Example5.1. Thermai n() Function of the colorlab Program

i nclude "colorlab formsm"
constant | STARTCOLOR Oxffffff

function main()
wxform f

49

Getting the Basic Form Running

wxdi al og d
i nteger e

e =0
f =@col orl ab(error=e)
if f =@ .nul
errormnmsg(e)
el se
d =@wxdi al og. newm(1, 1, innerw dth=f.w dth, \
i nner hei ght =f . hei ght, \
vi si bl e=. fal se, \
capti ont ext ="SI MPOL Col or Lab", \

error =e)
if d =@ .nul
errormnmsg(e)
el se

adj ustforntol orval s(f, i STARTCOLOR)
f . set cont ai ner (d)
cent er di al ogonpar ent (d)
d. processnodal (.1 nf)
end if
end if
end function

The code aboveisfairly straightforward. It callsthe generated col or | ab() function to create the form.
If anything goes wrong, it calsthe er r or nsg() function if anything goes wrong. Assuming that the
form was successfully created, it creates the dialog window, sizing it based on the size of the form. Again
it checks for success, and assuming that worked, it calls a function to initialize the form for a specific
color value (the starting color). That color valueis contained in aconstant called i STARTCOLOR. Finaly,
the form is selected into the dialog window, the dialog window is centered on the display (since it has
no parent), and it then is set to wait forever (or until the dialog is made invisible, either by calling the
set vi si bl e() method, or by the user clicking the Close gadget.

The program as is will not yet compile without warnings nor will it run without errors. The source code
of the form contains assignments of function names for handling events, but those functions have not yet
been created.

Getting the Basic Form Running

In this section we will now add all the minimum bits remaining in order to get our program to run and
show the form. It won't do anything yet, but at least we will be able to see the form come up in the dialog
window, and we will also be able to close the window and have the program exit correctly.

In order to do this, we need to at least add the functions, even if they don't yet do anything. That code
is shown below.

Example 5.2. Theremaining Empty Functions of the colorlab Program

function adjustforntol orval s(wkxformf, integer rgbval, \
string ignorescrollbar="")
end function

50

Getting the Basic Form Running

functi on hexval ol f (wxfornmedittext mne)
end function

functi on decval ol f (wxfornmedittext mne)
end function

function redval ol f (wxformedittext mne)
end function

function greenval ol f (wxfornedittext ne)
end function

function bl ueval ol f (wxfornedittext me)
end function

function redscroll _os(wxfornscrollbar me, string scrolltype)
end function

function greenscrol |l _os(wxfornscrol |l bar me, string scrolltype)
end function

function bl uescroll _os(wxfornmscrollbar nme, string scrolltype)
end function

functi on okbtn_oc(wxfornmbutton me)
wxdi al og d

d =@ ne. f or m cont ai ner
d. setvisible(.fal se)
end function

function errornmsg(string s)
wxmessagedi al og(nessage=s, captiontext="SlI MPOL Col or Lab \
Error", style="ok", icon="error")
end function

The remaining functions shown above don't yet do anything, except for the okbt n_oc, which merely
sets the dialog visibility to . f al se, which results in the code exiting the pr ocessnodal () method
and the program then exits.

E Note

Another useful naming convention can be seen in the names of the functions. The beginning
portion of the name indicates the control with which it is associated, followed by an under-
score, and then a set of letters describing the event. Below is a table of potentially useful
names for the portion following the underscore.

Table 5.2. Event Handling Function Naming Conventions

Suffix Explanation

oc onchange

oc onclick

51

Finishing the Color Lab Program

Suffix Explanation

occ oncellchange

ocs oncellselect

ocwce oncolwidthchange
odc ondoubleclick

ogf ongotfocus

olf onlostfocus

om onmouse

om onmove

orhc onrowheightchange
0s onscroll

0s onselect

0s onsize

0sC onsel ectionchange
0sC onstatechange
ovc onvisihilitychange

At this point, it should be possible to build and run the program. It doesn't do anything yet, other than
display the form, but it is anice place to be, since now all that isleft is manipulating the form in response
to user-generated events (or in other words, filling in those empty functions).

Finishing the Color Lab Program

Now that we have the basic program running and displaying the form, al that remains is to fill in the
functions that are currently empty. One thing that we can do to minimize the amount of coding isto use
a common piece of code for some of the functions, and call it from each of them. From looking at the
code, it seems that the scrollbar event handling functions will probably be similar, as will the functions
that handle the edit control eventsfor the three color values. Everything will eventually call theadj ust -

f orncol orval s() function. Since that is the function that everything hasin common (it is even being
called during initialization), let's build that first.

Example 5.3. The Full Implementation of the adj ustforntol orval s()
Function

function adjustforntol orval s(wxformf, integer rgbval, \
string ignorescrollbar="")
i nteger red, green, blue

bl ue = rgbval / 0x10000

green = (rgbval nod 0x10000) / 0x100

red = ((rgbval nbpd 0x10000) nod 0x100)
f!tbHexCol or Val ue. settext (.tostr(rgbval, 16))
f!tbDecCol orVal ue. settext (.tostr(rgbval, 10))
fltbRed. settext(.tostr(red, 10))
fltbGeen.settext(.tostr(green, 10))

f1tbBl ue.settext(.tostr(blue, 10))

f! sbRed. set backgr oundr gb(r ed)

52

Finishing the Color Lab Program

f1sbG een. set backgr oundr gb(green * 0x100)
f1sbBl ue. set backgr oundr gb(bl ue * 0x10000)

if ignorescrollbar !'= "red"

f1sbRed. setscrol | (position=red)
end if
if ignorescrollbar !'= "green"

f1sbG een. setscrol | (position=green)
end if
if ignorescrollbar != "blue"

f1sbBl ue. set scrol | (position=bl ue)
end if

f1rBorder.setrgb(rgb=rgbval)
end function

What this function does, is to take the final color value and then use it to set the value of al the other
controls. While playing around with this, it was noticed that setting the position of a scrollbar that had
caused the event resulted in astrange flicker, so an extra parameter was created that isignored by the other
functions, but which is passed by the code that handles the scrollbar events. That let's the function choose
not to set the scroll position for the scrollbar that is passed. Other than that, the function isfairly basic. It
takes the color value that comes as an RGB value and splitsit into the red, green, and blue values. It then
assigns the value to each of the edit controls. It also uses theindividual color valuesto set the background
color for each of the scrollbars, as well as being used to set the position of the thumb in the scrollbars.
Finally, it setsthe color of the rectangle to that of the color passed.

The next two functions are quite similar, but different enough to deserve different function implementa
tions. In each case, the functions retrieve the current value of the control, convert it to a value, force the
value to be within avalid range, and then they each call theadj ust f or ntol or val s() function.

Example5.4. The Codefor thehexval _ol f () and decval ol f () Functions
function hexval ol f(wxfornedittext ne)

i nt eger rgbval
string hexcol or

hexcol or = me. gettext ()

hexcolor = .if(hexcolor <= "", "0", hexcol or)

rgbval = .toval (hexcol or, nohexdi gits(hexcol or), 16)
rgbval = .max(.m n(Oxffffff, rgbval), O0)

adj ust f orntol orval s(ne. form rgbval)
end function

function decval ol f (wxfornedittext ne)
i nt eger rgbval
string deccol or

deccol or = ne. gettext ()

deccolor = .if(deccolor <= "", "0", deccol or)
rgbval = .toval (deccol or, nodigits(deccolor), 10)
rgbval = .max(. m n(Oxffffff, rgbval), O0)

adj ust forntol orval s(ne. form rgbval)
end function

53

Finishing the Color Lab Program

There are two special function callsin the previous code, nohexdi gi t s() andnodi gi t s() . Eachis
designed to extract all of the characters of a specific type, either normal digits or the normal plus hexadec-
imal digits. The result is passed to the . t oval () function as the characters to ignore when converting
the value.

The next task is to handle the events for the individual color values. As mentioned earlier, these will,
in fact, be exactly the same code in each case, since the change to any one color value still requires all
the color values to be read. All the event handlers will call the exact same function, which we will call
handl eonecol or change().

Example 5.5. Handling the Eventsfor the Color Edit Controls

function handl eonecol or change(wxf orm f)
i nteger red, green, blue, rgbval
string col or

color = fltbRed. gettext()
red = .toval (col or, nodigits(color), 10)
red = .max(0, .m n(255, red))

color = fltbG een. gettext()

green = .toval (color, nodigits(color), 10)
green = . max(0, .m n(255, green))

color = fltbBlue. gettext()

blue = .toval (col or, nodigits(color), 10)
blue = . max(0, .m n(255, blue))

rgbval = cal crgbval (red, green, blue)

adj ust f orntol orval s(f, rgbval)
end function

function redval ol f (wxfornedittext ne)
handl eonecol or change(ne. form
end function

function greenval ol f (wxfornedittext ne)
handl eonecol or change(ne. form
end function

function blueval ol f(wxfornmedittext mne)
handl eonecol or change(ne. form
end function

function cal crgbval (i nteger red, integer green, integer blue)
i nt eger rgbval

rgbval = blue * 0x10000 + green * 0x100 + red
end function rgbval

Thefinal piece of the puzzle isto handle the events for the scrollbars, and this next piece of code doesthat.
Again, all three have much in common, so they all call one common routine called doscr ol | bar s() .

Finishing the Color Lab Program

Example 5.6. Handling the Scroll Bar Events

function getcurrentcol orval s(wxformf, integer red, \
i nteger green, integer bl ue)
red = flsbRed. position
green = flsbG een. position
bl ue = f!sbBl ue. position
end function

function doscroll bars(wxformf, string ignorescroll bar)
i nteger red, green, blue, rgbval

red = 0; green = 0; blue =0

getcurrentcol orval s(f, red, green, bl ue)

rgbval = cal crgbval (red, green, blue)

adj ustforntol orval s(f, rgbval, ignorescrollbar)
end function

function redscroll _os(wxfornscrol |l bar me, string scrolltype)
doscrol | bars(me.form "red")
end function

function greenscroll _os(wxfornmscrol |l bar ne, string scrolltype)
doscrol | bars(me.form "green")
end function

function bluescroll _os(wxfornmscrollbar me, string scrolltype)
doscrol | bars(me.form "blue")
end function

Thefirst function in the previous chunk of codeis called by thedoscr ol | bar s() function to retrieve
the component color values from the position property of each of the scrollbars. Since we set the range of
the scrollbarsto 256 and the thumb size to 1, that means that the range of valid positionsisfrom 0 through
255. Once the component values have been retrieved, it callsthe cal cr gbval () function that is also
called by the handl eonecol or change() function.

Finally, here is the code for the two functions mentioned earlier for extracting the valid digits from the
string passed.

Example5.7. Extracting the Digitsfrom String Values

function nodigits(string s)
end function s-"0"-"1"-"2"-"3"-"4"-"5"-"6"-"7"-"8"-"9"

function nohexdi gits(string s)

end function s-"0"-"1"-"2"-"3"-"4"-"5"-"6"-\
t7t-"gt-"9t-"at-"b"-"c"-"d"-\
“e"-"f"-"A'-"B'-"C'-"D'-"E'-"F"

55

Summary

Summary

In the preceding section we have learned to design abasic form using the Form Designer, including setting
default values, using system theme colors, and working with the sizing and alignment tools. We have al'so
saved that form in the new XML-based form format and also as SIMPOL source code. We have worked
with included source files and SIMPOL language libraries. Finally, the resulting form was incorporated
in aproject that used a dialog to host the form and then waited on events, which were then handled by the
program code. We also validated the input that was entered.

This sort of program component is a common requirement for more complex applications, where any

number of similar dialog-style user-interface components will be needed to ensure a user-friendly experi-

ence. This sort of program is a stepping stone to the type of project discussed in the next chapter, which

is considerably more complex.

e e Deomal Color Value [16239247
rea [« N |

wen [22 < [R ' |
we [« | |

oK

The final working SIMPOL Color Lab program.

56

Chapter 6. GUI-Style Database
Programs

Introduction

Database programs with agraphical user interface (GUI) are avery common type of application. In many
cases, this is the only type of application that some people may need to create, though if the package
becomes complex, it may well use quite anumber of dialogsto get input from users. In thischapter, wewill
cover the basics of building a database-based graphical program to provide a starting point for building
more complex systems of this nature.

@ Tip
Before reading and getting heavily involved in this chapter, it isa good ideato at |east read
through Chapter 5, Dialog-Style Programs. Many of the techniques for working with the
Form Designer are covered in that chapter.

In this chapter we will build a basic contact manager. This will be a program that manages an address
database using a form hosted in a window. We will also use atool bar for selecting records, and a menu
with asmall set of items. The stepsto follow in creating this application are:

1. Create the database
2. Createtheform
3. Build the application code

In essence, thisis not very dissimilar to the steps followed to create the dialog-style application, except
first we need to create the database. So, let's get started!

Creating the Project

Just as we did in Chapter 5, Dialog-Style Programs, it would be a good idea to create the project first,
since that will provide us with a location for storing the components of our project that we are creating
using Superbase NG Personal. Start the SIMPOL IDE and onceit is running from the menu, select File —
New Project. In the dialog window that appears, select an appropriate location for the project, and give it
the name addr essbook. Then click on the OK button to create the project. Take note of this location,
wewill useit save our new database in amoment, plus our form design later. For now, minimize or close
the IDE;.

Create the Database

In many cases, a database is a complex set of related tables, each containing a specific set of information
and also fields which link to other tables. In this example, we only really need one table for now, the
"Addr ess" table. To create this table, we need to start up Superbase NG Personal. Once it is running,

select File - New — Table.... That will display the data sourcedialog. Since no data sourcesare currently
open, the combo box with the list of data sources will be disabled and the list of tables will be empty. In

57

Create the Database

the New *.sbm File Name box enter the location of your project's bi n directory, plus addr ess. sbm
and in the Table Name box enter Addr ess.

Select datasourc
Data Source List
[ew s =] Open..
Table List
New ° sbm File Name
|x \simpol\projects 't fodal addresshoak bin'\address sben -
Table Name
|-f\dm=ss
OK Cancal

The Superbase NG Personal New Database dialog.

Now click on the OK button to create the database container and to display the dialog window where we
can define the table.

Table Name: Address - X .sbm
Field Mame Data Type | Index Type | Index Max Chars Index Algarithm Shareahls Share Name e Add Field

The Superbase NG Personal Database Table Definition dialog.

To add afield, just click on the Add Field button. The first field we will add is the Addr ess| D field.
Enter that text into the box and click on the OK button. The screen will look like the one below:

Table Name: Address - X .sbm
Field Mame Data Type |Index Type | Index Max Chars Index Algarithm Shareahls Share Name
v | AddressD string true AddressiD

Delete Field
Display Format

58

Create the Database

The updated Superbase NG Personal Database Table Definition dialog.

The default data type for anew field in an empty table is string (text). We will change this after we have
added a number of other fields, since the fields inherit the data type and other characteristics from the
currently selected field. For now add the next field, Fi r st Names, which will contain the first and any
middle names or initials. Now move the scrollbar at the bottom to the right, to expose some more columns.
The three columns named Shareable, Share Name, and Share Type are specific to using the multi-user
database support, and can be ignored for now. The default assignments tend to be adequate. The Display
Format column is used for more than one purpose. It is used as part of the multi-user database engine,
but it is also used to supply the desired display format in the data-aware form environment. It is currently
set to 4000 (which happens to be the maximum length of a text field that can be accessed via the PPCS
protocol used for the current multi-user support. Change that to 30. This column will be the only one we
need to change as we go through them later, but by changing this one now, we may have less to change
later. See the image that follows.

Database Table Definition

Table Name: Address - X\simpohprojects\tutoriahaddresabookibinladdress sbm

Sharesble | Share Name Share Type | Display Format Help Text - Add Field
true AddressiD iy 4000 L

w | true Firsthames ™T Dedede Fieid

Dispiay Format

oK

Apply

The Display Format column in the Database Table Definition dialog.

@ Note
The SBME database format does not actually have any limitations on the size of atext col-
umn, or an integer, etc., but since the initial multi-user support was designed to be 100%
compatible with Superbase's PPCS protocal, it has the exact same limitationsaswell. A later
version of the protocol that is not intended to be Superbase compatible is planned, and will
support all SIMPOL datatypesintheir full capabilities. Also, the database engine only stores
what isthere, it uses variable length fields to only take up the space it must.

Now add the rest of the fields, if the currently selected field isthe Fi r st Nanes field, then the length of
30 will also be inherited. When you get to the Addr ess1 field, change the length to 50, and then make
surethat is selected when adding the rest.

* Surname
* Addressl
» Address2
* Address3
* Address4

» City

59

Create the Database

* Region
* Postcode
» CountryCode

» Telephone

* Fax
e Email
e Remarks

Now that that isfinished, go through and changethefield lengthsto 25 for Post code, Tel ephone, and
Fax, 80 for Emai | , and 2 for Count r yCode. Now set the Remar ks field to 4000 R, which allows
for new line characters within the field content. The Display Format column should look like this:

Database Table Definition ===
Tabile Name: Address - X\si i .8bm
ex Algarithm | Sharesble | Share Name Share Type | Display Format Help Text - Add Fielt

. true Addressi ™T g -
true Firstiames. ™ 30 Delete Fieid
true Surname ™1 30 -
true Addresst ™ 50 A |
true Address2 T 50 oK
true Address3 ™ 50
true Adaressd ™1 50 Apply
true Ciy ™r 50
true Region T 50 Cancel
true PostCode ™7 25
true CountryCode ™r 2
true Tekephone ™1 25
true Fax ™r 2
true Emai ™T 80
true Femarks ™ 4000 R

M

The Display Format column after updating the format entries.

Now scroll back to the left and select the cell for the Addr ess| D Data Type column. Click again to drop
down the selection box, as shown below, and pick i nt eger . Then pick the cell in the next column, Index
Type, and click again to drop down the selection box, and pick uni que as the index type, then click on
the next cell to see the results. It should look like the following:

Database Table Definition ===
Table Name: Acdress - X:\sk l sbm
Field Name Data Type Index Type | Index Max Chars Index Algorithm Shareable Share Name = Add Field

v |AddressD integer unique nul 58 Compatibie true AddressD L
FirstNames siring true FirstNames i Delete Fisid
Surname siring true Surname I s =
Addressi siring true Addressi A |
Address? siring true Address? oK
Address3 siring true Addressd
Addressd siring true Addressd I Apply
Ccity string true city
Region siring true Region § Cancel
Postcode sirng true PosiCode
CountryCode siring true CountryCode
Telephane siring true Telephone
Fax string true Fax
Email siring true Email
FRemarks siring true Remaris

The Addr ess| Dentry after changing the data type and adding an index.

60

Building the Form

Finally, change the display format from the huge list of 9s to something a little more friendly and clear,
such as six O's, either directly or viathe Display Format button. Now click on the OK button to save the
table definition off. The final result should now be shown in Superbase NG Personal in Record View, as

shown here:
= impalproj i bin\address.sbm - SIMPOL Personal [| e
File Edit Yiew Data Lhilities Options Windew Help
|Address x| |addresstn LLﬂLﬂﬂJJ
AdelressiD |
Firsthames
Sumame
Address 1
Address2
Address3
Address4
Oty
Regan
Postcode
CountryCode
Telephane

Superbase NG Personal after saving the table definition for the Addr ess table.

Building the Form

Now that our basic database table has been created, it istimeto create aform so that we can manage the data

effectively and for creating our application. Select File -~ New — Form... from the menu to create a new
form. Then double-click the left mouse button and sel ect the Use system col ors check box and click on OK.

Thistime, we are going to add a number of controlsin one step. Select the edit control tool from the tool

bar, or choose Draw - Editable Text from the menu, and then starting roughly in the center of the form
horizontally and near the top vertically, drag arectangle and then let go. In the Properties dialog, select the
Data Table combo box and from there, select the Addr ess table entry. Then drag select the entries from
Fi r st Nanes through Post code. Then while holding the Ctrl key depressed, also select the entries:
Tel ephone, Fax, Emai | , and Remar ks. When all are selected, click on the check box below thefield
list entitled: Create field label. The window should look something like this:

61

Building the Form

Fant. M5 Shell Dig 2;8;n;:n; ¥ Create field label
[AsBbCDdeer faghh 123456 7850 Algnment
left >
™ Horizontal scrolbar
Events [e
Ll |* I Readony
oy |] I Pesword e
orostoas | M et |
anmouse -
. n | b
onmousemask
0000 1 OMM_LEFTETNDOWM -
Che00Z OMM_LEFTETNUP @
0x0004 OMM_LEFTETNDELCLK
0%0010 OMM_MIDDLESTNDOWN -
o] o |

The Properties dialog selecting multiple fields for the edit control.

Now click onthe OK button. On theform, atext control for thelabel and an edit control for the content will
be created for each selected field inthelist. They are al created with the same foreground and background
colors, so the text controls will need to be adjusted.

[oo ot |)| i @ | = | B CB| 28| 0| = = | /| O AIO|O

Firsthlames [
Surname [
Address1
Nﬁ'ssz[
Nﬁ'ss][
Nﬁ'ﬂ[
o[
Region [
Pm&[
qu:hrn[
Fax [
e
Remarks [

The form after adding multiple controls at once.

To resolve this, click and drag a rectangle around only the label controls. Once al have been selected,
click with the right button and from the menu select the Graphic Properties item. In the dialog window,
change the Background Color entry to CLR_BTNFACE and then click on the Set Back Color button. Now

Building the Form

change the Text Color entry to CLR_BTNTEXT and click on the Set Text Color button. Click on either
the Cancel or the Close gadget to exit.

Now we can position the content, and add the remaining fields. The Addr ess| Dfield content is meant to
be created programmatically, soit should be added as abound text control instead of an edit control. Create
thelabel and content as separate steps. Movethelabelsand edit control sinto position by selecting the group
and then grabbing the widget at the center (it may not be visible, but the cursor will change appropriately).
For the Count r yCode field add a combo box control. In the dialog, select the Count r yCode field
from the Bound Field list.

Mame [combobexsz
Teoltp [

Left 83 Top 224 Diata Table
wdth [160 Heght [21 Bound Fieki [City

¥ visbie W Enabled

¥ Use System Colors

sscgrownd cor [armoon][]

Text Color [vmoowre] [}
Font M5 Shell Dig 2;8:n;n;

| AZBbCcDdEeFfagHh 123456 7830

Events

Contents...

Function Name
anfil
angotfocus
onlostfocus
ormouse

enmousemask

0oc000 1 OMM_LEFTETNDOWM
03002 OMM_LEFTETHUP
0x0004 OMM_LEFTETNDELCLK.
0x0010 OMM_MIDDLEBTNDOWN

The Properties dialog for the combo box control.

Now click onthe Contents... button. Intheresulting dialog window, fromthe List Source Type combo box,
select the st at i ¢ entry. Now in the blank edit control at the bottom of the list, add the value Canada,
then click on the Insert button. Continue with the values: Fr ance, Ger many, | t al y, Spai n, Uni t ed
Ki ngdomand Uni t ed St at es. Alsoclick onthecheck box entitled: Assign alternate valueif selected.
Now in the Vaue List Contents section, add the following values in the same way as before: CA, FR, DE,
| T, ES, GB, and US. The dialog window should look similar to this:

List Source Type ™ SortList

statc b ¥ Assign alternate value if selected

Value List Contents

A
I FR Ingert
e
Change g‘r Change
35 Delete

The List Contents dialog for the combo box control.

The only change remaining isto sizethe Remar ks control larger, and then double-click on it and tick the
Multiline check box so that formatted text can be added into the control. After rearranging the controls, and
resizing theform (assigning the name addressform to both form and page names), the screen lookslikethis:

63

The Program Code

File Edit View Draw Define Help

[N || |)| | @ | < | EB|EB| 8| 0| = | /|CYAOIO|

Address ID AddressID.A

Frsthames [

The final look of the form.

To make things a bit more friendly, we will want to put the focus into the first field when a new record
is created, and to make that easier, we should give the dataformledit control a more useful name, so
double-click on that and change the control nametot bFi r st nanes. Now click the OK button.

The final bit of tweaking is to modify the tab order. Every single control is part of the tab order, sincein

SIMPOL, the tab order and the z-order are the same. Click on the Define — Tab Sequence item and the
list of controls will be shown with their names. Now we haven't bothered to assign special names to the
controls this time, so the names won't be terribly meaningful, but as the controls are selected in the list,
a colored border is placed around each item on the form. Multiple controls can be selected at once, and
moved as a block up or down. Use this tool to arrange the controls in the order desired. Any changes are
not permanent until the OK button is clicked. Save the form as a form (not a program) into our project
source directory, which is the directory of the same name as the project below the root project directory.
So if the project is called Addr essBook, then it will be in a directory called Addr essBook and that
will have two subdirectories, bi n and Addr essBook. The second of these is the source directory.

WEell, so far so good. The form has been created and we are ready to start diving into the code, which we
will do in the next section.

The Program Code

The good newsisthat thereisn't actually much program code to write. In fact, thisexampleis provided in
theProj ects\tutori al \ addr essbook directory, as are the other samples from this book if they
are not found elsewhere. The other good news is that if you were building a different application, you
would still have very little coding to do, since the pieces that make up the addr essbook project can be
used as the basis of any database-based GUI project.

Themai n() Function

In this chapter, we won't go into all the program code, instead we will work with the main pieces that are
affected. For the full story, there is no substitute for opening the actual project and reading through the
source and the comments there.

The mai n() Function

Themai n() function of the program is where the code execution begins. When it exits this function the
program should normally end (unless there are still separate threads running that have not yet exited).

Example6.1. Themai n() function of the program

function main()
addr essbookappl i cati on app
appw ndow appw
string cd, fornfil enane, dirsep
i nteger e
wxmenubar nb
wxt ool bar tb
wxst at usbar sb
point It, br
syscol ors col ors

di rsep = getdirectorysepchar()

cd = getcurrentdirectory()

fornfil ename = cd + dirsep + "addressform sxf"
colors =@syscol ors. new()

e =0
nb =@ mai nnenu()
if nb '@ .nul
sb =@ wxst at usbar . new(err or =e)
if sb '@ .nul
tb =@ bui | di conbar (col ors)
if tb '@ .nul
app =@ addr essbookapplicati on. new(nb, tb, sb, "", "")
if app ! @ .nul
appw =@ app. wi ndows. get first()
if not fileexists(fornfil enane)
wxmessagedi al og(appw. w, "Form file 'addressform sxf' \
not found", sSAPPMSGTITLE, "ok", \
"error")
el se
appw. openf orndi rect (fornfil enane, sAPPNMSGII TLE)
if appw.form! @ . nul
pr epaddr essbookf or n{ appw)
appw. r esi zewi ndow of or n()

It =@ poi nt.new 0, 0)

br =@ poi nt. new(0, 0)

get cent er edwi ndow ect (appw. out erwi dt h, \
appw. out er hei ght, It, br, \
error =e)

if e ==

65

The addressbookapplication Type

appw. setposition(lt.x, It.y)
end if
appw. set cur r ent pat h(cd)
sel ectrecord(appw, "selectcurrent”, silent=.true)
appw. w. set st at e(vi si bl e=. true)
app. run()
end if
end if
app. exit ()
end if
end if
end if
end if
end function

Starting from the top, we declare a variable of type addressbookapplication (more on that later), plus a
variable of type appwindow. The appwindow typeisprovided by theappf r amewor k. sl library. The
other variables should be relatively self-explanatory: menu bar, tool bar, and status bar. The point is used
for centering the window on the display.

After initializing the path namefor theformfile, the program attemptsto create the menu bar, the status bar,
and the tool bar. If all of those are created successfully (and they should be), the app variableis assigned
the newly created addressbookapplication object. Assuming it was created successfully, we retrieve the
first (and currently only) appwindow object and open the form file we created earlier. Assuming that
worked correctly, we prepare the form (by assigning certain event handlers), then we resize the window
to fit the form, center the window on the display, and reselect the current record (which helpsif there are
form-based cal cul ations that need to be recal culated now that the event handlers might bein place. Finally,
we enter ther un() method of the addressbookapplication object.

The addressbookapplication Type

In the design of this program, akey component is the addressbookapplication type. So let'slook at it:

Example 6.2. The addressbookapplication type

type addressbookapplication (application)
ref erence
application _ app resol ve
type(dblt abl e) address

end type

That doesn't really explain much, but that is because this is an enhancement to the application typethat is
supplied by the appf r amewor k. sm library. Let's have alook at that one now too:

Example 6.3. The application type

type application (application) export
enbed
string title
dri ng wi ndows
dri ng dat asources

66

The addressbookapplication Type

bool ean runni ng
string inifil enane
i nt eger ostype

event onexitrequest
ref erence
type(*) _
type(*) __ resolve

wxbi t map Wi ndowi con
ppcst ypel ppcs

sysi nfo system nfo

| ocal ei nfool d SBLI ocal e
| ocal ei nfo | ocal e

t di spl
functi
functi
functi
functi
functi
functi
functi

end type

ayformats di spl ayf ormats
on run

on exit

on adddat asour ce

on cl osedat asource

on dat asour ceunused

on finddatasrc

on opendat asour ce

There, that's a little more meaty. On closer examination we can discover the r un() method listed in
the type. That is the main loop for the application framework. The program sits in that function all the
time waiting for events. Theexi t () method is not used. The rest are used to open, find, and close data
sources. As long as the running property is set to . t r ue, the program will remain in the main loop in

therun()

K

method.

Note

So why did we bother to create our own type, why not just use the application type asit is?
In the current example it wasn't absolutely necessary. However, it turns out that it is useful.
When we created the table we also set up one field as a unique index, and we will need a
way of creating that value (SIMPOL does not currently do that for us). During the function
that will handle the onnewrecord event, easy access to the addr ess table will make the
code easier to write.

Therefore, we created our own type, placed an application property into it and made it r ef-
erence (so that we haveto initializeit), and resolve (so that its properties resolve as proper-
ties of the addressbookapplication object). Since we declared the application type asresolve,
we can also declare the addressbookapplication type to have atype tag of appl i cati on.
This alows variables to be declared like this: t ype(appl i cat i on), which means they
can contain any variable that is tagged with the appl i cat i on tag. Good design dictates
that we should then make sure that anything tagged this way can be used as if it were the
application type.

Now we should look at the most significant function here, the new() method of the addressbookapplica-
tion type. That is where the mgjority of the initialization takes place.

Example 6.4. The Codeto Create a New addressbookapplication

67

The addressbookapplication Type

function addressbookapplicati on. new(addr essbookappl i cation nme, \

wxmenubar nb, wxtool bar tb, \
wxst at usbar sb, \
string iconnane, \
string iconi magetype)

appw ndow appw

dat asourcei nfo src

type(dbltabl e) t

i nteger e

bool ean ok

ok = .false

e =0

me. __app =@ appl i cati on. new appi confi |l e=makenot nul | (i connane), \
i coni maget ype=\
makenot nul | (i coni maget ype), \

inifilename="", apptitle=sAPPTI TLE)
nme. __app. __ =@ne
nme. onexi t request. function =@exit
me.running = .true

appw =@ appw ndow. new(ne, vi si bl e=.fal se, nb=nb, tb=tb, sb=sb)
if appw =@ . nul

wxmessagedi al og(nessage="Error creating wi ndow', capti ontext=\

SAPPMSGTI TLE, style="ok", icon="error")

el se

i ni t mai nmenu(appw. nb, mne)

appw. onmanagemnmenu. f uncti on =@ nanagenenu

i nittool bar (appw. tb, appw)

appw. onnmanaget ool bar . functi on =@ nanaget ool bar

src =@ ne. opendat asour ce("sbnmel", "address.sbni, appw, error=e)
if src =@ . nul
wxmessagedi al og(appw. w, "Error opening the address.sbm\
file", SAPPMSGII TLE, "ok", "error")
el se
t =@ appw. opendat at abl e(src, "Address", error=e)
if t =@ .nul
wxmessagedi al og(appw. w, "Error opening the 'Address’' \
tabl e", sAPPMSGTI TLE, "ok", "error")
el se
nme. address =@t
ok = .true
end if
end if
end if

i f not ok
me =@ . nul
end if
end function ne

Starting from thetop, thefirst thing the code doesis create anew application object and assign the reference
tothat objecttotheme.__app property. That ensuresthat all of the propertiesand methods of the application

The Remaining Initialization Code

object are also available as part of the addressbookapplication type. The next rather arcane looking bit is
the assignment of areferenceto the e variabletothe _ (double underscore) property of the application
object that we just created. This somewhat circular reference is quite important, since it means that all of
the properties of the wrapper addressbhookapplication object are also available to the application object.

That is abit convoluted, but in practiceit isfairly easy and powerful. To understand it, it helps to under-
stand the problem it solves. When an event occurs that is associated with the application object, only the
application object is passed to the event handling function. If the function needs access to the wrapper
object, it needsaway to get to that. Although it would be possible to pass the wrapper object asthe optional
reference parameter, that may be needed for something else. By assigning areference to the wrapper object
to the underscore or double-underscore property, the function can have full access to the capabilities of
the wrapper object.

@ Tip

The single and double underscore properties are part of most SIMPOL complex data types.
They were added to allow the user to add their own information to an existing type. Both
properties are r efer ence properties (they refer to an object), but the double underscore prop-
erty is also marked as resolve, which means that whatever object is assigned here will take
part in the resolution of the dot operator. What that meansin practiceisthat avariable called
app that refers to the application object portion of the addressbookapplication object, will
still be able to reach the address property of the addressbookapplication. Please note that the
IDE will not be able to show this, since it happens at run time.

Returning to our initialization code, we assign a function to handle the onexitrequest event, which will be
caled if there are no more visible windows (this is part of the application object). The running property
issetto. t rue (setting thisto . f al se will cause the program to initiate shutdown), and then the initial
window of the program is created. To that we pass the menu bar, tool bar, and status bar objects that we
created earlier in the program code. We are creating the window invisibly, since we won't show it until
later once the form has been loaded.

Once we have successfully created theinitial window, wethen initialize the menu and tool bars, and assign
afunction to handle the onmanagemenu and onmanagetool bar events of the appwindow object. These are
called whenever something has been done that might warrant a change to the menu or tool bar state, such
as opening aform, creating a new record, closing atable, etc.

Finally we open the data source (our addr ess. sbmfile) and the data table (Addr ess). The first is
opened viaamethod of the application object, since data sources are managed at the application level, and
thetableis opened by the appwindow object, since tables are managed at the window level (the framework
isdesigned to allow each window to open its own table objects). Finally we assign the table to the property
that we defined for it in our wrapper type; the remainder of the function is self-explanatory.

The Remaining Initialization Code
The rest of the program code is mainly the definition of the menu and tool bars, plus the code to handle
the events that have been defined. We will look briefly at the code that creates and initializes the menu
and tool bars.
Example 6.5. The Code for the Menu Bar
function mai nnenu()

wxnmenubar b

nb =@ wxnenubar . new()

69

The Remaining Initialization Code

// This section creates the File nenu.
wxmenu fil emenu

filemenu =@ wxnenu. new()
filemenu.insert("","E&it", name="exit")

/1 This section creates the Data nenu.

wxnmenu dat amenu

dat anenu =@ wxmrenu. new()

dat anenu. insert("", "&Add{9} Ctrl| +N', nane="add")

dat anenu. i nsert("", "&Save{9}Ctrl +S", name="save")

dat anenu.insert("","&Del ete{9}Ctrl| +Del ", nane="del ete")

/1 This section creates the Hel p nmenu.

wxmrenu hel pmenu

hel prenu =@ wxmenu. new()

hel prenu. insert("", " &About " + sSAPPTITLE + "...", nane="about")

nb.insert(filemenu, "&File", nane="file")

nb. i nsert (dat amenu, "&Data", nane="data")

nb. i nsert (hel pmenu, "&Hel p*, nane="hel p")
end function nb

Creating amenu bar isnot particularly complicated, aswe can see here. Inthis particular case, the definition
of the functionality for handling the events when a menu item is selected has not yet been included. This
is deliberate, since it allows us to create the menu bar before the window even exists. Later, when the
window has been created, we will call thei ni t menubar () to add the handlers for the events, plus the
reference object for each event.

The code here should be fairly clear. We create an empty wxmenubar object. Then we create the top level
wxmenu objects and proceed to fill these with entries. Once all the top-level menus have been created,
they are added to the menu bar. Finaly, the function returns the newly-created menu bar object as its
return value.

Now that the menu bar has been created, let's look at the code to initidize it.

Example 6.6. The Code for the Menu Bar

function initmi nmenu(wxnenubar nb, addressbookapplication app)
mb! fil e. nenu! exit.onsel ect.function =@ exi tvi anenu
nmb! file.menul exit.onsel ect.reference =@ app

nmb! dat a. nenu! add. onsel ect. functi on =@ new ecord
nb! dat a. menu! add. onsel ect . ref erence =@ app

nmb! dat a. nenu! save. onsel ect. functi on =@ saver ecord
nmb! dat a. menu! save. onsel ect . ref erence =@ app

nmb! dat a. nenu! del et e. onsel ect. functi on =@ del et erecord
nb! dat a. nenu! del et e. onsel ect . ref erence =@ app

nmb! hel p. menu! about . onsel ect. functi on =@ hel pabout
nmb! hel p. menu! about . onsel ect. ref erence =@ app
end function

70

The Remaining Initialization Code

In this function the Data menu events are al directed at standard functions from the
appf ramewor k. sm library. Theexi t vi amenu() function simply callstheexi t () function, and
the hel pabout () function merely displaysawxmessagedi al og() call. For full detailslook at the
source code.

Now let's have alook at the tool bar creation code. Like with the menu bar code, the references are added
afterwardsin thei ni t t ool bar () function, but unlike the menu bar, the functions are assigned during
the creation of the tool bar.

Example 6.7. The Codefor the Tool Bar

function buil di conbar (syscol ors systentol ors)
wxbi t map bnp, di sbnp
i nteger e
wxt ool bar thb
wxform f

e =0
tb =@ wxt ool bar. new(16, 16, error=e)

if tb @ .nul
f =@ conbos(syst entol ors)
if f '@ .nul
tb.insertformf, nane="fil ei ndexconbos")
end if

bmp =@ wxbi t map. new(" 16x16_sel first. png", "png")

di sbnp =@ wxbi t map. newm "16x16_sel first_di sabl ed. png", "png")

tb.insert(bnp, disbnp, enabled=. false, tooltip="Select first \
record”, name="tSel First")

tb!'tSel First.onclick.function =@selrec

bmp =@ wxbi t map. new(" 16x16_sel rwnd. png", "png")

di sbnp =@ wxbi t map. newm " 16x16_sel rwnd_di sabl ed. png", "png")

tb.insert(bnp, disbnp, enabled=.false, tooltip="Select \
rewi nd", name="t Sel Rwnd")

tb!'t Sel Rannd. oncl i ck. functi on =@ sel rec

bmp =@ wxbi t map. new(" 16x16_sel prev. png", "png")

di sbnp =@ wxbi t map. new " 16x16_sel prev_di sabl ed. png", "png")

tb.insert(bnp, disbnp, enabled=.false, tooltip="Select \
previ ous record”, nanme="t Sel Prev")

tb!'tSel Prev. onclick. function =@ sel rec

bnmp =@ wxbi t map. new(" 16x16_sel cur. png”, "png")

di sbnp =@ wxbi t map. new "16x16_sel cur _di sabl ed. png”, "png")

tb.insert(bnp, disbnp, enabled=.false, tooltip="Select \
current record", name="t Sel Curr")

tb!'tSel Curr.onclick. function =@ sel rec

bmp =@ wxbi t map. new(" 16x16_sel next. png", "png")
di sbnp =@ wxbi t map. newm "16x16_sel next di sabl ed. png", "png")

71

The Remaining Initialization Code

tb.insert(bnp, disbnp, enabled=.false, tooltip="Select next \
record”, name="t Sel Next")
tb!'t Sel Next.onclick. function =@ sel rec

bnmp =@ wxbi t map. new(" 16x16_sel f fwd. png", "png")

di sbnp =@ wxbi t map. newm "16x16_sel f f w d_di sabl ed. png", "png")

tb.insert(bnp, disbnp, enabled=.false, tooltip="Select fast \
forward", name="t Sel Ff wd")

tb!'tSel Ff wd. oncl i ck. functi on =@ sel rec

bmp =@ wxbi t map. new(" 16x16_sel | ast. png", "png")

di sbnp =@ wxbi t map. newm "16x16_sel | ast _di sabl ed. png", "png")

tb.insert(bnp, disbnp, enabled=.false, tooltip="Select |ast \
record”, name="t Sel Last")

tb!'tSel Last. onclick. functi on =@ sel rec

bnmp =@ wxbi t map. new(" 16x16_sel key. png", "png")

di sbnp =@ wxbi t map. new "16x16_sel key di sabl ed. png”, "png")

tb.insert(bnp, disbnp, enabled=.false, tooltip="Select a \
record by val ue", nane="t Sel Key")

t b! t Sel Key. oncl i ck. function =@ sel rec

/[l Enable these if the formhas nmultiple pages; the
/'l changepage() function is al ready provided

/1 bmp =@ wxbi t map. new(" 16x16_pagepr ev. png", "png")
/1 di sbnp =@ wxbi t map. newm " 16x16_pagepr ev_di sabl ed. png", "png")
/1 tb.insert(bnp, disbnp, enabl ed=.false, tooltip="Show \

/1 previ ous page", nane="t PagePrev")
/1 t b! t PagePrev. oncl i ck. functi on =@ changepage
/1

/1 bnmp =@ wxbi t map. new(" 16x16_pagenext . png", "png")
/1 di sbnp =@ wxbi t map. newm "16x16_pagenext _di sabl ed. png", "png")
/1 tb.insert(bnp, disbnp, enabl ed=.false, tooltip="Show next \
/1 page", name="t PageNext")
/1 t b! t PageNext . oncl i ck. functi on =@ changepage

end if
end function tb

Aswith the menu bar creation code, the tool bar codeis also not particularly complex. The basic approach
is to create the empty tool bar, and then add the tools into the tool bar in the order they should appear.
Since the very first things that are shown are the table and index combo boxes, and since these are not
native tools for the tool bar, they are added by creating a form to host them and then the form is inserted
into the tool bar. Following on from there, the tools used for selecting records are al added to the tool bar.
Each tool uses two images, one showing what it looks like when it is enabled, and another for when it is
disabled. All of the selection functions use the same event handling function, called sel r ec() . Thefinal
two items are disabled here, since thereis only one page in the form in this example.

The code that creates the combos is very straightforward. It uses a function to create the form and return
it tothe caler.

Example 6.8. The Codefor the Tool Bar Combo Boxes

72

The Remaining Initialization Code

function conbos(syscol ors systentol ors)
wxform f
wxfont fontl
t ype(wxforncontrol) fc
sysrgb bt nface, conboback, conbotext
i nteger e

e =0

fontl =@wxfont. new("Ms Sans Serif", 9, error=e)
bt nf ace =@ syst entol ors. col or s[COLOR_BTNFACE]
conboback =@ systentol ors. col or s[COLOR_W NDOW
conbot ext =@ syst entol ors. col or s[COLOR_W NDONTEXT]

f =@ wxform new(w dt h=311, hei ght =24)
f . set backgr oundr gb(bt nf ace. val ue)
fc =@f.addcontrol (wxfornconbo, 1, 1, 150, 19, \
edittype="droplist", nanme="cbFiles")
fc. onsel ecti onchange. functi on =@t ool bar conboevent s
f c. set backgr oundr gb(conboback. val ue)
fc.settextrgb(conbotext. val ue)
fc.setfont (fontl)
fc.setenabl ed(.fal se)
fc.settooltip("Select the table to view')
fc =@f.addcontrol (wxfornconbo, 156, 1, 150, 19, \
edittype="droplist", name="cbl ndexes")
fc. onsel ecti onchange. functi on =@t ool bar conboevent s
f c. set backgr oundr gb(conboback. val ue)
fc.settextrgb(conbotext. val ue)
fc.setfont (fontl)
fc.setenabl ed(.fal se)
fc.settooltip("Select the current index for the current table, \
or none for sequential access")
end function f

As can be seen here, the form controls and the form use the system colors to ensure that they blend in with
the system colorsasmuch as possible. They also set tool tip values, likethetoolsin thetool bar codeearlier.

The last piece of this initialization code is the function that initializes the tool bar. It is quite similar to
that used to initialize the menu bar, except for the fact that it passes in the appwindow object instead of
the application object as areference. Thisis primarily because in the case of the tool bar the events more
often need fast access to the components of the appwindow object, whereas in the more complex menu
routines the application object can be more useful.

Example 6.9. The Codefor the Tool Bar Initialization

function inittool bar (wxt ool bar tb, appw ndow appw)
tb!'tSel First.onclick.reference =@ appw
t b! t Sel Rwnd. oncl i ck. ref erence =@ appw
tb!t Sel Prev. oncli ck. reference =@ appw
tb!'tSel Curr.onclick.reference =@ appw
t b! t Sel Next . oncli ck. reference =@ appw
t b! t Sel Ff wd. oncl i ck. ref erence =@ appw

73

Preparing the Form

t b!t Sel Last . oncli ck. reference =@ appw
t b! t Sel Key. oncl i ck. reference =@ appw

/1l Only uncomment these if the objects have al so been created above
[l tb!tPagePrev.onclick.reference =@ appw
/1 tb!tPageNext.onclick.reference =@ appw

tb!fil ei ndexconbos! cbFil es. onsel ecti onchange. ref erence =@ appw
tb!fil ei ndexconbos! cbl ndexes. onsel ecti onchange. ref erence =@ appw
end function

Since in the code that creates the tool bar the functions were already assigned, in this function there are
only a set of statements assigning the appwindow object as the reference for each event handler. As was
the case with the definition of the tool bar earlier, there are some lines commented out for working with
changing pages. These also need to be uncommented if the form has multiple pages.

Preparing the Form

One of the last things to be done, after initializing the program and opening the form, is to prepare the
form for one very important task. Thereis still a need when creating records to create the unique key, and
this will be done in the onnewrecord event of the dataform1 object. This section has two main parts, the
code that prepares the form, and the code that creates the unique key value.

Example 6.10. The pr epaddr essbookf or n() Function

function prepaddressbookforn{ appwi ndow appw)
datafornil form

form =@ appw. f orm
f orm onnew ecord. functi on =@ ab_onnew ecor d
form onnewr ecord. ref erence =@ appw

end function

Thisfunctionisvery short. It isused only to assign the function and reference to the event. The only reason
for separating it into afunction isthat later there may be other event handlers, as the application growsin
complexity, and this way there is already a place for them without overcrowding the mai n() function.
The more important part is the function that handles this event. Let'slook at it now.

Example 6.11. Theab_onnew ecor d() Function

function ab_onnew ecord(dataforml ne, appw ndow appw)
type(dblrecord) r
integer i, e
sbnelt abl e address

e =0
addr ess =@ appw. app. addr ess
r =@ addr ess! Addr essl D. i ndex. sel ect (| astrecord=.true, error=e)
if r =@ . nul
i addr ess. recordcount ()
i i+ 1

74

The Finished Product

el se

i = r!AddressID + 1

end if

nme. mast errecord. record! AddressI D = i
nme. refresh()

me! t bFi

rst nanes. set f ocus()

end function

This function is not particularly clever, and it shouldn't be used for a networked application, but in sin-
gle-user programsit will work just fine. What it doesisfairly obvious, it retrievesthe last record according
to the Addr ess| D field's index, and increments that value by one. It then refreshes the form and sets
focus to the control that is at the start of the tab order.

@

Tip

Creating areally powerful function for generating almost perfectly sequential numbersis a
fairly non-trivial exercise. Especially if the user can discard the record after creating it. Most
approaches use a database table to hold the serial numbers. Typically one record for each ta-
ble. Thisallowsthe standard |ocking mechanismsto be used to prevent multiple users getting
the same number. One approach isto only retrieve the value at the end, while saving, but this
can be problematic, especially if there are dependent records that need to have a matching
key value inserted. Another approach requirestwo tables, one for the serial numbers and one
for the numbers that have been discarded. It also requires code to handle the discard of a
record, so that the number can be placed in the discards table. The discards are then always
used first in preference to the main serial number table. In abusy system, there still might be
holesin the end of the sequence at any given point, however.

The Finished Product

After al of that work, when we finally run it it shows up looking like the image below:

7| SIMPOL Address Book Sample ===
File Data Help
Address AddressiD S HHd4ar»M?
Address ID 1
First Names 150 Telephone §1743-555555
SUrname Rgbinsan Fax (1743-555556
Address1 The Ramblings Email jack,robinson123@amail.com
Address2 123 Station Road Remarks
Address3
Address4
City shrewsbury
Region shropshire
Postcode gyq 1aC
Country | Unjted Kingdom -

The finished Address Book application

As we can see, everything is now in place. Making changes to the application would be as simple as
modifying the form or adding more forms and loading them based on button selections or menu or tool

bar items.

75

A Word About Linux

A Word About Linux

When moving an application to Linux, it isimportant to recognize that different fonts will be available.
Even more important though, is that some Linux window managers will change the fonts to the current
theme setting compl etely replacing thefontsthat are used intheform. Also, they may remove or not support
attributes like right alignment. As aresult, if you intend to produce a version that runs on both platforms,
you should either plan your fonts and design accordingly, or usetwo different forms, one for each platform
and design each using the fonts and font sizes for that platform. For example, on Windows the form was
designed with 8 point fonts. The font used was actually a placeholder name: "M S Shell Dlg 2", which will
become different fonts on different version of Windows. On Ubuntu Linux, the default font was Ubuntu
and the size was 11 points. The size, more than the font choice will impact the design, as seen below:

r

= SIMPOL Address Book Sample: EEE
File Data Help

|AddressiD T T M €« ap» M ?

Address 1

First Telephon (01743-555555]
Surname Fax (01743555556]
Address1[The Ramblings
Address: [123 Station Road
Address: |
Address¢ |
Cil:yI [Shrewsbury]
Region
Postcode
Country [United Kingdom | ~ |

Email [jack.robinson123@gmail.com]
Remarks

The finished Address Book application on Ubuntu Linux

The Ubuntu fonts can be installed on Windows as well, which makes the task of designing the form using
the Form Designer much easier. After some basic adjustments, including modifying the code that creates
the combo boxes in the tool bar to increase the font size if the OS is not Windows, the new result on
Ubuntu Linux can be seen below:

=) SIMPOL Address Book Sample BEE
File Data Help

AddressID v M W4 a DM ?
Address ID 1
First Names Telephone [01743-555555]
Surname Fax (01743-555556 |
Address1 [The Ramblings] Email jack.robinson123@gmail.com
Address2 (123 station Road | Remarks
Address3 (|
Address4 (|
City [shrewsbury |

Region Shropshire
Postcode sY1 1AC

Country [United Kingdom | v |

The updated Address Book application on Ubuntu Linux

76

Summary

Summary

Inthischapter we have built adatabase container, and atableto hold our data. Wethen built aformto allow
usto perform easy data-entry. Finally, we wrapped the whole thing in some program code that createsthe
window, the menu and tool bars, and which can run as a standalone program and act as the basis for a
much larger and more complex system. Although we may choose to do some things slightly differently in
alarger or in a networked program, we now have a sound foundation on which to build.

More importantly though, by using the supplied sample application together with the
appf ramewor k. sm library, it is possible to quickly build a working prototype application with da-
ta-aware forms. The only areas that must be modified are;

» The name of the form being opened in function mai n()

e The name of the daa source and table being opened in method
addr essbookappl i cati on. new()

» The content of the function ab_onnew ecor d() (if required — otherwise remove the call to the
pr epaddr essbookf or n() from function mai n())

The following items should be changed as well for along-term project:
» The name of the addressbookapplication type should correctly reflect the application being built.

e Thepr epaddr essbookf orn{) andab_onnew ecor d() functions should be replaced with ap-
propriately named functions.

» Thehel pabout () function should show the correct information, and could be replaced with amodal
dialog.

Hopefully this chapter and the chapters up until now will have provided you with the tools that you need
to make a fast start in the world of SIMPOL programming. Like in a good book, there is something to
appreciate right at the start, but the more you investigate, the more there isto discover, if you wish to go
there. Post your investigations and questions in the online forum and as a community we can go there
together.

Advanced Topics

Now that you have gotten a basic single form and database table package running in single user mode, it
isworth thinking about where to go from here. There are a couple of steps that come next:

* Loading other forms
» Changing to a multi-user system

Loading other forms turns out to be fairly easy. The basic cdl s
appw. openf orndi rect (" myf orm sxf") . The framework takes care of therest. It isagood idea
to open all the required database tables during initialization of the application and ensure they are part of
the appwindow object.

Changing to a multi-user system is a bit more complicated. First the database tables need to be opened
and shared using a PPCS server. A sample server is included with Superbase NG. It is located in the
SIMPOL\ Utilities\sinpol server directory. Alsointhat directory isafilecaledr eadne. t xt .
That file discusses everything necessary to share the database files via PPCS. Once the files are shared,
the remaining change that is required is to open them using a PPCS data source.

7

Advanced Topics

i f bUSEPPCS
nme. ppcs =@ ppcstypel. new(udpport=. nul, error=e)
i f me.ppcs =@ . nul
wxmessagedi al og(appw. w, "Error starting PPCS', sAPPMSGTI TLE, \

"ok", "error")
el se
src =@ me. opendat asour ce(" ppcstypel”, "127.0.0.1:4000", appw, \
error =e)

if src =@ . nul
wxmessagedi al og(appw. w, "Error opening the PPCS server", \
SAPPMSGTI TLE, "ok", "error")

end if
end if
el se
src =@ ne. opendat asour ce("sbnmel", "address.sbni, appw, error=e)

if src =@ . nul
wxmessagedi al og(appw. w, "Error opening the address.sbmfile", \
SAPPMSGTI TLE, "ok", "error")
end if
end if

if src !@ .nul
t =@ appw. opendat at abl e(src, "Address", error=e)
if t =@ .nul
wxmessagedi al og(appw. w, "Error opening the 'Address' table", \
SAPPMSGTI TLE, "ok"™, "error")

el se
nme. address =@t
ok = .true
end if
end if

The above program listing assumes that a boolean constant called bUSEPPCS has been defined earlier in
the program. That is all that is required to switch the program to run as a multiple user system, other than
afully licensed database engine, though the 3-user license that is provided with Superbase NG for testing
should be sufficient while doing development.

78

Chapter 7. SIMPOL Business

Introduction

All of the chapters up until how have been leading to a more comprehensive, complex, but also more
realistic example of the kind of program people need to build in the average organization. This chapter will
have much lesstext and code, but for that it hasavery well documented exampl e program that demonstrates
many of the features required of a modern database-based application program.

@ Tip
Before reading and getting heavily involved in this chapter, it is agood ideato at least read
through Chapter 5, Dialog-Style Programs and Chapter 6, GUI-Style Database Programs.
Many of the techniques for working with the Form Designer and for creating database-ori-
ented programs are covered in those chapters.

In this chapter we will discuss the features and special techniques used in the SIMPOL Business example
program. This example consists of severa database tables, four forms, and both a Quick Report and a
Graphic Report. The basic design is atypical order entry system with the usual four tables plus a couple
of extras. Hereisalist of the database tables that are included:

* COUNTRY

+ CUSTOMER

+ ORDERDTL

+ ORDERMST

* PRODUCT

+ SERNO

The main tables are the CUSTOMER, ORDERDTL, ORDRMST, and PRODUCT. The COUNTRY table
isavery carefully designed tablethat containsall of the current world country names, 1 SO-3166 2-character
code, internet domain code, CEPT Code, capital city, currency code (3-letter), and the vehicle license
plate international 1D code. Only the country code is stored in the records from the CUSTOMER and
ORDERMST tables. The SERNO table contains arecord for each of the other tables, with the table name
as the unique key and the current serial number value as the only other field.

There are also the four forms, one each for the CUSTOMER, PRODUCT, and ORDERMST tables with a
detail block on the ORDERMST form containing the order lines from the ORDERDTL table. The fourth

form is used for creating and editing entries in the ORDERDTL table and is called from buttons on the
ORDERMST form.

Special Features

In comparison with the simpler Address Book example from the previous chapter, the SIMPOL Business
application adds a number of new capabilities:

» Switching forms and selecting arelated record in the target table

79

Working With the
dataformidetailblock

 Using preventfocusmode in an application to control user access to the data

» Using the onsave event to do calculations when saving a record and to hide some buttons and enable
others on the form

 Using the onchangerecord event to detect entering data-entry mode to disable and show buttons on the
form

» Using the ondelete event to ensure that all the related detail records in ORDERDTL can be deleted
before allowing the record in ORDERMST to be deleted

» Adding, editing, and deleting records in adetail block
» Using a Graphic Report for an invoice
» Using a Quick Report as a sales report

» Using a labels definition to output customer mailing labels, includig using a call to the new
choi cel i st di al og() for the output destination

* Integrating record view, tableview, form view, field selection lists, thefilter GUI, and the Quick Report
GUI

 Getting the user to select arecord using thenew dr i | | down() function

» Using a seria number table to retrieve a unique serial number for reliability even in a network envi-
ronment

» Showing one value in acombo box list but assigning an alternate
 Using the correct public data directory on modern Windows operating systems

All of these features are well-documented in the source code of the SIMPOL Business application. How-
ever we will still discuss afew of the more interesting features in the following sections.

Working With the dataformldetailblock
About the Design of Detail Blocks

In our initial design and implementation of detail blocks in SIMPOL we recognized that in the original
version in Superbase some things had not gone well. Although it was possible to add records as long as
therewerelessrecordsthan visible rows, oncethe visible rowswerefilled adding records became difficult.
There was also no support for deleting records from the detail block. The ability to nest them upto 8 levels
deep was troublesome when trying to use them for reliable data-entry.

Asaresult many Superbase users have been forced to come up with their own solutions to these problems
over the years. The solutions usually were either to use a dialog for adding and editing data, or to add a
special set of controls on the form where data was created or modified. Most solutions also added a set of
buttons to the left of the rows to edit or delete the row data.

During our initial design and implementation for SIMPOL , we decided to make the detail block read-only
to avoid the need to wrestle with these issues since, to start with, we just wanted to get areliably working
read-only implementation. There are numerous issues to resolve with something like thisiif it is allowed
to be read/write. We decided to add the ability to modify the content of the detail block under program
control. The early versions had some limited ability to do this, but with the 1.8 release, we decided to

80

Adding New Records to Detail Blocks

commit to adetail block that could be completely managed under program control. We added the necessary
methods to add, edit, and delete entries.

Adding New Records to Detail Blocks

For this project we chose to use the dialog method for data-entry. New records are created using the same
dialog window and form (which is a normal dataforml form). The only difference is the record is a new
one rather than an existing one. In this design, when the order record is created, we disable the buttons
that allow the creation, editing, or deletion of detail block records. After it has been saved, these buttons
are again enabled. This ensures that the detail block records are created based on an existing order record.
Otherwise we would have had the problem of ensuring the records are not saved until the order itself is
saved. Below is an image of the orders form.

[37 st Business —=cm |
File Dsts Reports Help

OrelSerho FJHMa A ?EEEE

OrdSerfio 0000001 CustSerNo 001147 . OrderedOn 10/03/2014 PurchaseOrderhio

| 5hip to invoice address
InvOrg Non Leo Company ShipToOrg Mo Leo Company

Tvhame ShigTofame Dr, Pear| Salazar

ShipToDept Acvertising
ShipToAddress1 Ap #349-264 Amet Rd.
ShipToAddress2
ShipToAddress3

IrvCity Toledo ShipTaGity Toledo

ImPostCode GIG SAS ShipToPostCode GSG SAS
InvCountry AZ ShipToCountry AZ

+ Prodsertio Qty Prodhame UnitPrice TaxRate NetTotal Tax Total

#| 2<| oooon0z 2 Anse Seed (454g) £13.78 0,00 £27.50 £5.50 £33.00
#| #< oooonos 4 Basi Lean weet (454g) £6.50 20.00 £26.00 £5.20 £31.20
#| 2<| oooo031 2 Mar joram Lea [4549) £7.25 .00 £14.50 £2.90 £17.40
#| 2<| ooooow 6 Cayerne Pepper (454g) £13.75 20.00 £32.50 £16.50 £99.00
v

7| &<

7|

Delevery bate: Tatais 150.50 ™) 180,60

Irvoice

The Orders Form from SIMPOL Business.

The key bit of code for both adding and editing records in the detail block can be found in two of the
included functions: addor der | i ne() and edi t or der|i ne() . They both call the function doed-
i taddorderl i ne() toactually present the dialog box and handle the interaction with the user. At the
end that function returns a type(dblrecord) object and sets the boolean saved variableto . t r ue if the
user saved the record. Below istheaddor der | i ne() function.

Example7.1. Theaddor der | i ne() function of the SIMPOL Business program

functi on addorderline(dat af or nilbutton me, appw ndow appw)
bool ean saved
type(dblrecord) r
dat af ormlrecord rec
dat af or mlt abl e t abl e
i nt eger ordserno, e
dat af or mldet ai | bl ock dtb
dat af or mLr ecor dset rset

81

Editing Records in a Detail Block

saved = .fal se
e =0
ordserno = ne.form masterrecord. record! O dSer No
r =@ doedi t addorderline(appw, .true, saved=saved, \
or dser no=or dser no)
if saved
/1 Here we need to add the row to the detail block and nove
/1 the current row pointer
dtb =@ ne. f orm dt bOr der Li nes
if dtb !@ .nul
rset =@ dat af or niLr ecor dset . new()
table =@ne. form findtabl e(r.tabl e.tabl enane)
rec =@ dat af or mLr ecord. new(r, table, error=e)
// Here we are placing the record in the record set as the
/1 master record
rset.records[1l] =@rec
dt b. addr owdat a(rset, error=e)
cal cul ateordertotal s(nme.form dtb, appw)
end if
end if
end function

The important point of thisisthe placein the code where the record is added to the detail block.

E Note
A detail block row is represented by a dataformilrecordset object. This contains a records
property of type array. Each element in the records array is of type dataformlrecord. If the
detail block contains multiple linked recordsthat are linked 1:1 (for example a product name
that is not stored in the detail record but which is only looked up via the product ID), then
for each linked table there will be an additional dataformirecord object in the records array.

In the example above, we are working with a simple detail block consisting of only the detail table
record in each row. To write the new record to the detail block, we create a new record set, create a new
dataformlrecord object using the record that was returned, and then assign the dataformlrecord object to
thefirst element of the record set's records array. Once our preparation is complete, we call theaddr ow-
dat a() method of the dataformldetailblock object. Also, since we are managing the totals of several
of the columnsin the ORDERMST record, we also call the cal cul at eor dert ot al s() function that
calculates the totals to update the values in that record and to show them on the form.

Editing Records in a Detail Block

The code that handles the editing of the detail block isvery similar to that which adds a new record:

Example7.2. Theaddor der | i ne() function of the SIMPOL Business program

function editorderline(dataformnmibutton ne, appw ndow appw)
i nteger row, e, orditemo
dat af or nildet ai | bl ock dtb
dat af or niLr ecor dset rset
dat af or mlrecord rec
type(dblrecord) r

82

Deleting Recordsin a Detail Block

bool ean saved
sbappl i cation app

saved = .fal se
app =@ appw. app
e =0

dtb =@ ne. f orm dt bOr der Li nes
if dtb ! @ . nul
row = .toval (ne. nane, nondigits(me. nanme), 10)
if row>= 1 and row <= dtb. rows
rset =@dtb. getrowdata(row, error=e)
if rset =@ . nul
wxmessagedi al og(appw. w, "Error no row data avail able", \
SAPPMSGTI TLE, "ok", "error")
el se
rec =@rset.records[1]
if rec =@ .nul or rec.record =@ . nul
wxmessagedi al og(appw. w, "Error record not found in the \
row data", sSAPPMSGII TLE, "ok", "error")
el se
r =@rec.record
orditermo = r! OrdltenmNo

r =@ . nul
r =@ doedi t addorderline(appw, .false, orditemmo, saved)
if saved

/1 Update the specific rowin the detail block
rec.record =@r
dt b. setrowdat a(row, rset, error=e)
cal cul ateordertotal s(nme.form dtb, appw)
end if
end if
end if
end if
end if
end function

In the preceding example the name of the button control contains the row number and that is retrieved
by using the. t oval () function and by declaring all of the non-digit content using the nondi gi t s()
function. Then we call the get r owdat a() method of the detail block passing in the row number to
retrieve the record set representing that row. We access the dataformlrecord that contains the detail block
record from the record set and use that to read our unique record ID, the value of the Or dI t enNo field.

Wethen clear therecord variable by settingitto. nul and call thedoedi t addor der | i ne() function
passing in the or di t ermo variable. If the user has saved the changes to the record, then we need to
replace the old version of the record in our dataform2record object with the updated version. Then all that
is left isto call the set r owdat a() method of the detail block and as with the new record, we need
tocall thecal cul at eor dertotal s() function to update the totals in the master record and display
them on the screen.

Deleting Records in a Detail Block

All that remains with our detail block is to be able to delete records from it. The program code that does
that is very similar to that used for editing:

83

Deleting Recordsin a Detail Block

Example 7.3. Theaddor der | i ne() function of the SIMPOL Business program

function del et eorderline(dat af or niilbutton nme, appw ndow appw)
i nteger row, e
dat af or nildet ai | bl ock dtb
dat af or niLr ecor dset rset
dat af or nlrecord rec

e =0
dtb =@ ne. f orm dt bOr der Li nes
if dtb !@ .nul
row = .toval (ne. nane, nondigits(me. nanme), 10)
if row>= 1 and row <= dtb. rows
rset =@dtb. getrowdata(row, error=e)
if rset =@ . nul
wxmessagedi al og(appw. w, "Error no row data avail able", \
SAPPMSGTI TLE, "ok™"™, "error")
el se
rec =@rset.records[1]
if rec =@ .nul or rec.record =@ . nul
/I wxnmessagedi al og(appw. w, "Error record not found in \

/1 the row data", sAPPMSGII TLE, "ok", \
/1 "error")
el se
rec.| ock(error=e)
if e!=20

wxmessagedi al og(appw. w, "Error |ocking the record", \
SAPPMSGTI TLE, "ok™, "error")

el se
rec. del et e(error=e)
if e!=0

wxmessagedi al og(appw. w, "Error deleting the record”,\
SAPPMSGTI TLE, "ok™, "error")
el se
dt b. remover owdat a(r ow, error=e)
cal cul ateordertotal s(me.form dtb, appw)
end if
end if
end if
end if
end if
end if
end function

Just aswas donein the edit code, first we transform the control name into the row number and then we use
that to retrieve the record set representing that row. After extracting the dataformZlrecord object from the
record set, welock it and assuming that succeeded, we call thedel et e() method of the dataformlrecord
object. If that also succeeds (it should), the r enbver owdat a() method of the detail block object is
called to remove the actual record set for that row and to adjust the scroll position of the visible rows on
the form.

84

Usingthedri | | down() Function

Using thedri | | down() Function

To make it easy to select the correct customer for an order, thenew dr i | | down() function was brought
into the project. It requires abit of set up, but providesafast and efficient method of finding atarget record.
An example of it can be seen below.

Select a customer @
Customer list
Salazar, Pearl Mon Leo Company Toledo G9G 5A5 AZ | oK
LastFirstName Organization City PostCode Cour * =
Salas, liana Erim Mi Tempor Consuting I568PG JD |
Salas, Melanie Witae Purus Consulting Alappuzha RHI9OYZ ES 1
Salas, Troy Rhoncus LLC Alcorecdn 20115 D
Aliguam Consulting Ria Grands TP A
Sed Et Libero LLC Luzidnia 5273 SR
zar, [Mon Lea Company Toledo GG 5A5 AT
Salazar, Steel Nisi Mauris Incorparated Balsas 47004 51
Salinas, Nehru Aliguet Sem Ut Incorporated Morth Barrackpur 4212 GH
Salinas, Pandora Velit Institute Purmerend 6245 ER
Salinas, Walker Luctus Aliquet Odio Corp. 90550-037 TW

The drill down window searching for a customer

As the user types in the top edit control, the system detects that and searches against the index passed as
the search index. It then fills the grid with data up to the maximum number of desired rows. The code
that does thisis shown here:

Example 7.4. Thef i ndcust oner () Function for the Orders Form

function findcustoner (dataf or nilbutton me, appw ndow appw)
type(dblrecord) r
type(dbli ndex) i dx
sbappl i cation app
tdi spl ayf ormats di spfm
array dispflds, colw dths
i nteger e

if not ne.form preventfocus
app =@ appw. app
di spfmt =@ app. di spl ayf or mat s
i dx =@ app.tabl es. cust oner! Last Fi r st Nane. i ndex
di spflds =@array. new)
di spflds[1] =@ app.tabl es. cust onmer! Last Fi r st Nane
di spflds[2] =@ app. tabl es. customer! Or gani zati on
di spflds[3] =@app.tables.custoner!City
di spfl ds[4] =@ app. tabl es. cust omer! Post Code
di spfl ds[5] =@ app.tabl es. cust oner! Count r yCode

colw dths =@array. new)

col wi dt hs[1] = 150
colw dt hs[2] = 220
colwi dt hs[3] = 150
col w dt hs[4] = 60

85

Storing Data Correctly in
Modern Windows Systems

col wi dt hs[5] = 50

0

@drill down(appw. w, 730, 400, idx, 100, 1, "Select a \
custonmer", "Custonmer list", \
di spfl ds=di spfl ds, colw dt hs=col wi dt hs, \
def bool ean=di spf nt . def bool ean, \
def i nt eger =di spf nt . defi nt eger, \
def nunber =di spf nt . def nunber, \
def dat e=di spf nt . def date, \
defti me=di spfnt.deftinme, \
def dat et i ne=di spf nt . def dateti me, \
dat el ocal e=app. SBLI ocal e. dat el ocal e, \
num ocal e=app. SBLI ocal e. num ocal e, error=e)

if r '@ .nul
updat ecust onorderform(nme.form r, appw)
end if
end if
end function

The code should be fairly obvious, we first check to make sure we are in data-entry mode by testing the
me.form.preventfocus value. If it isequal to . t r ue then we are not in data-entry, so ignore clicks.

E Note
In preventfocusmode in the ongotfocus event of the dataforml controls if the preventfocus
property isequal to . t r ue then nothing happens and focusisignored. Thisdoes not prevent
the onclick event of buttons from firing, however, so if they should not fire at all timesit is
necessary to test for the state of this property.

To reduce the amount of typing we declared the di spf nt variable and assigned the app.displayformats
property to it. We then acquire a reference to the index object we wish to use for searching, produce an
array to hold thefield object references for the fields we wish to display in the grid, and assign the column
widths to the col wi dt hs array. The col wi dt hs array is optional. If they are not passed the column
widthswill be derived from the table information. Finally the call ismadetothedri | | down() function
and if the user clicks on OK, then it will return the selected record object, otherwise it will return . nul .

Storing Data Correctly in Modern Windows
Systems

As of Windows Vista it became difficult to modify data stored in the Pr ogr am Fi | es directory. Al-
though the system doesn't cause an error when a program writes data there, what actually happensis the
data is not written to that location, but instead it is written to a location below the user directory. The
location istypically something like: \ User \ AppDat a\ Local \ Virtual Store\ Program Fi | es
\ ... Although that may not matter in a single-user system (though you may not be backing up the data
correctly), in a multi-user system, where more than one person logs onto the same PC, that would mean
that each user would have their own copy of the data, and changes from one would not appear in the data
of the other.

The solution to this mess, is to store the data in a publicly accessible location. On Vista and later, that is
the\ User s\ Publ i c\ Docunent s directory. There is afunction in the application framework called

86

Summary

get publ i cdat adi r () that canbeused for thispurpose. A small part of theinitialization codefromthe
sbappl i cati on. new() method demonstrates how thisis used in the SIMPOL Business application.

Example 7.5. Thef i ndcust oner () Function for the Orders Form

e =0
dat adi r = get publicdatadir(error=e)
if datadir <= ""
wxnmessagedi al og(appw. w, "Error retrieving data directory", \
sAPPMSGTI TLE, "ok", "error")
el se
di rsep = getdirectorysepchar()
ne. dirsep = dirsep
nme.startdir = trailingdirsep(getcurrentdirectory())
datadir = trailingdirsep(datadir) + sAPPNAME + dirsep

The preceding fragment of code showsthe approach. Thedat adi r isconstructed by combining thereturn
valuefromget publ i cdat adi r () withthe application namefollowed by the directory separator char-
acter. On most systems thiswill be: C: \ User s\ Publ i c\ Docunent s\ SI MPOL Busi ness\ . The
installer will have created this directory and copied the database files plusthe SI| MPOL Busi ness. i ni

fileinto it.

Summary

In this chapter we have discussed some of the more interesting techniques used in the SIMPOL Business
sample application. There are more to be discovered, and the easiest way to do that is by opening the
project in the IDE and looking at the source code. Try running it in debug mode and see how variousthings
work. Thereisno substitute for getting into the code. It isthe best method to learn about how things work.
An interesting thing to do would be to change the parameters to use PPCS and set up the database with
thesi npol ser ver . exe and an appropriate configuration file.

87

88

Chapter 8. SIMPOL Server
About the SIMPOL PPCS Server Programs

In this chapter we will discuss the multi-user database server programs currently shipped with SIMPOL,
si nmpol server. exe/si npol server. snp and gui si npol server. exe. The first is designed
to run without a user-interface, from a command line prompt or as a service (more later). The second is
designed to run on alogged in server as a window program with buttons for sharing the tables, stopping
sharing, reorganizing the tables, backing them up and restoring from the back up. Both take asingle para-
meter on the command line to tell them which configuration file to load. Both do the job fine. Using these
or variations of these we have been deploying systems for years on both Windows and Linux. In the next
sections we will go into each of them in more detail. Before we do that though, since both make use of
the same configuration file format, let's examine that.

The Configuration File

The configuration file used by both serversis based on the ini file format. There are two sectionsin this
file. Below is an example of the file format. The file format has changed since earlier versions, but the
old format is still supported. Just don't include acf gver si on parameter and don't make use of any of
the new parameters.

Example 8.1. A Sample SIMPOL Server Configuration File

[Server]

cfgversi on=2

port 1=4000

t xf act or 1=0

#port 2=4001

#t xf act or 2=6

t cpport =4002

| ogfi | ename=sanpl el og. t xt

bz2li bdl | =c: \ si npol \ bi n\ bzi p2. dl |
ar chi ver oot =S| MPCL Dat a Backup
backupdi r =C: \ User s\ Publ i c\ Docunent s\ SI MPQL\ backup
title=SI MPOL Server

def | ockt i meout =10000000

[Files]
1=c:\sinpol\utilities\sinpolserver\adrb.sbm | ockti meout=120000000

The [Server] Section of the Config File

Inthe Ser ver section, the port entry can be repeated multiple times, but each must end in a different
sequential value starting with 1. The server will listen on each of the ports listed. Thet xf act or value
is used to reduce the transmission speed of the server. This is important especially when working with
Superbase clients, where the client cannot process the datafast enough to keep up, resulting in lost packets.
Also, when debugging it may be necessary to slow down for SIMPOL to 6 or even 9 or 10. Thet cppor t
is used so that the serverclose.smp (or .exe) can request the simpolserver to shutdown.

89

The[Fi | es] Sec-
tion of the Config File

Ascan be seen above, theentriesfor por t 2 andt xf act or 2 arecommented out. Y ou don't need por t 2
andt xf act or 2 (but you always need both together), unless you are coping with systems with differing
network access speeds, likeaLAN and aWAN. Y ou might set the LAN txfactor to 0 and the WAN txfactor
to 6, for example. Tables with larger numbers of fields can take longer per record, so you may need to
increase the txfactor to support the time it takes for the record or file definition to be processed.

Thet cpport is used to host a TCP/IP server that can be contacted using the ser ver cl ose. exe
(or .smp) file. As a seurity precaution, it must be run on the same physical machine or it will be ignored.
The command it sendsis simply a QUI T message, but this ensuresthat the server will correctly shut down
and flush all changes to disk.

If thel ogf i | ename parameter is assigned, then alog will be produced and written to afile of the same
name.

When using the guisinpol server.exe or the sinpolserver.exe with the
si mpol serverclient. exe, the following three entries are required for doing back up and restore
of data:

e bz2libdll

» archi ver oot

* backupdir

Thefirst providesthe name and |l ocation of the BZip2 DLL that isused for compressing and decompressing
thedatafiles. Thear chi ver oot definestheroot file name to which the date and time will be appended.

The last item identifies the location where the back up fileswill be stored.

Thedef | ockti meout entry allowsthelock time out value to be set to a standard value, which will be
inherited by al of theentriesinthe[Fi | es] section, unless expressly overridden.

The [Fi | es] Section of the Config File

The format of the Fi | es entries is as follows: <i ndex val ue>=<path and fil enane>,
| ockti meout=.inf, hidden=f, reccount=f, codepage=850, r=, rc=, rl=
rlc=, rlms, rld=, rlcd=, rlcne, rlnd=, rlcnd=.Herethey arelisted out:

* <i ndex val ue>

* <path and fil ename>

* | ockti meout

* hi dden

* reccount

e codepage

o

erc

90

The[Fi | es] Sec-
tion of the Config File

*rlcd
erlcm
e rlmd
* rlcnd

The i ndex value must be in sequential order starting with 1 and not contain duplicates. As soon as a
valueis missed the program stops reading files.

The path and file name for each *. sbmfile adds that container file and all of its tables (except for the
system tables) to the server.

Thel ockt i meout valuedefaultsto. i nf (never unlocks from the server side), unlessit is overridden
with avalue assigned to the def | ockt i meout entry inthe[Ser ver] section. This value should be
set to be appropriate for the individual table and its use. The valueisin microseconds, so to automatically
unlock in 12 seconds, use: 12000000. It appliesto all tables located in the same container file.

Thedefault hi dden vaueisf (false). Toenableit, setittot (true). Tablescan be hidden so that someone
connecting to the PPCS server cannot list them. If they know the table name, then they can still open the
it, unlessit is password protected.

Ther eccount default valueist . To suppress the determination of the record count for atable, set it to
f (false). Thiswill assign the maximum record count to the table and not try to calculate it. On very large
tables calculating the record count can take some time, making server starts slow.

PPCS operatesin the DOS code page normally (for historical reasons having to do with compatibility with
the PPCS protocol of its predecessor (Superbase). The default code page for PPCSis 850 (Latin 1). This

can be changed to another code page by setting this parameter. This is the list of supported code pages:
437, 720, 737, 775, 850, 852, 855, 857, 862, 866, 874, 1258.

Ther=,rc=,rl=rlc=rlnme rlid=rlcd=rlcms rl md=, rl cnd= parameters are al pass
words. To password protect the database table purely for access, it isonly necessary to apply aread pass-
word. More fine-grained control can be had using the other password combinations, if desired. The letters
stand for the following capabilities with respect to records:

* r —read

* C —create

e | —lock

* m-modify

d — delete

Please note that if you decide to use multiple passwords to access these tables from different users with
different access rights, then the program code needs to be able to cope with any errors that may occur.

91

Working with si npol server. exe

Working with si npol server. exe

The si npol server. exe program is designed to run without any user interface. It takes a single ar-
gument on the command line, which is the name of the configuration file from which it should read the
information it needsto run: which port number(s) to listen on, the name of thelog fileto create, the name(s)
of the database files that should be shared and the parameters for each of them. If it is started without any
parameters it will search for the file si npol serveri nf 0. cf g in the same directory from where the
exe file was started. If it hits an error starting up it will output that information as a return value to the
console and if it got far enough there may be someinformation in the log file.

It canasoberunusingthesi npol ser ver . snp file, inwhich caseit should definitely berun by passing
the configuration file name to it as a parameter. This is the program to use when running on Linux.

When running this program, thereisacompanion program that can providethe user-interfacefor the server.
That programisdelivered assi npol server cl i ent . exe. Itiscurrently only available for Windows.
It will present a user-interface that looks more or lessidentical to that of the gui si npol server. exe
program, but it actsonly asafront-end to the server version. It can also start and stop the sharing of tables, as
well as perform areorganize, back up, restore and can view thelog. Thesi npol servercli ent . exe
takes a single parameter, which is the TCP/IP port where the server is listening. If no parameter is
provided, it will search the directory where the exe file was located when it started for a file called
si npol serveri nfo. cf gandif it findsit will read the TCP/IP port value from there.

Working with gui si npol server. exe

The gui si npol server. exe program was designed as a desktop program to be run on a logged-
in server. It gives much more fine-grained control than our origina si npol server. snp program.
With the release of the new version of the si npol server . exe and its ability to be controlled using
si npol servercl i ent. exe, there are fewer reasons to choose this version, though it is amuch sim-
pler design and may have less issues in aworking environment. For one thing, it isal self-contained. On
the other hand, if left running for avery long time, it might be less stable than a version that does not have
the user-interface components included and running. For now, pick the one that suits you best. Since they
both support the same configuration file format, there is no difficulty moving from one version to another.
Below is an image showing the user-interface. Thisimage is from the si npol servercl i ent. exe
program, but there is no obvious difference between them.

* 3 SIMPOL PPCS Server Control [o] = (==l

Table List

Stop Serving

Show Log

92

Running si npol server. exe
asaService

The user interface for gui si npol server andsi npol serverclient

Running si npol server. exe as a Service

In aproduction environment, you would ideally want the database server to start when the server starts, and
to shut down gracefully when the server shuts down. Using Linux, thisis quite easy depending on your dis-
tribution. It isfairly trivial toadd / usr / bi n/ snprun / hone/ me/ si npol server. snp / home/
nme/ si npol serveri nf o. cf g to the start up of the server and / usr/ bi n/ snprun / hone/ ne/
servercl ose. smp 12345 to the shut down of the server (typically something likel ocal . st art
and | ocal . stopin/etc/conf.d/ or basel ayout 1. start and basel ayout 1. stop in/
et c/ | ocal . d/). Linux makesalot of things easier, which iswhy we only have oneloader program for
both console and windowing programs. On Windows, thisis all much more complicated.

We created a special program that can run a specified program as a service, with a second program that
can be run to stop the service. The program is called svcr unnr . exe. To install the service running
program, from the command line run this: svcrunnr. exe -install. Toremove the service, use
this command line: svcrunnr . exe -renopve. Before you start the service, it is useful to check that
everything is correctly configured.

Once the service is installed, it is important to check its configuration file. The name of that file is:
svcrunnr. exe. i ni . Thisisavery simplefile and it needs to be located in the same directory as the
svcrunnr. exe program. It contains two sections, each with only one entry:

Example 8.2. A Samplesvcr unnr . exe Configuration File

[Startup]
Conmand=C: \ SI MPQL\ bi n\ si npol server. exe

[Shut down]
Command=C: \ SI MPQL\ bi n\ ser ver cl ose. exe

Normally, there should be no reason to change this configuration file unless the locations are incorrect. It
is specific to the installation of the si npol ser ver . exe suite of programs.

3 Note

Only oneinstance of this service can be running and/or installed concurrently, so thereisno
easy use that can be made of the service runner for other purposes. At some point we will
release a more powerful service loader for SIMPOL.

After checking the configuration file and after making sure that the si mpol ser veri nf o. cf g iscor-
rectly set up (because this method will always use this file name), if the server should run automatically,
then it needs to be set to do so. Upons installation it is set up to run manually only. To change this, in
a console window, or in the Start menu enter ser vi ces. nsc in the search window and press Enter.
The services program will start. Navigate in the list to the S| MPCL Scri pted start/ st op entry
as shown below:

93

SIMPOL Server Summary

) Services o [5[]
Eile Action Niew Help
i sEEEN L
Services (Local) | * . Services (Local)
SIMPOL Scripted start/stop Mame - Description Status Startup Type Log OnAs -
. Remote Registry Enables rem... Manual Local Service
Start the service Routing and Remote Access Offers routi. Disabled Local System
RPC Endpoint Mapper Resolves RP... Started Automatic Metwork Service
Scrybe Updater Updates yo... Disabled Local System
Secondary Legon Enables star... Manual Local System
Secure Socket Tunneling Pr... Provides su... Manual Local Service
Security Accounts Manager The startup ... Started Automatic Local System
Security Center The WSCSV... Started Automatic (D... Local Service
Server Supports fil.. Started Automatic Local System
Shell Hardware Detection Provides no... Started Autornatic Local System
43 SIMPOL Scripted start/stop Manual Local Service
Skype Updater Enables the ... Automatic Local System
Smart Card Manages ac... Manual Local Service L
Smart Card Removal Policy Allows the s... Manual Local Systemn]
SNMP Trap Receives tra... Manual Local Service
Software Protection Enables the ... Automnatic (D... Metwork Service
SPP Notification Service Provides So... Manual Local Service
SSDP Discovery Discovers n... Started Manual Local Service
Storage Service Enforces gr.. Manual Local System
Superfetch Maintains a.. Started Automatic Local System
System Event Motification 5... Monitors sy... Started Autornatic Local System
' Extended / Standard

The Services window showing the svcrunnr entry

Double-click onthe entry inthelist and in the pop up window change the startup type to Automatic so that
it runs when the computer starts, then click on the Start button to start it running. See the image below:

SIMPOL Scripted start/stop Properties (Local Computer)
General :MOn | Recovery | Dependences
Servica name: SIMPOLScript Service

Dusplay name: SIMPOL Scnpted stan/stop

Descrption:

Path to executable:
eASIMPOL bin'\svennnr exe

Statuotype: [Manusl =)
Austomatic (Delayed Start

Help me confiqurs JTERELS
Manual

Digabled
Service stalug O

[2a

You can speciy the start parameters that apply when you statt the service
From here.

Start parameters

ok J [omes) =

TheSI MPOL Scri pted start/ st op window showing the set up

That's it! The database engine will now run automatically when the server starts, and will auto-
matically shutdown when the server is shutdown. To see what is happening and to control it, the
si mpol servercl i ent. exe program can be run.

SIMPOL Server Summary

In this chapter we have |earned about the multi-user database server programs supplied with the SIMPOL
product. We have learned how to configure them, start them, stop them, and use them for doing data back
up and restore, as well as table maintenance using the reorganize command. Finally, we have learned how
tousethesvcr unnr . exe programtorunthesi npol ser ver . exe asaservice so that it will always
be available, even when the computer has just started and has not been logged in.

94

Chapter 9. Web Server Programs

Introducing World Wide Web Server Program-
ming

SIMPOL's earliest interactive program capabilities were as a web server application. This was done be-
causeit wasthe easiest way to build programsthat were able to interact with the user, since we didn't need
to worry about building user interface components. As part of the implementation, we decided to support
the CGI standard, ISAPI (Microsoft's proprietary interface for 11S) and something called Fast-CGl, which
is a high-performance version of CGI that can handle larger loads. It does this by allowing the program
code to remain loaded for a certain amount of time, so that subsequent calls to the same program do not
need to also go through initialization.

Therearetypically two approachesto web application programming, page-centered and program-centered.
Examples of page-centered programming are typically found in PHP and ASP programs. The page isthe
focus of the development. This works well for people who are mainly graphics designers and who want
to add alittle bit of code to their pages. The other approach tends to be much more about the application
code, which will, based on the current state, display any of a number of pages. Both are valid methods of
working, though application programmers may find the page-centric approach difficult to follow.

SIMPOL supports to some degree both styles. The IDE has support for afile format called * . snz which
isaform of HTML with embedded SIMPOL code. During the compilation phase these files are converted
to program code with embedded HTML. In the standard versions used in ASP and PHP, these pages are
processed by the server when they are requested, whereas in SIMPOL they are already compiled to byte
code.

The hardest part about web server programming is debugging something like this, which runsin the server,
since you can't control the execution. We solved this problem way back in 2003, by building a special
program to act as the loader for the CGI program, and which then connects to the SIMPOL |IDE to debug
the program. Thisworksextremely well and makes debugging the program quite easy. Thisloader program
iscadledsbngi decal | er. exe.

Styles of Web Server Application

There are a number of differences between the different web server loading methods. Both the CGI and
ISAPI approaches use amai n() function that takes a cgicall cgi parameter. The main difference be-
tween the two is what the current directory is. For CGI programs, the current directory is the same as the
location of the program that isbeing loaded, whilefor ISAPI programs, they normally start in the #5YS32
directory.

The Fast-CGlI program isquite different to the other two, though like with CGI, the location of the program
fileis aso the location of the current directory. Instead of amai n() , there are three separate functions.
They are: f cgi i ni t (), whichtakesno parameters, f cgi (), whichtakesacgicall cgi parameter, and
an optiona type(*) <par ammane> parameter, whichisthereturn valuefromthef cgi i ni t () function.
Finaly, thereisanf cgi t er m() function that takesthe return valuefromthef cgi i ni t () functionto
alow any required clean up to take place. One example of this might be if a dynamically loaded library
is opened during initialization and in that some memory is reserved. Then during the clean up phase that
memory could be released. In most SIMPOL web server programs, there will be little need for the fina
function, except as an empty function so that it can be called athough it will do nothing.

It is also worth mentioning that with advent of what has been called Web 2.0 that by using client-side
JavaScript and a capability known as AJAX (Asynchronous JavaScript and XML) anew approach to web

95

Valuable Reading References With-
in the SIMPOL Documentation

server applications has arisen, that are more about handling data requests and sending back the data in
a specific form. This technique makes use of the XMLHt t pRequest which, in spite of its name, does
not need to use XML. It can transfer data in other ways beside using XML. The interesting part of this
approach isthat of sending pages back every time acall is made to the web server, the application running
in the web browser may only send out data requests to refresh what is shown on the page being displayed.
Thisis far more efficient than sending along the entire page each time you send the data. There are two
aspects of Web 2.0 redlly, oneisrelated to this ability to update the data on the page without resending the
page, the other has to do with the use of a modern set of libraries to make web applications look more like
desktop applications and is embedded into various JavaScript frameworks. JavaScript isstill afrustratingly
messy language, but it is showing signs of growth. It remains to be seen how long it will take before it
becomes easy to create an application the way you want, rather than the way they want.

Valuable Reading References Within the SIM-
POL Documentation

The SMPOL IDE Users Guide contains a section in Chapter 3, The SMPOL Project, dedicated to what
iscalled “SIMPOL Server Pages’. Thisfairly extensive section discusses the various aspects of working
with the IDE and web server applications.

In the SMPOL IDE Quick Start Manual, in Chapter 3 Writing Web Server Programs With SMPOL, a
complete example of writing a web server program is presented, including setting up the Apache web
server and debugging the application. Thisiswell worth a read.

Sample Web Server Applications Shipped with
SIMPOL

The\ SI MPQL\ Pr oj ect s\ ssp directory containsagroup of sample programsthat demonstrate how to
create and run applications from the web server. These include samplesthat are interlinked in some cases.
It also includes both database and non-database related programs. The sbi scal endar project produces
asimple calendar. The current day of the month is highlighted in a different color. There is also a useful
tool for examining the environment variables that are available to the programming environment, called
sbi senvvar s. The following demonstrate basic database usage:

» sbi scont act

» sbhi scont act di spl ay
* shi scont act post

» shisreport

* shi sreportfast

The starting point is the first item. To try it out a http://ww. si npol . com cgi - bi n/

shi scont act . snmp. These can all be set up to run on alocal web server running on your devel opment
computer. The easiest approach isto install alocal copy of the Apache web server. Then you will need to
modify the local target in each project to match your system architecture. If the installer was able to find
apache, it may have already modified the programs. The programs look for the sbi s. i ni file, so that
may need to bemodified, aswill thebasehr ef intheheader . ht mfile. All of theitemsthat are needed
for the web server can be found in the apache inside of the ssp directory. It isagood ideato also run a

96

The Web Server "Sandwich" Method

local PPCS server to host the database. The samples ship with everything required in the ppcsser ver
directory in the project folder.

Finally thereisaframe sample, which is admittedly someone outdated in terms of modern web design, but
still may have someuse. Torunit, start the sbi sf r anesanpl e. snp inyour browser using the correct
URL ortryitathttp://ww. si npol . com cgi - bi n/ shi sf ranesanpl e. snp.

The Web Server "Sandwich" Method

Web

Many web server applications can be seen asthefilling inside of aweb page. The part of the web page that
precedes the place in the content where the output of the program is placed is the top piece of bread, and
the part that follows the content is the bottom piece of bread. In some cases it may be necessary to have
3 chunks of HTML that represent the page, the top part, from the initial HTML declaration down to the
placein the header wherethebasehr ef isinserted, then the remainder of the header plusthe start of the
body, and finally the remainder of the body and thefooter. In SIMPOL we use this approach quite heavily.
A program can be madeto look like a part of any target system by taking atypical page from that system,
dividing it into the necessary chunks, and then using the SBI SI ncl ude() function to read those chunks
of HTML from the storage media when the program is run on the web server. It isfast and efficient.

Server Application Summary

In this chapter we have discussed the devel opment of web server applications using SIMPOL .. We haven't
gone into detail about how to actually program these, since the mechanics of programming a web server
application are covered in two other places in the SIMPOL documentation, and a group of sample pro-
grams demonstrating various aspects of web server application programming are included with the sample
projects. Thisisjust the beginning of ajourney. Web server programming is alarge an growing topic, but
by using this facility within SIMPOL you can feel confident that you can deploy web server applications
that use databases stored in your system and that may even be used by desktop program in-house. We
use this sort of approach ourselves, with a basic web system for use by our customers and an expanded
desktop system written in SIMPOL for in-house use.

The tools are there, where you want to take it, isreally up to you!

97

98

Chapter 10. Server Programs

About Server Programs

This chapter is meant to discuss the approach to building server programs. A server program may, or may
not have a user-interface in the traditional sense. An example of a server program would be a program
that accepts TCP/IP connections and then responded to requests by carrying out some process and then
returning aresult to the caller. A web server, adedicated XML server that acts as a gateway to a database,
amail server, a payment gateway, a graphics server that converts images from one format to another, a
file update system; these are all typical server programs.

Accessing Server Programs

There are afew different ways of accessing a server program. Most modern systems will use either TCP/
IP, UDP/IP, a communications port (COM1, USB001, OLEZ2, DDE, etc.), the file drop method (monitor
a directory and when a file appears in the directory read and process it), or they may use some other
intermediary such as an ini file. Currently SIMPOL can be used to implement such systems using TCP/
IP, filedrop, or ini files (SIMPOL supports OLEZ2, but only as a client program).

Sample TCP/IP Server and Client Programs

Two sample programs are shipped with SIMPOL. They can be found in the \ SI MPQOL\ Pr oj ect s
\ socket s directory. Oneiscaled cl i ent sanpl e and the other isser ver sanpl e. Together they
implement a very rudimentary file transfer system that could fairly easily be built into alive update type
of mechanism.

They eachcontainar ecei vest ri ng() functionthat wastaken directly from acommercia application
built in-house. This particular function design requires that the other end respond with a carriage-return
linefeed pair or a linefeed alone (should work fine on Windows, Linux, and OS-X). The function was
designed so that it can also work together with directly typed input, such asfrom Telnet. The server simply
sits there doing nothing until a connection is made. At that point a new thread is spawned and passed to
thedi spat ch() function, along with the incoming socket object.

Within the di spat ch() function aHELOis sent to identify the server as a response to the connection.
A loop is entered to process the commands supported by the server. If nothing arrives within a specific
amount of time, then theloop will time out and the connection will be closed. The client receivesthe HELO
and then requests the time by sending the TI ME command. After receiving the time from the server, it
sends the GET command and the server responds by opening and then transmitting its own program file,
prefaced with aminimal header to tell the client the amount of data being sent. The client receivesthe data
using ther ecei vebl ob() function and storesit. It then sends the QUI T command to allow the server
to exit the loop immediately rather than waiting for atime out.

Server Programs Conclusion

Although the sample program isquite basic, it isactually very powerful. With minor modificationsit could
easily send whichever file was requested. It could modify the header to send the file name, size, date and
time of last modification, and even optionally send the data compressed and/or encrypted, using existing
library code supplied with SIMPOL. With minor modifications it could also provide a query mechanism
where the client sendsa Ll ST command, for example, and it would then examine a designated directory
and return the file name and last modified date and time for each file to the client. The client could then

99

Server Programs Conclusion

compare these with its own copy of each and request any file that was newer than the copy it already holds
(plus any missing ones). Using the ability of the UTOSdirectoryentry object to set the date and time, the
client could make sure that the local copy always has the same date and time as the server one. This sort
of application could also be implemented as a web server program.

100

Chapter 11. Converting Legacy
Superbase

Where to Begin?

Explaining how to convert from a product that is as multi-faceted as the legacy Superbase product isnot an
easy task. The number of different ways that people have used the product means that any detailed set of
instructions will be certain to fail the needs of alarge percentage of those interested. Instead, this chapter
will discuss some guidelines and techniques for conversion.

It is probably easiest to start with what things can be converted fairly easily. That list is asfollows:
» Database files (assuming they are not encrypted)
» Display forms (currently Di spl ay Text Box objects are not supported — rotated editable text boxes)

 Print forms (these are the same forms in legacy Superbase, but are primarily meant to be printed and
are handled separately in Superbase NG)

» Didog definitions (the Di al ogFr ane object is not currently supported)
» Menu programs (as saved from the Superbase Menu Editor)
 Graphic Reports (some hand-tweaking may be required in the resulting XML)

What is noticeably lacking from all of the above is any mention of program code. Legacy Superbase
supports three distinct styles of BASIC programming:

» Early QuickBasic with only global variables, and GOTO, GOSUB, and RETURN, with both line
numbers and symbolic label names.

» Procedural BASIC with SUB main() local and global variables, user-defined functions, and an event
handling mechanism for creating event-driven programs.

» Object BASIC with supplied objects for the GUI components, like forms, and form controls, dialogs
and dialog contrals.

That list mirrorsaclear progression in the devel opment of programming languages over the course of time.
The problem is, legacy Superbase allowed the use of these different styles of programming concurrently.
That isn't so bad for thefinal two, since the object BASIC islayered over the top of the procedural BASIC
anyway. The problem isthe origina BASIC, and the excessive use of the GOTO and global variables.

There is nothing inherently wrong with the GOTO command (although some might argue very strongly
about that), if it isused carefully (and sparingly) in the hands of a skilled programmer, but unfortunately it
changes the direction of program execution permanently, and often cannot easily be followed by someone
(or a program) reading the source code. Often the original author of the code will no longer understand
how it works within even afew months of having written it.

Needless to say, if the original author no longer understands how their program works, the likelihood of
any program understanding it, even one that is designed to convert source code, is very low. Having said
that, it is not as bad as it sounds. Please read on.

101

How Superbase NG Differs

How Superbase NG Differs

When SIMPOL was designed, one of the strongest factors in the design of the language was to make the
code easy to learn, easy to use, and easy to maintain later. An unfortunately common scenario that has
played out far too often in many places using tools like legacy Superbase, is where an island solution built
by aninspired layman programmer achievesadegree of success. Then asits star rises, it requiresadditional
professional assistance to make it to the next level of usability. At that point, the professional s investigate
the software and discover that it iswritten in away that is non-standard, complicated to understand, and
possibly built using a tool that they personally have no experience using. At which point they decide to
discard the original and start over again. The problem isthe original solution probably took one dedicated
person 1-3 years of work to build using a very powerful tool. The new version usualy is estimated to
require 3-5 people several years to produce, and would cost a fortune to achieve it. At which point the
whole project might be scrapped as too expensive.

To prevent the solutions that were built by non-expert programmers from being discarded as unmaintain-
able or unsupportable oncethey reached thislevel, every effort was madeto avoid thisresult. All thefactors
that were barsto entry for quickly learning the language were discarded. As much as possible, redundancy
was removed from the design. The keyword set was reduced to the bare minimum and everything was
turned into atype or afunction. There is aso no way to jump out of any block statement, so it is aways
clear how the code flows, and there are no global variables.

Not having global variablesisone place where SIMPOL strongly differsfrom many languages. The choice
to not allow them went back to the problems that are commonly associated with them:

» Random unexplained changes in one module as aresult of calling code in some other module
» Assignment to apparent local variables changing the value of global variables

» The constant search for anew and valid name for aglobal variable

» Theinability to distinguish in the code between alocal variable and a global one

So what was the gain for SIMPOL by not having them, and how does it cope with certain situations that
appear to require them? By not having global variables, al variable changes are specific to the function
inwhich they are created. If avalue is need in afunction from outside the function, it must be passed into
the function as a parameter. It is always clear where the values are coming from.

But what about event handlers? How do we get the data we need into an event handler if we don't call it
directly? That is handled by every event having an additional property called reference. This property is
declaredtobeof t ype (*), whichisaspecia placeholder that allows a variable to hold areference to
any data type. Thisisthe mechanism used to pass quasi-global data to an event handling function. With
that, the loop is closed and thereis no other need for global variables.

Every SIMPOL program startsin the function mai n() and ends when that function is exited (unless the
program is multi-threaded and one or more threads are still executing at that time).

That all soundslike loads of work, if thereisalot of legacy Superbase codeto change. Thereality isalittle
different. Asit turns out, much of what people codeis about working around how their environment works.
Legacy Superbaseisno different. The easy routeisto move the dataand the forms, migrate the menus, and
then see what works and what is missing. Then add the code as event handlers for the various event types.

One important difference to note is that Superbase database files allow the definition of calculations, con-
stants, and validations as part of the field definition. The initial Superbase NG database engine is a pure

102

So What's the Good News?

storage engine, and it does not cater for these field-level operations. This may seem to be a significant
drawback, but in fact, most of the more advanced legacy Superbase developers had stopped using these
in their projects quite some time ago, since in any complex project these sorts of things could get in the
way and cause as much trouble as they provided help.

Toresolvethisin SIMPOL, it is necessary to migrate those settingsinto afunction or set of functions. Inan
earlier chapter, Chapter 6, GUI-Style Database Programs, a special function was built to create the serial
number when a new record is created in atable on aform. A similar function would be needed for each
time arecord is created in any table that needs constants to be generated at that time. A similar function
would be needed for calculations, which could be called every time arecord is saved (it could also be
called during the onlostfocus event of certain controls).

So What's the Good News?

If the legacy Superbase content is primarily data and forms, with afew reports, the conversion should be
pretty quick and painless. If thereisalarge amount of code, then the process can use the phased migration
approach.

What phased migration means, is that there is a methodology where the data can be converted to use the
new Superbase NG database format, the legacy Superbase application can be converted to use the PPCS
method for accessing the data, and then over time, modules of the Superbase program can be converted
into Superbase NG and called from the legacy Superbase program. Depending on the design of the legacy
Superbase application, some items might be ready to convert sooner than others. Also, since both Super-
base and Superbase NG can accessdataviathe PPCS protocol,, web server applicationswrittenin SIMPOL
can be used to provide browser-based access to aspects of the converted Superbase datain real time. This
capability to keep the original application in legacy Superbase and to gradually migrate it over the course
of timeis not available with other toals. It has the advantage that the existing software can be maintained
and updated (wherever possible building new modules only in SIMPOL) and gradually more and more
of it will actually be in SIMPOL. The key to thisis that both can share the same database concurrently.
Changing an existing legacy Superbase program to use PPCS instead of the normal method of accessing
data rarely takes more than a single day, no matter how complicated the program is. PPCS was designed
to be an easy move for legacy Superbase programmers. It does require the user to be on a fairly recent
version of the legacy Superbase product, though. No less than version 3.6i, preferably as of build 496.
Many of the supplied conversion tools need to run on the Superbase 2001 version or later.

Converting Superbase Databases to Superbase

NG

Thereisavery useful tool suppliedintheUti | i ti es directory called sbf 2sbm snp, which converts
legacy Superbase database files into Superbase NG's *. sbmformat. This reads the data file directly, so
it does not require any extra action to make it available, with one exception. It cannot read encrypted
Superbase database files. In that case the file needs to be converted to a non-encrypted database file. Just
as a note, currently there is no encrypted file format for Superbase NG database files. At the same time,
since multi-user accessis only via PPCS, the location of the physical data does not need to be accessible
to every user asisthe case with the older Superbase LAN and Distributed LAN networking.

Running the SBF2sbm tool presents a dialog window like the one below:

103

Converting Superbase Data-
bases to Superbase NG

I T SiPoL sor o som Daaeee e 3

SBF Fiks o | _remore |

Destination Directory
I art *.55F Files tn *.sh

[¥ Lowercase *.sbm names (recommended)

[Uppercase table names (recommended)

[¥ Use a separate *.sbm fie for each table (recommended)
[Create system tables [recommended)

[Overwrite existing fles

¥ Copy data

Image of the SBF2sbm dial og.

As an experiment, we are going to import the database tables from the Superbase Air example that ships
with all versions of Superbase 3.x (Superbase 95, Superbase 3.01, Superbase 3.02, Superbase 3.2, Super-
base 3.5, Superbase 3.6i, Superbase 2001, and Superbase Classic).

To start with, we click on the Add button, which let's us select the * . sbmfiles and add them to the list
for conversion. The dialog supports multiple selection, so we can select all thefiles at once. Then click on
the ... button to select the target directory (by default it will be set to the same as the most recent source
directory).

7 SIMPOL SBF to sbm Database Converter o] @ ==

SBF Files ﬂ Q —

X: yempoal praj abf. \sbfs\AIRCRAFT.58F
X2 simpol projects toos \sbf2sbm \bin lsbfs \CITY. SBF

2 \smpol \projects\tools\sbf Zsbm i |sbfs \CREW. SBF

;) \sbfe \FLIGHT. SEF

x: s \sbfs\HISTORY. SBF
+\simpol \projects\tools\sbf2sbm bin\sbfs | DADPASS. SBF
X \ampol prajects'tools\sbf2sbm binsbfs | OADSCHD. SEF
+\gi \ SBF

e

s
\sbfs\SCHEDULE. S8F

Destnation Drectory

| X lsimpol lprojec s {tools \shf 2sbm |bin s | | Convert *.58F Files to *.sbm
¥ Lowercase *,sbm names (recommendexd)

[Uppercase table names (recommended)

[¥ Use a separate *.sbm fie for each table (recommended)
[w Create system tables (recommended)

™ Overwrite existing fles

¥ Copy data

Image of the SBF2sbm dialog ready to convert.

Leave the settings at their default values for the most successful conversion. Below each of the settings
isexplained.

» Lowercase *.sbm names (recommended) — This makes sure that if the tables are being converted into
separate container files, one per Superbasefile, that thefile nameswill beforced to lowercase, otherwise
they will be in uppercase (like the original files from Superbase).

* Uppercasetable names (recommended) — Thisensuresthat thetablesare created with uppercase names.
Thisis important if working on a hybrid solution, since SIMPOL is case-sensitive when opening the
tables.

104

Converting the Forms

e Useaseparate *.sbm file for each table (recommended) — Although SIMPOL database containers can
support multiple tables, there are good, performance related reasons for keeping each table in aseparate
container. It also makesit easier when doing updates of specific tables, or if reorganizing only onetable.

* Create system tables (recommended) — Unlike Superbase, SIMPOL database fields only have a data
type, and whether they are indexed or not (plusif they are, an index algorithm and precision). Things
like the display format are not part of the core field definition, but the system tables store additional
information such as the display format, help string, share name (which can be different to the field
name) and other useful bits. Using the system tables means that the standard PPCS server program can
automatically share the table and haveit look just like the original from Superbase (minus calculations,
etc.).

» Overwrite existing files— If selected, it overwrites an existing file without asking. If it is not selected,
it will not ask, and will not overwrite.

» Copy data— This determinesif the table is created empty, or if al the datais aso transferred.

@ Note

Onethingthat it isimportant to understand, isthat thistool cannot resolvethe calculationsfor
avirtual field. If thetable definition hasvirtual calculated fields, and if thosefieldsare unique
indexes, then the import of that table will fail. Thiswas the case with the SCHEDULE. SBF,
since it turned out to have multiple virtual calculated fields, one of which had a unique in-
dex onit. In order to successfully import the table, the fields need to be changed to normal
fields (not virtual), and the content needs to be updated by doing a Superbase UPDATE that
specifically sets each of these fields to be equal to itself.

Converting the Forms

Now that the data is in Superbase NG format, we can convert the forms. The form conversion tool is a
SIMPOL program. This program reads the *. sbv files directly. It is aso the only way to recover em-
bedded images that are in the form itself. To run thistool, from the Start menu, select Superbase NG -
Superbase Classic Conversion Tools. Thiswill launch the tool that hoststhe various Superbase conversion
tools. Select the one for converting the forms. It will 1ook very similar to the one we used for converting
databases. Select the form(s) you wish to convert and provide a target directory. Click on the Convert
Forms button and the forms will be converted into the target directory.

In this example, we will be converting the CHECKI N. SBV. The original is shown below.

[E| Form - CHECKIN =1
Aug 142003 Passenger Check-In
| Flight No. sup003 SFO Depats 805 Amives 14:30 |
Personal Title: First Name Last Name: Ref. Na.
Details Ms Ronnie Lopez 00200
Nationalty
> Mal
usa & :a:ﬂ [] smoker?

Baggege over 15.53
20 kitos: Charge O First
85 per kil ®) Business Save and Print

Information 7 Economy 126

Image of the CHECKIN form prior to conversion.

105

Converting the Forms

The following image is of the converted form, without any modifications done to it, merely opened asis
in Superbase NG Personal.

H @X:\simpo\proj ial\sbair bi bm - SIMPOL Personal = | = |
File Edit \iew Data [hilities Options Window Help
] [Fiantoate BRI LI 12
Nov 30 199
| Flight Mo SuPM Departs Amves ‘
Personal Title: First Name Last Name Ref. Ho.
Details Ms |Helga | Lindsytram [00201
Nationalty N
[Danish L Male [~ Smoker?
* Femak
Baggage Wieight Seating Class Seat No. HNotes |
o [2100 | |lnformation & ecconomy BRJSEA
20 kitos: Charge " Fist
55 per kilo [500 " Business Save and Print

Image of the CHECKIN form after conversion.

Aswe can see from the converted form, it looks different in a number of ways. That isin part because the
controls on a Superbase form are not native controls. Instead they are all drawn by Superbase. Also, the
original form was not sized correctly, it isactually much longer than it needs to be. Also, in Superbase the
background of alabel could be optionally turned off. Thisisnot an option with real Windows controls. The
rest are relatively minor adjustments. One thing that the conversion program does not yet do, is transfer
the tab order. That is because tab order works quite differently between the two. Eventually this may also
be added to the converter. That was hand adjusted as part of the work in the Form Designer.

Another thing that is different is the Superbase text boxes in the origina form that have no border, and
are not recessed. This option is not available in standard Windows controls. SIMPOL has its own trick
here though: dataformltext controls are data-aware (can be bound to afield), labelsin Superbase are not.
Also note that the buttons are using a different color scheme to the rest. That is because they were defined
as using the standard color scheme. In Superbase the colors are fixed. In SIMPOL, they can be tied to
the current theme.

Another problem isthe missing image. The reason it is missing is that the image was pasted into the form
from the clipboard, and there is no way to extract the image from the form programmatically. In fact, the
only way to do it isto capture it off the form.

By opening the form in Superbase NG Persona and modifying it in the SIMPOL Form Designer, the
resulting form looks like this. Thisis being shown in Superbase NG Personal.

106

Creating the Application

) impolproj ial\shair' bi - SIMPOL Persanal ===
File Edit Yiew Data LUtilities Options Window Help
I | [passergrizfio BRI 2
ANN72
Aug 14 2003] Passenger Check-In
Flight Na SUP003 | SFO Depats 805 Amves 14:30 l
Personal Title First Name Last Name Ref. Mo
Details Ms Ronnie Lopez [o0z00
Nationaliy .
usa b Male [~ Smoker?
(s Female
Baggage Weight Seating Class Scat No Notes
hrr——r ,W Information " Economy 128
20 kilos. Charge 2O
5 per kilo (¥ Buaness Save and Print

Image of the CHECKIN form after repair in the Form Designer.

As we can see, it now looks very much like the original. In some ways, it looks better. It now uses the
system theme for the vast majority of colors (not all, however, since some text was blue, and it is not
supported to have the text color using system colors and the background color using fixed colors). The
information in the Flight No. section of the form that isin blue is actually looked up from the FLI GHT
tableusing the Fl i ght No asthelink.

Creating the Application

The steps to turn this into an application of its own are quite ssimple really. As described in the sec-
tion called “Summary”, al it really takes is to create a project, which | called sbai r . | then copied all
the program files from the addr essbook program into the new project directory, renaming the one
caled addr essbook. sma to sbhai r. sma. | also copied all the toolbar images from the addr ess-
book\ bi n directory intothesbai r\ bi n directory. Into the samedirectory | copied the converted data-
base files (at this point we only need passengr. sbmand f I i ght . sbn), and the converted and re-
worked form: checki n. sxf .

In terms of changes to the program code, all the suggestions made in the section called “ Summary” were
applied. Theresulting program came up immediatel y and can be seen below. The copying and code changes
took less than ten minutes, including compiling and fixing things that were forgotten.

| SIMPOL SBAir Sample = -2 =
File Data Help
| [Passengrietio S IRIENE AU 1l

I
Aug 142003] Passenger Check-In %‘@

Flight No SUP003 | SFO Depats 805 Amives 14:30 ‘
Personal Tite First Name Last Name Ret. No.
Details Ms Ronnie Lopez 00200
Nationaliy i
flusa L I Smoker?
& Female

Baggage Wieight Sealing Ciss Seat No Notes
—— 1553 Infarmation "_ Economy [128
20 kilos: Charge " First

85 per kilo [&+ Business Save and Print

Image of the CHECKIN form in the new SB Air application.

107

Summary

Thisis, of course, just the beginning. A full conversion would convert each of the forms, add navigation
to the menu, add functions to support the buttons on the forms, add functions to handle constants and cal-
culations for the tables, etc. The goal here was only to demonstrate the approach, not do afull conversion.

Summary

In this chapter we discussed the i ssues facing a conversion from Superbase to SIMPOL . We also looked at
various scenarios and discussed why SIMPOL offersthe easiest conversion solution for existing Superbase
projects, especially the advantage of doing a phased conversion where over the conversion period there
is a hybrid Superbase/SIMPOL application that starts out wholey in Superbase and eventually bit by bit
becomes completely SIMPOL.

Then using the tools, we converted a portion of a standard sample shipped as part of the Superbase 3.x
series, including converting the databasetablesand oneform. That form wethen cleaned up inthe SIMPOL
Form Designer and finally we built a standal one application for it in just a few minutes by stealing most
of the code from a standard sample program.

108

	Superbase NG Quick Start Guide
	Table of Contents
	Important
	Copyright Information
	Disclaimer
	New Versions of this Document
	Software Used

	Chapter 1. Introduction
	Who Should Read This Book
	Superbase NG and SIMPOL
	Conventions Used in This Book
	Why SIMPOL?
	Running Superbase NG Programs
	Deploying Superbase NG Programs
	Summary

	Chapter 2. What's in the Package?
	Overview of the Product
	The Superbase NG IDE
	Superbase NG Personal
	C-Language Components and Runtime Files
	SIMPOL Language Libraries and Samples
	SIMPOL Language Libraries (*.sml)
	Supplied Superbase NG Projects
	Console Projects
	XML Document Object Model (DOM)
	Examples
	Forms Examples
	Games
	Libraries
	SBME Database Examples
	SIMPOL Tutorial Examples
	SIMPOL Web Server Programs
	Tests

	Documentation
	Utilities
	Superbase Conversion Utilities

	Chapter 3. Getting Started
	The Essentials
	Preparing Our Environment
	Command Line Programs
	Dialog-Style Programs
	Database GUI Applications
	Web Server Applications
	Server Applications
	Converting from Superbase

	Chapter 4. Command Line Programs
	Building a Command Line Program
	First Steps
	Understanding the Code
	Running Our Project
	Improving Our Program
	Running the Final Version
	Summary

	Chapter 5. Dialog-Style Programs
	What's a Dialog Program?
	The Sample Program
	Creating the Project
	Creating the Design
	Setting the Stage
	Adding the Controls to the Form
	Cleaning Things Up
	Saving the Form

	Adding the Form Source to the Project
	Setting Up the Program
	Getting the Basic Form Running
	Finishing the Color Lab Program
	Summary

	Chapter 6. GUI-Style Database Programs
	Introduction
	Creating the Project
	Create the Database
	Building the Form
	The Program Code
	The main() Function
	The addressbookapplication Type
	The Remaining Initialization Code
	Preparing the Form

	The Finished Product
	A Word About Linux

	Summary
	Advanced Topics

	Chapter 7. SIMPOL Business
	Introduction
	Special Features
	Working With the dataform1detailblock
	About the Design of Detail Blocks
	Adding New Records to Detail Blocks
	Editing Records in a Detail Block
	Deleting Records in a Detail Block

	Using the drilldown() Function
	Storing Data Correctly in Modern Windows Systems
	Summary

	Chapter 8. SIMPOL Server
	About the SIMPOL PPCS Server Programs
	The Configuration File
	The [Server] Section of the Config File
	The [Files] Section of the Config File

	Working with simpolserver.exe
	Working with guisimpolserver.exe
	Running simpolserver.exe as a Service
	SIMPOL Server Summary

	Chapter 9. Web Server Programs
	Introducing World Wide Web Server Programming
	Styles of Web Server Application
	Valuable Reading References Within the SIMPOL Documentation
	Sample Web Server Applications Shipped with SIMPOL
	The Web Server "Sandwich" Method
	Web Server Application Summary

	Chapter 10. Server Programs
	About Server Programs
	Accessing Server Programs
	Sample TCP/IP Server and Client Programs
	Server Programs Conclusion

	Chapter 11. Converting Legacy Superbase
	Where to Begin?
	How Superbase NG Differs
	So What's the Good News?
	Converting Superbase Databases to Superbase NG
	Converting the Forms
	Creating the Application
	Summary

