
Superbase NG Programmer's Guide

Getting to Grips with the SIMPOL Language

Neil Robinson

Superbase NG Programmer's Guide: Getting to Grips with the SIM-
POL Language
by Neil Robinson
Copyright © 2001-2017 Superbase Software Limited

All rights reserved. The programs and documentation in this book are not guaranteed to be without defect, nor are they declared to be fit for
any specific purpose other than instruction in the use of the programming language SIMPOL. It is entirely possible (though not probable)
that use of any sample program code in this book could reformat your hard disk, disable your computer forever, fry your dog in a microwave
oven, and even cause a computer virus to infect you by touching the keyboard, though none of these things is terribly likely (after all, almost
anything is possible). It is just that most things are extremely improbable.

iii

Table of Contents
1. Introduction .. 1

Copyright Information .. 1
Disclaimer .. 1
New Versions of this Document ... 1
Software Used ... 1

I. Quick Start With SIMPOL ... 3
2. Introduction .. 7

Local Variables, Objects, and Values .. 7
Constants ... 7
Function Parameters ... 8
Statements .. 8
Intrinsic Functions ... 9
Operators ... 9
Complex Object Types ... 9
Flow Control ... 10
File Types .. 11

Source Files .. 11
Compiled Files .. 11
Debug Information ... 12

II. SIMPOL Language Basics .. 13
3. Basic SIMPOL Grammatical Stucture .. 17

End of Statement Characters .. 17
Line Continuation Character .. 17
Line Breaks and White Space .. 17
Comments .. 17
Literals ... 18
Case-sensitivity .. 19
Identifiers ... 19
Reserved Words .. 19

4. Data Types, Values, and Ranges ... 21
Blobs ... 21
Booleans ... 21
Integers .. 21
Numbers ... 21
Strings ... 22
Pre-Defined Values .. 22
Functions .. 22
Supplied Types .. 23
A Word About Arrays .. 25
User-Defined Types ... 26

5. Operators and Expressions ... 31
Operator Overview ... 31
Assignment Operators ... 31
Arithmetic Operators .. 32
Comparison Operators .. 32
Logical Operators .. 33
Bitwise Operators .. 33
Object Operators .. 34
Expressions and Statements ... 35

6. Statements and Flow Control .. 37
function ... 37
if ... 37
while ... 37

7. Variables .. 39
Variable Typing ... 39

Superbase NG Programmer's Guide

iv

Declaring Variables .. 39
Variable and Type Scope and Visibility ... 40
Value Types, Reference Types, and Type Tags ... 41
Variable and Object Persistence ... 42

8. Intrinsic Functions .. 45
The Nature of Intrinsic Functions ... 45
Compression Functions ... 45
Conversion Functions ... 45
Numeric Functions ... 46
Selection Functions .. 46
Blob Functions .. 46
String Functions .. 47

9. System Functions ... 49
The Nature of System Functions ... 49
The !beginthread() Function .. 49
The !loadmodule() Function .. 49
The !wait() Function .. 50

10. User-Defined Functions ... 51
Defining and Calling Functions .. 51
Function Scope .. 51
Function References (Pointers) ... 51

III. Web Server Applications — CGI, ISAPI, and FastCGI for Dynamic Web Content 53
11. SIMPOL Web Server Applications .. 57

Introduction .. 57
How it Works ... 57
Other Features ... 58
Web Server Application Tutorial .. 59
CGI Samples ... 65

IV. Using Databases ... 67
12. Using Databases in SIMPOL .. 71

Terminology .. 71
Traditional File-Oriented Databases .. 71

Introduction .. 71
SBL Database Commands ... 71
Common Database Programming Problems .. 72

Object-Oriented Database Access in SIMPOL ... 72
Introduction .. 72
Database Type Tags for Generic Database Functionality 73
A Comparison of SBL Commands and SIMPOL Methods 73
Summary .. 74

13. Using PPCS in SIMPOL .. 75
What is PPCS? .. 75
Setting Up a PPCS Server Using Superbase .. 75
Object-Oriented Database Access ... 76

14. Using SBME Databases in SIMPOL .. 81
Introduction .. 81
Difference Between SBME and SBF's ... 81
Programming with SBME Databases ... 82

V. Calling SIMPOL Functions as DLL Calls .. 85
15. Calling SIMPOL Functions as DLL Calls ... 89

Introduction .. 89
Using SMEXEC .. 89
SMEXEC Example Using SBL .. 89
SMEXEC-Compatible Function In SIMPOL ... 93

VI. Working with Sockets ... 95
16. Client Applications Using TCP/IP ... 99

Introduction .. 99
The tcpsocket Type .. 99

Superbase NG Programmer's Guide

v

To Block, or not to Block … ... 99
Practical Example — URLDump .. 99

In the Beginning … .. 100
The Main Event ... 100

17. Server Applications Using TCP/IP ... 107
Introduction ... 107
The tcpsocketserver Type .. 107
When a Connection Occurs .. 107
Exiting the listen() Method .. 107

VII. User-Interface Components ... 109
18. Using the wxWidgets Component in SIMPOL ... 113

Windows and Dialogs ... 113
Introduction to Windows and Dialogs .. 113
Creating a Single Window ... 114
Creating Multiple Windows ... 114
Working with Dialogs ... 116

Menu Bars, Menus, and Menu Items ... 121
Forms and Form Controls .. 123

Introduction to Forms ... 123
Creating Simple Forms .. 123
Working with Form Controls .. 125
The Grid Control ... 129
Summary .. 131

Common Dialogs ... 131
Parting Notes ... 131

19. Common Dialogs and Other UI Utilities in SIMPOL ... 133
Common Dialogs in SIMPOL .. 133
Message Boxes in SIMPOL ... 134

VIII. Converting From SBL ... 135
20. Moving from SBL to SIMPOL .. 139

The Basics .. 139
Comparison Between Language Primitives in SIMPOL and SBL 141
SBL Commands and Functions and the SIMPOL Equivalents 144
Differences Between SIMPOL and SBL ... 158
Tools for Converting SBL to SIMPOL ... 158

IX. Supplied SIMPOL-Language Libraries ... 161
21. SIMPOL Language Libraries Included .. 165

Introduction ... 165
List of Supplied Libraries .. 165

X. Programming Data-Aware Form Programs ... 173
22. Overview of Window and Dialog Types Provided with SIMPOL 177

wxwindow .. 177
wxdialog ... 178
wxform ... 178

Iterating Through wxform Elements .. 179
When to Use wxform .. 180

dataform1 .. 180
Using the Various dataform1 Services .. 182

printform1 ... 184
report1 .. 185
quickreport1 .. 186
graphicreport1 .. 187
application .. 189
appwindow .. 190

23. Using Data-Aware Forms in SIMPOL .. 193
The Design of dataform1 ... 193

Graphical Elements ... 193
Form Controls ... 193

Superbase NG Programmer's Guide

vi

Utility Types ... 194
Iterating Through dataform1 Elements ... 195
Controlling with Events ... 197
Using the Special Features ... 197

The onfill Event .. 197
The Drop List For Edit Controls ... 197
Using a Query to Fill a Detail Block ... 198

Two Approaches to Working with dataform1 .. 198
Auto-locking ... 198
Auto-locking ... 199

Making Use of formlib.sml .. 199
24. Using Data-Aware Print Forms in SIMPOL ... 201

The Design of printform1 .. 201
Working With printform1 .. 206
printform1 Summary ... 207

25. Using Reports in SIMPOL .. 209
Using the sqlq1 Type Directly .. 209

Using SQL92 in SIMPOL .. 209
Working with report1 .. 210

The Design of report1 ... 210
Working with quickreport1 .. 216

Enhanced Quick Report Output .. 222
quickreport1 Summarizing Quick Report Output 223
quickreport1 Summary .. 223

Working with graphicreport1 .. 223
graphicreport1 Summary .. 229

26. Using the SIMPOL Application Framework ... 231
The Design of the Application Framework .. 231
Working with appframework.sml ... 233

vii

List of Tables
12.1. Comparison of SBL file access commands to SIMPOL methods 74
20.1. Comparison of SBL key words to SIMPOL equivalents ... 141
20.2. Comparison of SBL commands and functions to SIMPOL equivalents 144
20.3. ... 145
20.4. ... 157
20.5. ... 157
21.1. Supplied SIMPOL-Language Libraries ... 165
22.1. dataform1 .. 180
22.2. dataform1 Methods ... 182
22.3. printform1 ... 184
22.4. report1 Types .. 185
22.5. report1 Functions .. 186
22.6. quickreport1 Types ... 186
22.7. quickreport1 Functions .. 187
22.8. graphicreport1 Types ... 188
22.9. graphicreport1 Functions .. 188
22.10. application Properties .. 189
22.11. appwindow Properties .. 190
23.1. dataform1 dring Types .. 195
25.1. onoutput Function Prototypes ... 228
26.1. The Functions in the Application Framework .. 231

viii

ix

List of Examples
15.1. SBL program calling SIMPOL function ... 90
16.1. Constants portion of the urlget program .. 100
16.2. Beginning of the main() function of the urlget program .. 100
16.3. Creating the socket connection in the urlget program .. 101
16.4. Beginning the TCP/IP conversation in the urlget program .. 101
16.5. Retrieving the header from the web server in the urlget program 102
16.6. Checking the response code in the web page header in the urlget program 103
16.7. Parsing the web page header in the urlget program ... 103
16.8. Retrieving the web page content in the urlget program .. 104
16.9. Returning the results to the user in the urlget program ... 105
18.1. Creating a Single wxwindow .. 114
18.2. Example of Creating Multiple Top-Level wxwindows ... 114
18.3. A Minimal Modal wxdialog Example .. 116
18.4. A Modal wxdialog .. 116
18.5. A Non-Modal wxdialog ... 117
18.6. A Modal wxdialog with Standard Buttons ... 118
18.7. A Modal wxdialog with Standard Buttons Using uisyshelp.sml 120
18.8. A wxmenu Example ... 121
22.1. Iterating Through Form Controls ... 179
23.1. Iterating Through dataform1 dring Properties .. 195
23.2. Iterating Through the Controls on Each Page of a dataform1 196

x

1

Chapter 1. Introduction
Copyright Information

This document is copyrighted (c) 2001-2016 Superbase Software Limited and is not permitted to be
distributed by anyone other than Superbase Software Limited and its licencees.

All translations, derivative works, or aggregate works incorporating any of the information in this
document must be cleared with the copyright holder except as provided for under normal copyright
law.

If you have any questions, please contact <info@simpol.com>

Disclaimer
No liability for the contents of this document can be accepted. Use the concepts, examples and other
content at your own risk.

All copyrights are held by their by their respective owners, unless specifically noted otherwise. Use
of a term in this document should not be regarded as affecting the validity of any trademark or service
mark.

Naming of particular products or brands should not be seen as endorsements.

You are strongly recommended to take a backup of your system before a major installation and to
make backups at regular intervals.

New Versions of this Document
Newer versions of this document will undoubtedly be released from time to time. It is recommended
that you always ensure that you have the latest version of the documentation. Normally the latest
version will be included with any update of the main product.

Software Used
This book was written using DocBook 5. It was initially written and edited in the Superbase NG IDE
and eventually very late in production was switched to the <oXygen/> editor. A single source in XML
is used to produce the book in HTML, HTML Help, and in PDF formats.

2

Part I. Quick Start With SIMPOL
This part of the book is intended to provide the reader with a quick introduction to the SIMPOL language without
getting too bogged down in detail. It should, however, provide a useful and rapid introduction to the language for
anyone who has experience in any other BASIC-oriented or C-oriented programming language.

5

Table of Contents
2. Introduction .. 7

Local Variables, Objects, and Values .. 7
Constants ... 7
Function Parameters ... 8
Statements .. 8
Intrinsic Functions ... 9
Operators ... 9
Complex Object Types ... 9
Flow Control ... 10
File Types .. 11

Source Files .. 11
Compiled Files .. 11
Debug Information ... 12

6

7

Chapter 2. Introduction
This book provides an introduction and reference guide to programming in SIMPOL, the new Super-
base NG programming language for cross-platform development.

A program in SIMPOL is made up of functions. The normal entry point to a program is the function
called main(). The most basic possible SIMPOL program is:

function main()
end function

Local Variables, Objects, and Values
Within a program there are local variables, objects and values. Local variables have to be defined
as being of a particular type and can only be used for that type. Every object has a type, which is
determined when the object is created. Values can be of any type that is permitted for a literal value,
or may be null or infinite.

Consider the following program:

function main()
 string s
 s = "Hello world"
end function s

The first statement, string s, defines a local variable called s. The second statement, s = "Hello
world", assigns the value "Hello world" to the local variable s. However there is more to the
assignment than it might at first appear. Local variables do not hold values, they refer to objects, and
it is objects that contain values. In the above program the assignment to s of the string literal "Hello
world" causes a new string object to be created, the string literal value is put in the new object and
the local variable s is set to refer to that object.

Constants
There are three kinds of constant values in a SIMPOL program, string literals, numeric literals and
intrinsic constants. String literals can be delimited by either single or double quotes, but the ending
delimiter must match the starting delimiter. This allows single and double quotes to be used in strings
without any special escape sequences, e.g.: "Can't" or 'Fred said "no"'. Numeric literals
can be specified in one of several bases by starting them with a leading zero and then a base indicator
letter, e.g.: 0d100 (decimal), 0xff (hexadecimal), 0o377 (octal) or 0b11001101 (binary). If no
leading zero and base indicator are found then the number is assumed to be decimal. Intrinsic constants
are identifiers that have a single fixed value. The permitted constants are .nul (the null value), .inf
(infinity), .true (the boolean true value) and .false (the boolean false value).

A function can return a value by specifying that value after the end function that terminates the func-
tion, for example:

function main()
end function "The end of the program"

or

function main()

Function Parameters

8

 string s
 s = "Hello world"
end function s

If no return value is specified then the return value is the null constant, .nul. A function can be called
from within an expression, and may take parameters in the normal way, for example the following
program will have a final return value of 15:

function main()
 integer i
 i = 5
 i = i + double(i)
end function i

function double(integer i)
end function i+i

Function Parameters
Function parameters can be named and take a default value. Actual parameters supplied when the
function is called can be specified by name, and if not specified at all will take the default value. When
passing parameters to a function named parameters are resolved and passed first, and then unnamed
actual parameters are passed to the unused function parameters from left to right. Finally any unpassed
parameters are set to their default values, or if none is specified unused parameters are set to .nul.

For example, the following program produces a result value of: x = abc, y = <y not spec-
ified>

function main()
end function x_and_y(x = 'abc')

function x_and_y(string x = '<x not specified>', string y = \
 '<y not specified>')
end function "x = " + x + ", y=" + y

Also, the next program produces a result value of: x = xyz, y = <y not specified>,
z = uvw

function main()
end function x_and_y_and_z(z = 'uvw','xyz')

function x_and_y_and_z(string x = '<x not specified>', string y =\
 '<y not specified>', string z = '<z not specified>')
end function "x = " + x + ", y=" + y + ", z= " + z

Functions, types and local variables all have names, and parameters can be named. In order to be valid
a name must start with a letter and all other characters in it must be a letter, a digit or an underscore.

Statements
Within a function SIMPOL is made up of statements. Typically a statement will occupy a single line
within the source code, but more than one statement can be placed on one line by separating them
with semi-colons (;) or colons (:). Also it is possible to break a statement into more than one line;
the backslash (\) character is used to indicate that the following line is a continuation of the current
one, but is only valid if it is the last non-white-space character on the line.

Intrinsic Functions

9

Intrinsic Functions
In order to manipulate values SIMPOL provides intrinsic functions. These are functions whose pa-
rameters are unnamed and must all be supplied. The return from an intrinsic function is some other
value, which depends on, and only on, the parameter values. For example the .len() function takes
a single string parameter and returns the number of characters it contains. As another example, the
.tostr() function takes two numeric values, the first being a value to be represented as a string and
the second being the base to use, e.g.: .tostr(13,2) returns '1101', or .tostr(123456,10) returns the
string '123456'.

Operators
In addition to intrinsic functions there are operators which work on one or more parameters. Common
examples of these are the addition operator +, the unary negation operator - which converts a value
to its opposite, in some sense depending on the value type, and the comparison operators, ==, < etc.,
which return a boolean value that depends on a comparison between the left and right operands. It
should be noted that operators operate on values, not objects. For example the code:

integer i
integer j
i = 3
j = - i

does not change the value in the object referred to by i from 3, it takes the value from that object,
negates the value only, and assigns the result to j.

Complex Object Types
The object types that are also value types, such as string or boolean, exist primarily to hold values of
that type. More complicated types exist either to provide information to the program, or to allow the
program to do something. For example the fsfileinputstream type is used to read data from
a file in a file system (such as on disk or over a network). With the simple value types an object is
created for a local variable to refer to when an assignment is made to that local variable, as in the
string s;s = 'Hello world' example earlier. With non-value types this is not the case — it is necessary
to explicitly create these objects, normally using a new() function. The following example creates
an input stream to read from the file c:\autoexec.bat:

function main()
 fsfileinputstream f

 f =@ fsfileinputstream.new("c:\autoexec.bat")
end function

The =@ operator in this example is an important one which caused the local variable f to be set to refer
to the object on the right hand side of the operator. This should be contrasted with the = operator which
instructs the value on the right hand side to be assigned to the object referred to by the local variable on
the left. As a rather pedantic yet instructive example, the following program has a resulting value of 1:

function main()
 integer i
 integer j

 i = 1
 j = i

Flow Control

10

 i = 3
end function j

whereas the following program produces a result of 3:

function main()
 integer i
 integer j

 i = 1
 j =@ i
 i = 3
end function j

The difference is that j = i assigns to the integer object referred to by j the value of the integer object
referred to by i, whereas j =@ i causes both i and j to refer to the same integer object, so when a
value is assigned to i it is setting the value of the object to which j refers.

The input stream is destroyed (closing the file) when the local variable f is destroyed, at the end of
the function. In the case of an input stream, the parameters that have to be passed to a new function
depend on the type of object being created, in this case only the filename is required.

Object types also have properties, which are either embedded objects of other types or references to
other objects. For example the fsfileinputstream type has a property called filename of
type string, which contains the name of the file being read. Extending the previous example slightly
gives a program the result of which is the value 'c:\autoexec.bat':

function main()
 fsfileinputstream f

 f =@ fsfileinputstream.new("c:\autoexec.bat")
end function f.filename

Object types can also have member functions, or methods, which are functions that do something
with or to the object. For example the fsfileinputstream type has a member function called
getstring, which can be used to read a string from the input file. The following program has a return
value that is the first line of the c:\autoexec.bat file. The exact syntax for member functions
such as getstring is type and function dependent, and can be found in the language reference.

function main()
 fsfileinputstream f

 f =@ fsfileinputstream.new("c:\autoexec.bat")
end function f.getstring(.inf,1,.true,.char(13)+.char(10))

Flow Control
There are flow control constructs in SIMPOL that are similar to many other languages. The if … else
if … else … end if construct is straightforward:

if (i == 3)
 j = 5
else if (i == 4)
 j = 6
else

File Types

11

 j = 7
end if

In some cases the .if() intrinsic function provides a better alternative to the if construct. The while …
end while can have conditional expressions at the beginning or the end, or both. The contained block
will be entered if the initial expression is absent or is considered to have passed. At the end of the
block control will return to the first test if the final condition is absent or is considered to have failed.
The end while condition should therefore be thought of as an end while if type of expression. For
example the following kind of loop could be used to process the lines in an autoexec.bat file:

fsfileinputstream f
string line
boolean error

f =@ fsfileinputstream.new("c:\autoexec.bat")
error = .false
while (f.endofdata == .false)
 line = f.getstring(.inf,1,.true,.char(13)+.char(10))
 // ...
 // process the line maybe setting error to true
 // if an error is encountered
 // ...
end while (error == .true)

File Types
As is the case with many programming language products, SIMPOL uses a number of different file
types in the course of creating a program. This consists of source files, compiled modules, runnable
programs, debug information and so on. In this section we will look at each of these areas in more
detail.

Source Files
A SIMPOL program starts with one or more source files that are either in some ANSI 8-bit character
encoding or else in Unicode (specifically in the pure 2-bytes per character form, not yet supporting
windowing using aggregates). Unicode files should begin with a byte-order mark (BOM) in the form
of Unicode character FEFF. If the data in the source file is in big endian (most significant byte first)
order (typical for the Macintosh, Amiga, Atari ST, and other operating systems that are running or
began on computers based on the Motorola CPU's starting with the MC68000) then the BOM must
also be written in the big endian style, as FEFF. If the data is stored in little endian order, then the
BOM must be written as FFFE. If the data is in Unicode and there is no BOM then the compiler will
try to guess by analyzing the input. Files saved using the SIMPOL IDE will always have the correct
BOM for Unicode files. Non-Unicode files do not have this issue, but have the problem that the 8-
bit encoding of the source may not be interpreted in the same way on another computer or operating
system if any characters above character value 127 are used.

Source files stored in ANSI format are typically stored with the extension sma. Those stored in Uni-
code format are stored with the extension smu. These extensions are not mandatory, but are recom-
mended for interoperability with others and with any tools that may be created that may depend on
the file name extensions. Source files stored by SIMPOL IDE's will always be stored in little-endian
order even on big-endian operating systems.

Compiled Files
A compiled program in SIMPOL typically ends with the extension smp. Another type of compiled
SIMPOL program is a module. Unlike a program, a module does not have a main() function. It is pre-

Debug Information

12

compiled and can either be loaded at runtime using the system function !loadmodulefile() or it
can be concatenated onto the end of a compiled SIMPOL program in a type of static linking. Module
files are normally given the extension sml. The SIMPOL IDE is designed to allow for both static and
dynamic linking (whereby the dynamic onking is done by the SIMPOL program when it needs to load
a module, not by some loader). This allows the greatest amount of flexibility when designing complex
programs using SIMPOL since modules can be written to be reused by other programs and therefore
do not have to be compiled into every single program that uses them. It also allows components to
be compiled only when their source files have changed and means that not every component must be
compiled into one monolithic program. This will result in faster compile times.

One important issue that is related to storing reusable functionality in separate modules is that of scope
and visibility. Unless expressly exported in the source code, user-defined types and functions are not
visible outside of the module. To make them visible, add the export keyword to the end of the
function or type declaration as shown below:

type mytype1(mytype) embed export
 string ID embed
 type(mytype) next
end type

type mytype2(mytype) embed export
 string ID embed
 type(mytype) next
 integer index embed
end type

function getid(type(mytype) t) export
end function t.ID

Debug Information
Debugging information comes in various flavors. In SIMPOL we have reserved the extension smd
for files that store debugging information as part of the compilation process. These files are not yet
in use at the time of writing, but will be used in the future. Another extension that is in use currently
is slg. This is a file that is created when an error occurs while running a SIMPOL program using
one of the debug versions of the loader, either the standard loader file or the CGI version. When an
error occurs, the debug versions of these programs will output a file of the same name as the program
that is executing, but with the file name extension slg. This file will contain the error message and
error number together with the reconstructed source code of the function with an indicator as to which
line contained the problem.

Part II. SIMPOL Language Basics
In this part of the book the basic language syntax of the SIMPOL language is covered in depth. This is not a
book for teaching programming, however, so some experience in another language will be helpful in getting up
to speed with this material quickly. This part is fairly dry and dusty but provides a well-rounded grounding in
the essentials of the language itself. It does not cover the mechanics of compiling and running a program, that
can be found elsewhere.

15

Table of Contents
3. Basic SIMPOL Grammatical Stucture .. 17

End of Statement Characters .. 17
Line Continuation Character .. 17
Line Breaks and White Space .. 17
Comments .. 17
Literals ... 18
Case-sensitivity .. 19
Identifiers ... 19
Reserved Words .. 19

4. Data Types, Values, and Ranges ... 21
Blobs ... 21
Booleans ... 21
Integers .. 21
Numbers ... 21
Strings ... 22
Pre-Defined Values .. 22
Functions .. 22
Supplied Types .. 23
A Word About Arrays .. 25
User-Defined Types ... 26

5. Operators and Expressions ... 31
Operator Overview ... 31
Assignment Operators ... 31
Arithmetic Operators .. 32
Comparison Operators .. 32
Logical Operators .. 33
Bitwise Operators .. 33
Object Operators .. 34
Expressions and Statements ... 35

6. Statements and Flow Control ... 37
function ... 37
if ... 37
while ... 37

7. Variables .. 39
Variable Typing ... 39
Declaring Variables .. 39
Variable and Type Scope and Visibility ... 40
Value Types, Reference Types, and Type Tags ... 41
Variable and Object Persistence ... 42

8. Intrinsic Functions .. 45
The Nature of Intrinsic Functions ... 45
Compression Functions ... 45
Conversion Functions ... 45
Numeric Functions ... 46
Selection Functions .. 46
Blob Functions .. 46
String Functions .. 47

9. System Functions ... 49
The Nature of System Functions ... 49
The !beginthread() Function .. 49
The !loadmodule() Function .. 49
The !wait() Function .. 50

10. User-Defined Functions ... 51
Defining and Calling Functions .. 51
Function Scope .. 51

16

Function References (Pointers) ... 51

17

Chapter 3. Basic SIMPOL
Grammatical Stucture

Every programming language has various characteristics about the way that it is expected to be pre-
sented that can reasonably be termed its grammar. In this chapter we will discuss the points that will
assist you in writing programs in SIMPOL. Although SIMPOL derives from BASIC in some respects,
like any good language there are a number of elements that differentiate it from other languages that
exist.

BASIC is a line-oriented language, whereas C and Pascal are statement-oriented. SIMPOL is mainly
a statement-oriented language, but similarly to BASIC, it is not necessary to close a string at the end
of a line, it will be done for you if you forget. More significant is that in SIMPOL every program
begins at the main() function and ends when it returns from that function. There are no labels nor
is there any equivalent of the BASIC keywords GOTO and GOSUB. For some programmers a more
significant departure will be the total absence of global variables. In spite of, or perhaps because of
these differences program design in SIMPOL is fast and effective and results in very fast and easily
followed and maintained code.

End of Statement Characters
There are several ways to indicate the end of a statement in SIMPOL, using a semi-colon ;, a colon
:, and by starting a new line. These can also be mixed in a program, there is no requirement that they
be used consistently.

Line Continuation Character
One common problem that occurs in languages like BASIC and SIMPOL that consider the end of line
to also be the end of statement, is that it results in very long lines in the source programs. One method
of combatting this problem is by use of a line continuation character. A line continuation character
tells the parser or interpreter to continue reading the statement on the next line without ending the
statement. In SIMPOL this character is the backslash (\) character. The line continuation character
even applies within a string literal, as long as the backslash is the last character on the line other than
white space before the end of line is reached. The only exception to this rule is in the case of the double
slash comment, which means the entire line following is a comment.

Line Breaks and White Space
Line breaks are normally interpreted as end of statement characters unless they are suppressed by the
programmer through the use of a line continuation character. White space characters (spaces, tabs,
and end of line characters) are considered to be token separators similar to other punctuation such as
parentheses and are otherwise ignored except when found within string literals.

Comments
Any string literal that is an L-value (found on the left side or beginning of a statement) is considered
to be a comment. Such comments can even include the backslash character at the end of the line to
allow them to extend across multiple lines. These comments are not considered to be line comments,
but rather statement comments. If the string literal is closed then whatever follows it on the same line
will not be considered a comment.

Another way of commenting is to use the double slash // to comment out an entire line. This comment
type is line based and will also ignore the backslash line continuation character if it is at the end of the
line. There is no method in the language for making block comments.

Literals

18

Literals
There are various types of literals in SIMPOL. Boolean literals are either .true or .false. Numeric
literals must be a contiguous sequence of digits or digits and letters in the case of hexadecimal values.
If only digits are encountered then the value is considered to be decimal. There is also support for
other numeric bases. If it starts with:

• 0b then the number will be evaluated as binary

• 0o then the number will be evaluated as octal

• 0d then the number will be evaluated as decimal

• 0x then the number will be evaluated as hexadecimal

String literals can be delimited either by a single (') or double (") quote character. Any character
can also be inserted into a string literal by placing the hexadecimal character value inside of curly
braces. For example, to insert a carriage return and linefeed pair into a string literal it would look like
this: "{0D}{0A}". To escape the starting curly brace in the string simply include a second one. It is
not always necessary to escape the starting curly brace, only if there is any chance that the following
character could be interpreted as a hexadecimal value.

To include a double quote character in a string the easiest method is to use single quotes to delimit the
string literal. Another method is simply to escape the double quote character with itself. An example
of this is:

function main()
 string foo
 foo = 'Don''t you know?'
end function foo

which will return the string: Don't you know?.

Number literals are currently not supported, nor is scientific notation. To enter a value that has a
fractional component into a number variable, it is necessary to place the value in a string and use the
.toval() intrinsic function to convert it to a value. To enter a value that is normally a repeating
decimal into a number, the special notation for repeating decimals can be used. This is also the way
that repeating decimals are converted using the .tostr() intrinsic function. For example, to enter
the value 1/3 into a number variable, try the following:

function main()
 number n
 n = .toval("0.3[3]", .nul, 10)
 n = n * 3
end function n

The return value of the function is 1.

The special values .inf and .nul are essentially typeless, and can apply to any value type. The
special value .nul can also mean the absence of an object.

Gotcha

These special values may cause some confusion when you begin using them. Any nu-
meric expression, regardless of whether that is string concatenation or multiplication of
integers, that includes the value .nul is equal to .nul. If you are adding strings to-
gether and one of them is equal to .nul, then the entire resulting string is equal to .nul

Case-sensitivity

19

and if that is being output, then nothing will be output. The same is true of .inf unless
the expression also includes .nul.

Warning

Constants in SIMPOL can currently only be of type integer, string, or boolean and addi-
tionally integer constants cannot be negative (since this is considered to be an operation
and at the time that constants are evaluated operations are not supported).

Case-sensitivity
All identifiers: type names, variable names, function names, and the names of symbolic constants are
case-sensitive. All keywords, intrinsic, and system function names are also case-sensitive. This means
that the variable names: foo, FOO, fOO, Foo, … are all considered to be different variables.

Identifiers
Identifiers in SIMPOL are currently composed of the characters a-z, A-Z, the digits 0-9, and the un-
derscore. They are required to begin with an alphabetic character. The restriction to the character range
may be modified in the future although we do not currently foresee supporting right-to-left identifier
names or identifiers written using kanji characters.

Reserved Words
There has been a significant attempt made to keep the number of reserved words in SIMPOL to a
minimum. The following words should be considered to be the current list of reserved words:

• and

• AND

• boolean

• constant

• else

• embed

• export

• end

• function

• if

• include

• information

• integer

• mod

• not

• number

Reserved Words

20

• or

• OR

• reference

• resolve

• string

• type

• while

• XOR

This list should not yet be considered complete. Possible additions to the list could include:

• break

• case

• dim

• in

• par

• select

• switch

• sql

• where

21

Chapter 4. Data Types, Values, and
Ranges

In this chapter we will discuss the various simple and complex data types that are present in SIMPOL.
We will also discuss the valid value ranges, the special values .nul and .inf, functions, supplied
complex types, and user-defined types.

To start with, it is important to point out that in SIMPOL, everything is an object. Types are objects,
functions are objects, events are objects, and a variable always refers either to an object or to .nul.
The scalar data types are also objects, but they are relatively simple objects. In this chapter we will
cover the SIMPOL scalar data types: blob, boolean, integer, number, and string. We will also cover
some standard included object types: array, date, datetime, and time. Other types will be discussed in
depth in their own chapters, such as file streams, sockets, and databases.

Blobs
Blobs provide the SIMPOL programmer with a very powerful data type and mechanism for dealing
with raw binary data. Blobs are also value types but they have a number of additional methods related
to the ways in which they are most likely to be used.

It is probably easiest to think of blobs as being like a traditional array of bytes and at the same time
to be very similar in the way they work to strings. Blobs can be concatenated using the + operator
and then assigned to a variable of type blob. The new blob will be the combined length of the two
original blobs. It is also possible to create a blob with a pre-determined size. This can be a significant
performance improvement over strings, since it is possible to index into the blob using the square
brackets operators [] and to then modify the value, whereas with a string concatenation would be
used. When done once there is no significant difference but in a loop, concatenation would result in a
large number of less efficient memory allocations that wouldn't have been necessary in a blob.

Booleans
Unlike many programming languages, SIMPOL includes a true Boolean data type and in what is
becoming typically classic SIMPOL style, it can have four distinct values, .true, .false, .nul,
and .inf. An important point to remember when using expressions in statements such as while
and if is that unless the result of the expression is the boolean value .true, then it may very likely
be considered to be false.

Integers
The SIMPOL integer data type is capable of containing the whole number values, both positive and
negative plus zero, in an extremely large range. The maximum size of an integer is essentially unlimit-
ed, but is still somewhat operating system dependent. On virtually all operating systems it will support
values up to 10 to the 150,000, and on 32-bit or greater operating systems will support values to 10
to the 4 billion or so. As can be seen, there is very little likelyhood that an integer will ever be larger
than can be stored in SIMPOL. What is possible, however, is that an integer might be too large to be
stored on a small device that has very little memory.

Numbers
The number data type in SIMPOL does not make use of floating point and is therefore not affected
by the typical rounding errors that are found in floating point. The values stored in objects of type
number are completely precise. Repeating decimal values are stored internally with complete accuracy.
They can also be output in such a way as to indicate that they are repeating values and they can be

Strings

22

converted back from strings to numbers with no loss of accuracy. An important point to remember
when working with numbers in SIMPOL is that if you don't want values to have hundreds or even
thousands of significant digits after the decimal point, then it is imperative that you make use of the
.fix() intrinsic function to reduce the value to the precision and scale desired.

Note

Currently it is not possible to assign a decimal value to a number in the source
code. To assign a decimal value, use a string and the .toval() function. Al-
so, when a number is output to a string, if it contains a repeating decimal
then that will be output in the following format: <value>.<non-repeating
portion><portion that repeats>[<portion that repeats>] . For
example, 3.3333333333333<repeating> would be output as 3.3[3]. The same
value can be assigned from a string to a number using .toval().

Strings
Strings in SIMPOL are fairly straightforward except for two significant issues: they are in Unicode
format and they are essentially unlimited in size (limited only by memory). There are numerous in-
trinsic functions and types that are meant to work with strings and other than when leaving or entering
SIMPOL those all work based on the character, not the byte. There are, however, methods that allow
the user to specify one or two bytes per character when both reading and writing.

Pre-Defined Values
There are four pre-defined values in SIMPOL, two of which can be applied to to every type, and two
that are specific to the boolean type. These values are: .true, .false, .nul, and .inf. The first
two have been discussed in the section on the boolean type. The latter two can be applied to all value
types and .nul can be applied to all types, both value and object types. The value .inf stands for
infinity. It has many similarities to the .nul value and in some cases it is converted to that value
if there is no available value to represent infinity, such as in SQL. The infinity that is represented in
SIMPOL is both positive and negative infinity, but there is no value that represents infinitesimal (1
divided by infinity). In fact, in SIMPOL 1 / .inf is equal to .nul.

It is important to understand how the two special values, .nul and .inf are used within SIMPOL
and how their very existence in the language plays a role in how programs written in it may or may not
work as expected. The first of the two values, .nul is used in many places as a return value and also it
is the default value of a variable that has been created but not yet been initialized with a value. Having
the concept of a null value in the programming language is quite useful, especially when interacting
with databases where the desire to retain the characteristic of an empty field within a calculation may
be desirable. The null value in SIMPOL follows some fairly clear rules. The value .nul combined
with any other value or values results in the value .nul. If in your program you are suddenly finding
an unexpected null result, then chances are that somewhere a value was uninitialized (or a database
field is empty).

Functions
In SIMPOL functions are also a data type. It is perfectly reasonable to create a variable of type function
that can then be used as a reference to a function. In fact, in some of the functionality provided with
SIMPOL, such as tcpsocketserver it is necessary to provide a function reference so that the server
knows which function to call when a socket connection is made.

Although that may seem to present considerable complexity, using function references is typically not
necessary for programming with SIMPOL, other than when working with events, but the existence
of this capability is one of the facilities that allows advanced programmers to create highly sophisti-
cated programs. By using function references, it is possible to assign a display function to a function

Supplied Types

23

reference based on the type of the data that is to be displayed, and then just call the display function
using the function reference. This makes for very clear and easy to read program code and moves the
functionality of how to display a given data type out of the main program and into a function where
it can also be reused.

Supplied Types
This section will be a continual work in progress, since the supplied types will be continually growing
with time. There are two kinds of types: value types and object types. Value types are those previously
listed and which are typically also known as scalar types in other languages. The following value types
are included:

• blob

• boolean

• integer

• number

• string

These types have been discussed in earlier sections, so they won't be covered again here.

There are a number of different classes of object types. The list below is in no way exhaustive. See
the SIMPOL Language Reference Manual for a full list of the available types.

• anyvalue

• array

• cgicall

• date

• datetime

• event

• fsfileinputstream

• fsfileoutputstream

• lock1

• ppcstype1

• ppcstype1field

• ppcstype1file

• ppcstype1index

• ppcstype1record

• ppcstype1server

• ppcstype1serverfield

• ppcstype1serversbme

• ppcstype1servertable

Supplied Types

24

• ppcstype1serverudpport

• rgb

• sbme1

• sbme1field

• sbme1file

• sbme1index

• sbme1newfield

• sbme1newfile

• sbme1newindex

• sbme1record

• tcpsocket

• tcpsocketserver

• time

• UTOSdirectory

• UTOSdirectoryentry

• wxform

• wxformbutton

• wxformcheckbox

• wxformcombo

• wxformedittext

• wxformlist

• wxformoption

• wxformtext

• wxwindow

Object types are more complex than value types and normally must be initalized with the new()
function and the return value must be assigned using the =@ operator. The reason for this is efficiency.
It would be terribly inefficient to completely initialize a large complex object every time a variable
is created if the programmer only intends to use the variable to refer to an existing object. Think of a
variable representing a window. That is quite a lot of processing and resource overhead if the window
must be created as soon as the variable is created and then the window would be thrown away as soon
as the variable is assigned to a different pre-existing window object. Also, some objects are created
only by virtue of the existence of another object, so they cannot be created using a new() method.
Such an object is the ppcstype1field, which can't exist without a ppcstype1file.

The @= operator and the =@ operator are the equivalent of the SET command in SBL and the Set
command in Visual Basic. It is also important to be able to test for the existence of an object. In SBL
the IS() function combined with the NOTHING keyword is the method used: IF IS (w, NOTHING)

A Word About Arrays

25

THEN. In SIMPOL the same test would look like this: if w =@= .nul. Each of the object types listed
above is described in detail in the "SIMPOL Language Reference".

A Word About Arrays
Arrays are typically found in most programming languages, but the version that is present in SIMPOL
can be considered to be a superset of the functionality provided in most implementations. The first
significant difference is that array is a type of its own. Also, most languages require that arrays be pre-
specified to be of a specific size and type. Many automatically start at index 0, others allow a base
index to be specified. In SIMPOL the array type is very flexible, although this also comes at a price.

Firstly, arrays are not required to be made up of only one type. It is perfectly acceptable to assign
different data types to different elements of the array. This may not be a clever thing to do in all cases,
but it is possible. Another interesting feature of the array type is that at each level of the array it is
possible to have elements present. That means that it is possible to create a multidimensional array
that looks like this:

array a,b
datetime dt

dt =@ datetime.new()
dt.setnow()

a =@ array.new()
b =@ array.new()

a[] = "Week Info"
a[1] = 10
a[1,0] = "Monday"
a[1,1] =@ dt
a[2] = 20
a[2,0] = "Tuesday"
a[2,1] =@ dt

b["array a"] =@ a
a =@ .nul

In the preceding example the majority of the capabilities of the array can be observed. Arrays can be
indexed numerically or via strings or both. They can have values at every level of a multidimensional
array, not just at the lowest level. Even the null element a[] can have a value or an object assigned
to it. Any element can contain a value or a reference to an object. In the example above, the array b in
element b["array a"] still contains a reference to the array object that was originally referenced
by the variable a even after that variable has been set to .nul. As long as a reference to the object
exists, the object itself still exists, and all elements that are associated with it.

As can be seen from the preceding example, it is possible to build quite complex arrays. Arrays can
also be used in some cases in place of user-defined types. It is, of course, possible to create an array
of user-defined type. The approach taken is left to the programmer, but it is strongly recommended
that a consistent use is made of the array, since if they are used with varying data types it is entirely
possible that an incorrect assignment may occur causing a type mismatch runtime error.

Note

It is important to realize that to detect if an array element is empty (as in not assigned),
it is only necessary to test the value of the element in question. It is not an error to assign
from an unassigned element. The value of any unassigned element is .nul. To get rid
of an array element, it is necessary to set the element to .nul.

User-Defined Types

26

User-Defined Types
User-defined types are a significant advantage for any serious programmer, and can even be useful to
less experienced programmers. At their simplest, user-defined types may consist of little more than a
combination of value types that can be used together as a single unit. A perfect example of this might
be a structure containing locale information. This type of structure would need to be passed to any
function that is going to format a number, a date, or a time for presentation to the user and also to
convert such data from the string representation provided by the user to an appropriate value or object
type in the program. Here is what such a structure might look like:

type tLocaleInfo
 string sDecimalSep embed
 string sThousandsSep embed
 string sListSep embed

As can be seen from this example, it would be quite a bit more convenient passing around a single
piece of information that contains all of the things that are important with respect to the locale than
to have to pass each of these pieces of information around separately and to address them and store
them separately as well. The example shown is a very simplistic implementation and does not include
information about formatting dates or times, since these are also considerably more complicated than
mere numeric formatting.

Type definitions must be located outside of any function, but they do not need to precede the function.
The type definitions could be located in an include file and just be added on to the end of the program.
Below is a gradual introduction to using user-defined types. Follow it through step-by-step and it
should be failry clear at the end. The examples that include functions can even be tried out.

type mytype
 string m1
end type

In the type mytype, the string parameter contains a reference to a string object, it does not contain
an actual string object.

type mytype1
 string m1 embed
end type

The mytype1 type contains an actual string object, not a reference.

To use the two types above see the following code:

function main()
 mytype m
 string s

 m =@ mytype.new()
 s = "hello"
 m.m1 =@ s
 s = "foo"
end function m.m1

This will return foo, since m.m1 contains a reference to s.

User-Defined Types

27

function main()
 mytype1 m

 m =@ mytype1.new()
 m.m1 = "hello"
end function m.m1

This will return hello, since m.m1 is an embedded string.

function main()
 mytype m

 m =@ mytype.new()
 m.m1 = "hello"
end function m.m1

This will result in an error, since hello is not an object, it is a value and this type can only hold a
reference to an object.

type mytype2
 mytype mm1 embed
 mytype mm2
end type

function main()
 mytype2 m
 string s

 m =@ mytype2.new()
 s = "hello"
 m.mm1 =@ mytype.new()
 m.mm1.m1 =@ s
end function m.mm1.m1

This will result in an error 52, since the type mytype has not been defined as embeddable. The error
not embeddable will be generated.

type mytype embed
 string m1
end type

type mytype2
 mytype mm1 embed
 mytype mm2
end type

function main()
 mytype2 m
 string s

 m =@ mytype2.new()
 s = "hello"
 m.mm1.m1 =@ s
end function m.mm1.m1

The above should now work as expected.

User-Defined Types

28

type mytype embed
 string m1 embed
end type

type mytype2
 embed
 mytype mm1
 mytype mm2
end type

function main()
 mytype2 m

 m =@ mytype2.new()
 m.mm1.m1 = "hello"
 m.mm2.m1 = m.mm1.m1
 m.mm2.m1 = .lstr(m.mm2.m1, 2)
end function m.mm1.m2

This should also work and produce an output of he.

type mytype
 string m1
 mytype next
end type

function main()
 string s
 mytype m,mfirst

 s = "hello"
 m =@ mytype.new()
 mfirst =@ m
 m.next =@ mytype.new()
 m =@ m.next
 m.next =@ mytype.new()
 m =@ m.next
 m.next =@ mytype.new()
 m =@ m.next
 m.next =@ mytype.new()
 m =@ m.next
 m.m1 =@ s
 m =@ mfirst
 mfirst =@ .nul

end function m.next.next.next.next.m1

This is an example of a singly-linked list which should return hello. The ability to include references
to the same type as that being defined makes it possible to create complex data structures in memory,
such as lists and trees.

A final note about embedded objects. Some objects cannot be embedded, such as fsfileinputstream
or fsfileoutputstream or any of the ppcstype1 objects, mainly because they cannot be initialized by
calling their new function. However, references to any object type can be part of a type definition.

The previous types consisted only of values and references to values but did not include methods.
A more powerful kind of user-defined type is one that includes methods. Any user-defined type can

User-Defined Types

29

also have a user-defined new() method that allows the programmer to do initialization of the newly
created object when it is created. To create the methods, the functions must be defined in the same
module (compilation object) as that where the type is defined and they must follow the type definition
in the code file. It is defined by using the type name followed by the dot operator followed by the
function name. The first argument to the function must be the type itself and in the case of the new()
method it must return the object of the type that was passed in, otherwise the assignment to the variable
will fail. See the example that follows:

type tCustInfo export
 string sCustID embed
 string sFirstname embed
 string sLastname embed
 datetime dtCreated embed
 string sCreatedBy embed
 function copy
end type

function tCustInfo.new(tCustInfo me, string sCreatedBy)
 me.dtCreated.setnow()
 me.sCreatedBy = sCreatedBy
end function me

function tCustInfo.copy(tCustInfo me)
 tCustInfo copy

 copy =@ tCustInfo.new(me.sCreatedBy)
 copy.sCustID = me.sCustID
 copy.sFirstname = me.sFirstname
 copy.sLastname = me.sLastname
 copy.dtCreated = me.dtCreated
end function copy

The preceding example shows a user-defined type that implements a new() method and a copy()
method. The copy() method is implemented so that it produces an exact copy rather than a copy
with a potentially new creator ID and new creation datetime. Typically such types will be defined and
implemented in a single code file and then compiled as a SIMPOL pre-compiled module file that can
be added to a project either at compilation or at runtime. That is the purpose of the export keyword in
the type definition, to ensure that the type is visible outside the module. The functions do not require
the export keyword since they are made available within the type.

If the new() method is listed inside the type definition then it can be called again to reinitialize the
type. It is not necessary to list it, however, unless it should be possible to call at some point other than
during the initial call to create the object.

Another important issue is the proper use of the keywords embed, reference, and resolve.
By default, properties added to a type definition are references to items of a specified type (or any
type using type(*), any value type by using type(=), or any matching tagged type when using
type(<tagname>)). To make a property embedded, the embed keyword can be added to the end
of the statement. To switch the default from by reference to embedded, the embed keyword can be
placed inside the type definition on a line of its own. To switch back, place the reference keyword
on a line by itself. These switches only apply within a type definition. The change of the default resets
to "by reference" after exiting a type definition. The resolve keyword is used for a very special
situation. Normally properties that are not embedded are not examined when trying to resolve the name
of a property or method, but if the resolve keyword is added to the end of the property definition,
then at runtime that property will be included when searching for a property or method that is not
listed at the first level of the type definition. Let's look at a small example of this:

User-Defined Types

30

type myform
 form1 f
 string sFormname embed
end type

type myapplication
 myform mf resolve
 embed
 string sUsername
 datetime dtStart
end type

function main()
 myapplication app

 app =@ myapplication.new()
 #
 app.addcontrol(…)
 #
end function

Normally it would not be possible to call a method of the form1 object without directly referencing
the f, but the use of the resolve keyword allows this. However, if the form1 object has not yet
been initialized this will result in a runtime error number 21, "Object not found". Using the resolve
keyword can help in creating powerful and easy-to-use types, but it is important that the types are
designed in such a way as to minimize the likelyhood that those portions marked with resolve will
cause an error because they are uninitialized. That might mean that the type's new() method takes
parameters that allow the correct initialization.

31

Chapter 5. Operators and
Expressions

Operator Overview
Most of the operators used in SIMPOL should look familiar to anyone who may have programmed
in BASIC, C, C++, Java, or any of a number of programming languages. Some of the operators are
specific to SIMPOL and need to be looked at more closely, in part because the very existence of
these operators is a guide to effectively using and also to understanding the language itself. Just as
it is essentially impossible to learn a human language without learning something of the culture that
both formed and is formed by the language, a programming language embodies a specific approach
to solving problems that may suit some people but not necessarily everyone, or it may embody an
approach to a certain class of problem that is not as well addressed by other tools. The approach that
is used in the language will then dictate the types of semantic devices that are necessary to support
the creation of effective programs using the language.

The operators (and operations) in a language can be divided into a number of categories: assignment,
arithmetic, comparison, logical, and object operators. Each of these will be discussed in detail in the
sections that follow.

Assignment Operators
The standard assignment operator in SIMPOL is the equals symbol (=). This operator is used to assign
a value to an object that is a value type. In other words, to assign a value to an integer, a number, a
string, or a boolean object. This is equivalent to the use of the equals symbol in C and C++ and the
assignment operator in Pascal and Delphi (:=). Unlike in most BASIC-derived languages, including
the existing Superbase Basic Language (SBL) and Microsoft's Visual Basic, the equals symbol is not
allowed to be used for both assignment and comparison. It is strictly used for assignment. See the
section on comparison operators for more information.

As was discussed earlier in the chapter on data types, SIMPOL has two primary data types, value types
and object types. For the value types the equals operator is used, since it is merely assigning a value
to a variable. In the case of the object types, there is lot more going on, and it is important to realize
that instead of a value being assigned to a variable, a reference to an object is being assigned to that
variable. In SBL and Visual Basic, this is typically done using the SET keyword, as in:

DIM f AS Form
DIM c AS FormControl
SET f = Forms.Add("MyForm")
SET c = f.Controls.Add("tb1", "TextBox")

Rather than using a keyword, in SIMPOL there are two operators that can be used to make the assign-
ment, either @= or =@. The example above converted into SIMPOL might look like this:

wxform f
type(wxformcontrol) c
f =@ wxform.new(...)
c =@ f.addcontrol(wxformedittext, ...)

This example is loosely based upon the current wxWidgets components and their data types. It would
not actually work in SIMPOL as it is written unless the method calls were filled out with all of the
relevant parameters.

Arithmetic Operators

32

Arithmetic Operators
The usual set of arithmetic operators are also included in SIMPOL, such as: addition +, subtraction
-, multiplication *, division /, modulus mod, and negation (unary minus) -. They are used in the
usual way, but have a few interesting points when applied to the string data type. For details see the
appendix. Just to provide a few examples, however, if a string is multiplied by an integer then the
result is the integer's value copies of the string. Subtracting a string from another string results in a
string that has had all of the substrings removed that match the argument that was being subtracted.

Comparison Operators
The list of comparison operators consists of symbols that should be familiar to most programmers,
regardless of whether they are C or BASIC oriented. The operators currently supported are:

• Equal to (==)

• Greater than or equal to (>=)

• Less than or equal (<=)

• Not equal to (!= and <>)

• Greater than (>)

• Less than (<)

The == symbol, although familiar to Java, C, and C++ programmers is a bit of a new experience for
BASIC programmers. Consider this symbol to be merely an unambiguous method of separating as-
signment from comparison. There are also two different symbols for not equal to, one used commonly
in Java, C, and C++ and one found commonly in BASIC-oriented languages.

The set of operators in the previous paragraph are meant to be used with value types. For comparing
object types, there is a different, more limited set of operators. This is mainly because object types are
more complicated and must be compared in different ways and also because object types can have a
value associated with them. As an example, date types where the value of the object is an integer equal
to the total number of days in the date since Jauary 1, 0001. This feature of the language required a
different set of operators to be established for the comparison of object types, again to be unambiguous.
These operators are listed below:

• Refers to the same object (=@=)

• Does not refer to the same object (!@= and <@>)

In some languages, such as in SBL, there is a function to perform the comparison of two object vari-
ables. In SBL this is done with the IS() function. In keeping with the decision to try and limit the
number of keywords in the language, it was decided to use operators for this purpose rather than add
keywords. It is important to understand the difference between these operators and the ones used for
comparing values. Look at the following example:

function main()
 string s1, s2, sResult

 s1 = "foo"
 s2 = "foo"

 if s1 == s2
 sResult = "They are equal in value"
 else
 sResult = "They are not equal in value"

Logical Operators

33

 end if

 if s1 =@= s2
 sResult = sResult + " and they refer to the same object."
 else
 sResult = sResult + " and they refer to different objects."
 end if
end function sResult

When this program is run it will output as its result, They are equal in value and they
refer to different objects. It is also possible to have a string variable refer to the same
object as another string variable. In that case, any change to the value of the first variable will also
change the value for the second since they both refer to the same object. See the example shown below:

function main()
 string s1, s2, sResult

 s1 = "foo"
 s2 =@ s1

 s1 = "foobar"

 if s1 == s2
 sResult = "They are equal in value"
 else
 sResult = "They are not equal in value"
 end if

 if s1 =@= s2
 sResult = sResult + " and they refer to the same object."
 else
 sResult = sResult + " and they refer to different objects."
 end if
end function sResult

When this program is run it will result in the output, They are equal in value and they
refer to the same object.

Logical Operators
The set of logical operators comprises the and, or, and not operators and in this case, they are
all keywords rather than symbols. It is important to understand that these operators are only logical
operators, they are not bit-field operators! The return value of any logical operation will be one of
either .true, .false, .nul, or .inf.

Bitwise Operators
The set of bitwise operators comprises the AND, OR, and XOR operators and in this case, they are all
keywords rather than symbols. It is important to understand that these operators are bit-field operators,
they are not logical operators! For details of the operators and their values see the "Bitwise Operators"
section in the "SIMPOL Language Reference".

Warning

The bitwise operators and the logical operators should not be mistaken for each other!
They can have very different results from what is expected if used in the wrong way.
Remember, SIMPOL is a case-sensitive language.

Object Operators

34

Object Operators
Object operators are represented by the property operator also known as the dot operator (.) and the
member operator also known as the shriek, bang, or exclamation point operator (!). The property
operator is used to access the properties and methods of an object. This is similar to the way it is used
in numerous other languages. The member operator is used to access member information in a related
member of the object in a way that is specific to the data type in use, athough it is similar to accessing
a member of a collection in other languages. The best way to illustrate the use of the member operator
is with a few examples:

function main()
 integer iErrnum
 ppcstype1 ppcs
 ppcstype1file f
 ppcstype1field sfldLastname
 ppcstype1record r
 boolean bFound
 string sResult

 // Initialize iErrnum so that it refers to an object rather than
 // to .nul
 iErrnum = 0
 // Initialize ppcs to use a port and act as a user called test
 ppcs =@ ppcstype1.new(udpport=1289, error=iErrnum, \
 username="test")
 // If the initialization succeeded ...
 if ppcs !@= .nul
 // Open the file CUSTS at www.superbase.co.uk on port 1280
 f =@ ppcs.openudpfile("www.superbase.co.uk:1280", "CUSTS", \
 error=iErrnum)

 // If the file opened successfully ...
 if f !@= .nul
 // Retrieve a reference to the field in the CUSTS file whose
 // name is Lastname. Please note that if there is no field
 // called Lastname this will result in an untrappable error.
 // If there is any concern that a field may not be present,
 // it would be better to use the function getfield() from
 // the db1util.sml library file since that will return .nul
 // rather than causing an error. This reference in both
 // cases is case-sensitive. If the field contains any
 // characters that are not valid in an identifier then it
 // should be placed in double-quotes. Variable references
 // are not permitted as the argument following the member
 // operator.
 sfldLastname =@ f!Lastname

 // Initialize the bFound variable to refer to an object
 // instead of .nul
 bFound = .false

 // Assign the results of the lookup of the value Smith in
 // the Lastname index to the r variable. Since we passed the
 // error and found objects in the function will return the
 // nearest record even in the case of an inexact match.
 r =@ sfldLastname.index.selectkey("Smith", error=iErrnum, \

Expressions and Statements

35

 found=bFound)

 // Test that the r variable points to an object (if the file
 // were empty it would return a .nul object
 if r !@= .nul
 // Assign the value contained in the ppcstype1record
 // object referred to by r that is referenced by the
 // Lastname field of the file object. This can also be
 // done by using the get() method of the record object.
 // Again, if there is no field called Lastname (case-
 // sensitive) in the file then this assignment will result
 // in an untrappable runtime error.
 sResult = r!"Lastname"
 end if
 end if
 end if
end function sResult

As can be seen from the example above, there are different operations taking place when the member
operator is used depending upon the type with which it is used. In the first case, the argument to
the member operator is used to lookup a field name in the ring of fields and to return a reference
to a field object which must be assigned using the @= operator. In the second case, a much more
complex operation is taking place. The argument to the member operator is being used to lookup a
field reference in the file object reference that is part of the record object and that is then used as an
argument to the get() method of the record object.

In every case, the member object is used to provide a type of shorthand that results in a logical assign-
ment of what otherwise might be a number of programmatic steps. As was stated in the remarks in
the example, any error will result in an untrappable runtime error that will halt the program. Also, the
overhead for using this approach is normally higher than using the more mundane approach and in
some cases may need optimization using the alternative method if the section of code is too slow. That
is because this requires a lookup each time rather than doing the lookup once and storing the result,
so in a loop the cost of doing the lookup over and over again can make itself felt.

Expressions and Statements
Expressions are the building blocks of a program. Variables and operators are combined together to
produce a result. An expression can be extremely simple or exceedingly complex. Simple expressions
consist of two variables, a variable and a constant, or two constants that are added, subtracted, etc.
that produce a value. Below are some examples of expressions:

x + y
3 * x
s + "hello"
(3 - z)/((x + y) * 9)

A statement is made up of one or more expressions and accomplishes something. It is considered
to be a complete unit of grammar within a programming language and must be ended with an end-
of-statement character. In SIMPOL the end-of-statement character can be the end of the line, the
semi-colon (;), or the colon (:). As can be seen from the expressions in the example above, there is
no result that occurs, regardless of how complex the expression is, since in no case is the expression
being assigned to something or the result of the expression being used in some way.

Statements come in a number of varieties: assignment statements, if statements, while statements, and
function calls. The number and variety of statements in a programming language is directly related to
the number of keywords to be found in that language. In SBL there is very large number of keywords
and a thus a proportionally large number of different statements: MENU-, ADD FORM-, ADD DIALOG-,

Expressions and Statements

36

and SET-statements and numerous others, often with cryptic parameters in varying combinations. The
level of complexity in learning a language is directly proportional to this. In SIMPOL there is a very
small set of keywords and therefore a similarly small set of statements. Complexity is added by adding
objects, but even there, a great deal of attention has been paid to ensuring that the objects are extremely
consistent in their design and have methods and properties in common wherever it would make sense
to do so. Below are some examples of statements:

z = x + y
f.amount = 3 * x
if s + "hello" == "othello"
while (3 - z)/((x + y) * 9) > 0
foo(z2)

In each of the statements in the example above, the expression is being either assigned, evaluated, or
is a call to another function.

37

Chapter 6. Statements and Flow
Control

At the end of the previous section, we discussed expressions and statements. In this section we will
go into how statements are used to build functions and how functions make up a program.

function
The function is the basis for every program in SIMPOL. The simplest program consists of a single
function called main. When the main function is exited, the program also ends. A function begins
with a function statement. The function statement consists of the function keyword, followed by the
name of the function which must be a valid identifier, followed by the left parethesis, followed by zero
or more parameters in the format type identifier white space parameter name optionally
followed by an equals sign and a default value for the parameter. Multiple parameters are separated
by commas. The parameters are then followed by a closing right parenthesis. If the function is part
of a library and should be exported, then the export keyword follows the closing parenthesis. The
complete syntax diagram can be seen below:

function functionname ([typename parameter [=value]] [, typename parameter
[=value]] [, …]) [export]

Tip

One point worth noting is that in the function declaration there is no indication of whether
or not there is a return value, nor if there is one any information about its type. That is
mainly because the return value follows the end function statement and the type may
not be known when the function is written or even when it is compiled.

if
The if statement in SIMPOL is similar to that in most languages. There are some differences with
the IF statement from SBL, specifically that there is no THEN component and also no concept of a
one-line IF statement that does not require an END IF statement. In SIMPOL every if statement
requires a matching end if statement. Otherwise the if statement is equivalent to that in SBL and
in other BASIC-derived languages. There is also an else if statement and an else statement as
optional parts of the if statement. The syntax diagram follows:

if <expression> ;|:|newline <statement> ;|:|newline [else if <expression> ;|:|newline <state-
ment> ;|:|newline] [else <expression> ;|:|newline <statement> ;|:|newline] end if

Only one else statement can exist and it must be last, but multiple else if statements are allowed.

while
The while statement is a very useful construction and is the primary tool for creating loops. It is very
flexible since it can have a start condition, an end condition, or both start and end conditions. There
is no method of breaking out of a while loop. In keeping with the basic design of SIMPOL, there
is one entrance and one exit to the while loop.

Tip

SIMPOL doesn't have a for … next loop nor does it have a repeat … until
loop. Instead the while … end while loop is used for these cases. The for loop is a

while

38

subset of a while loop in that it automatically increments the loop variable a specified
amount. Since this is just a special case of a while loop, it was not added. In a compiled
language there is no advantage, even if a for loop were to have been provided, it would
have compiled to the same code as a while loop. As for the repeat … until loop
(or the do … while loop) that is equivalent to using the SIMPOL while with no
starting condition and with an ending condition.

The basic while loop looks like this:

integer err, i

// Basic while loop (similar also to for...next loop), no ending
// condition
i = 10
while i > 0
 i = i - 1
end while

// Repeat...until style loop, no starting condition
i = 10
while
 i = i - 1
end while i == 0

// Both conditions in use, the starting condition tests the loop
// variable and the ending condition tests the error return value
i = 10
err = 0
while i > 0
 err = testfunc(i)
 i = i - 1
end while err == 0

The preceding example shows three different uses of the while loop. An important point to consider
is that the ending condition following the end while keywords should be read as "end the while
loop if the condition is true".

Tip

Please note that the condition must evaluate to either .true or .false.

39

Chapter 7. Variables
Variables are placeholders that are used in a program in order to provide a method of accessing the
objects that are acted upon by the program. They are really like the glue that holds everything together.
In this chapter we will discuss how variables are used in a SIMPOL program. We will discuss the
various types, how to create them, their visibility within the program, how some variables can hold
more than one type of object, and how variables affect the objects they represent.

Variable Typing
SIMPOL is what is known as a strongly typed language. By this is generally meant that it is considered
an error to assign an object or value of one type to a variable of another type. As an example, if I
have one variable that is declared to be of type integer it is an error to assign a variable of type
number to that variable. It will result in a type mismatch error. This is one way that the programming
language protects the programmer from making an error that might otherwise be very hard to find. If
instead of generating an error, the programming language automatically converted the variable of type
number to an integer value, truncating or rounding the non-integer portion of the value, it would be
very difficult to track down, especially in a large program since the problem may only appear to be
intermittent (it would only occur when the value in the variable of type number was not an integer
value).

That is all well and good, but there are some situations where it is absolutely essential to be able to
handle more than one type using only one variable. As an example, consider the situation where you
may wish to process all of the controls on a form. Each form control has its own type. If it is possible
to declare a variable to be of type FormControl and if that type is designed to represent any form
control, then it would then be possible to use a single variable to contain a reference to any control on
the form, without causing an error. In SIMPOL by using the type property of the object it would then
be possible to detect which type the variable currently contains and to perform appropriate operations
on that object. Later in this chapter this capability, also known as polymorphism, is discussed in greater
detail.

Declaring Variables
Variables in SIMPOL must be declared before they can be used. They also do not carry any sort of type
designator, as is common in various dialects of BASIC, such as a dollar sign for strings or a percent
symbol for integers. Currently there is only one method available for declaring variables. A program
statement must begin with the type designator and be followed directly thereafter by the variable name.

function main()
 string s
 s = 'foobar'
end function s

In the preceding example the variable s is declared to be of type string before the text value foo-
bar is assigned to it. One of the more interesting things that this syntax allows is to declare a variable
to be of a type that may be unknown to the programmer at the time that the program is written. This
can occur when a database field is passed to a function and a variable must be declared to be of the
same type as the contents of the field. The example that follows demonstrates this:

function display(ppcstype1record r, ppcstype1field fld)
 string s
 fld.datatype temp

 if temp.type == string

Variable and Type
Scope and Visibility

40

 s = r.get(fld)
 else if temp.type == integer
 s = .tostr(r.get(fld), 10)
 end if
end function s

In this example the variable temp is declared to be of the same type as the datatype of the field. Each
time the function is called it may be passed a field with a different content type. Similarly, a function
could return a different value each time it is called, if the return value is dependent on one of the
parameters passed and the return value is declared by using the datatype of one of the parameters that
is passed into the function.

Although these capabilities can provide considerable flexibility and power when designing programs,
it is also possible in even a medium sized program to lose track of the type of a variable, especially if
that variable is dependent on the datatype of a database field. It is therefore strongly advised that in any
larger function that some sort of naming convention be adopted for naming variables. It isn't necessary
to make them as complicated as the notation often associated with Windows C programmers. Since
there is no limit to the size and precision of integers and numbers in SIMPOL and no significant pointer
capability, it usually sufficient to indicate the type with a single letter. one convention that may show
up regularly in the supplied examples is to use a lowercase letter to indicate the type, then an uppercase
letter and then the remainder is lowercase or in some cases title case where words are joined together.
Generally we use: s for string, i for integer, n for number, b for boolean, d for date, t for time, dt for
datetime, fsi for fsfileinputstream, fso for fsfileoutputstream, r for record, ppcs for ppcstype1, etc.

There is no concept of the REDIM keyword in SIMPOL. If a variable is declared at one place in the
function, and then there is a new declaration using the same variable name at another place in the
function (even if the type changes), this is not an error. The variable is considered to be destroyed at that
point and a new variable is created of whatever type designation has been used in its declaration. This
feature can, however, lead to errors that may be hard to detect, so it is important that the programmer
be cautious in their use and reuse of variables. There is no advantage to the compiled program of
using one variable name twice or two different variable names. From the point of view of program
maintenance, it may be better practice not to use this feature unless it is abundantly clear from the
program why it was used.

Another important point to remember is that variables in SIMPOL do not automatically initialize to
zero or the empty string. The initial value of any variable is .nul. This may cause some confusion at
the beginning since any operation that includes a value that equals .nul is also going to equal .nul.
Always remember to initialize any variable before using it! Also, if a variable is not initialized before
it is passed to a function, then the local variable in the function will also be equal to .nul until a
value is assigned to it. More importantly, since there is no object to which to assign the results when
the function returns, nothing can be passed back to the calling function in that parameter.

Variable and Type Scope and Visibility
Scope and visibility are often a complex topic in programming languages. That is not the case with
SIMPOL. In SIMPOL there is only one kind of scope and two kinds of visibility. Before we get into
the details, however, it may be useful to explain what these two concepts actually mean. By scope, we
generally mean the area of the program where a variable is still in existence and is accessible. BASIC
derived languages often have two or more types of scope, global and local being the most common.

Global scope means that the variable is visible and accessible anywhere in the program. It also means
that the variable will not be destroyed until the program ends or some statement within the program ex-
pressly destroys the variable. Globally visible and accessible variables are often the root of unidentifi-
able side-effects in complex programs. In a programming language like SIMPOL that is multi-thread-
ed, allowing global variables would be extremely messy, since they would have to be visible in every
thread and may change unpredictably depending on how the various threads are scheduled and exe-
cuting. The alternative would have been to add syntax to lock them which would have added overhead
and complexity. There are no global variables in SIMPOL.

Value Types, Reference
Types, and Type Tags

41

Local scope often means within a function, although in some languages it may be only within a block
statement, such as a for…next loop that is itself within a function. Local scope in SIMPOL means
within a function. From the point in a function where a variable is declared it is visible and remains
in existence until the function ends. When the function ends, all of the variables are destroyed, any
memory they are using is released and it is as if they had never existed. Variables are not visible outside
of a function. although they can be passed as arguments to another function. Technically though, once
the function is entered a new local variable is created and the value of the variable in the calling function
is assigned to the new local variable which is then in scope until the end of the function at which
point its value (which may have changed) is then reassigned to the variable from the original calling
function. Static variables are a special form of local variable that retains its value when the function
is exited but is only accessible from within the function. There are no static variables in SIMPOL.

Visibility is similar to scope but generally is used to refer to the ability to access type definitions and
functions. As described earlier, there are two kinds of visibility in SIMPOL, global and modular. All of
the intrinsic types and functions are globally visible. User-defined types and functions are visible only
within the same compiled unit unless they have been expressly made globally visible by exporting
them using the export keyword. Typically if a program is made up of a main code module plus
some linked in libraries (whether self-made or from other source) then the code libraries will make
some of their types and functions visible for use by other programs but they may not make all of the
types and functions visible unless that is necessary to use the library. There may be only one interface
function that is exposed but in actuality there may be a dozen or more functions in the module that are
used to implement that exposed function. By only exporting the interface function, the programmer
can reduce the level of error checking on the implementation since they don't need to worry about
those functions being called from outside the module.

Value Types, Reference Types, and Type
Tags

There are two conceptually different data types within SIMPOL, value types and reference types.
Value types are, as the name implies, associated with values. These types are similar to the scalar types
in other languages. Variables that are declared as: boolean, integer, number, or string are
value types. When a variable is declared to be of one of these types and a value is then assigned to the
variable, an object is created and associated with the variable and the value of the object is set to the
value that is being assigned. Values can be assigned to variables of this type using the = operator.

Reference types are more complicated, since they do not merely contain a single value but represent
more sophisticated objects. An object is assigned to a variable of this type using the =@ or the @= op-
erator. This is similar to the construct common in various BASIC dialects including Microsoft Visual
Basic and Superbase Basic Language that uses the SET keyword and the equals symbol.

There are a couple of important points to realize when working with reference types. First, even value
type variables can be used as reference variables. Second, more than one variable can refer to the same
object. See the example below:

function main()
 integer i
 integer j

 i = 1
 j =@ i
 i = 3
end function j

The statement i = 1 assigns to the integer object referred to by i the value of the integer constant
1, whereas j =@ i causes both i and j to refer to the same integer object, so that when a value is
assigned to i it is setting the value of the object to which j refers. This applies to any reference type

Variable and Object Persistence

42

and can provide a great degree of flexibility when writing programs. As an example, a database record
is represented by a single variable and a second variable can easily point to the same database record
while potential modifications are happening to the first variable. If those changes are occurring to the
actual object, then the second variable will also be aware of the changes. If the first variable is then
reassigned to another object, the second variable will still refer to the original object.

So what are type tags and why would anyone want to use them? Earlier in the chapter we discussed the
usefulness of having a variable be able to refer to objects of more than one type. In a strongly typed
language like SIMPOL, this normally wouldn't be possible. The type object has two functions that
are accessed by the convention type(*) and type(=). The first of the two is used to declare a variable
that can contain a reference to any type. The second is used to declare a variable that can contain a
reference to any value type. That sounds pretty useful, we can now declare a variable that can refer
to any type, so why use anything else? Mainly because it is considerably more expensive to handle a
variable that can hold a reference to any type and also because it makes it very difficult to find errors
in the program.

In line with that kind of thinking, type tags (you knew we would get back to them sooner or later)
were introduced to allow the declaration of variables that could refer to only a limited set of types.
So how does this work? Imagine we are creating a group of types to represent form controls. We may
create a text box object, a check box, a command button, and so on. We might choose to assign a tag
to each of the types called FormControl. By doing that we can then use the type object to create
a variable that can refer to any type that is tagged as FormControl but not any other type, so if
there is a mistake in the program it will still break at the right point for the right reason. The way we
declare the variable looks like this: type(FormControl) fc. So how do we actually assign the tag?
Look at the following example:

type tTextBox (FormControl, EditControl)
 string Text embed
 boolean Enabled embed
 type(FormControl) next
end type

type tCheckBox (FormControl)
 string Caption embed
 boolean Enabled embed
 boolean Selected embed
 type(FormControl) next
end type

In the preceding example the tTextBox type is tagged as being both a FormControl and an Edit-
Control. The tCheckBox type is only tagged as a FormControl. A variable that has been declared to
be of type tag FormControl can hold a reference to either of these two types. Before we leave type tags
behind us, it is important to point out that a local variable can be declared either inside the function
or else in the parameter list of the function.

Variable and Object Persistence
"Variables are like the glue that holds everything together." This description is especially appropriate
in SIMPOL, since any object that is no longer referred to by any variable anywhere within the program
will immediately be discarded. This is an important point to understand. If an object is no longer
referenced in any way by the program, via a variable or a property of an object that is itself referenced
by a variable it will be discarded. Even if there is a linked list of objects each of which refers to the next,
as long as the beginning of the list is anchored by being referred to by a variable the entire list will still
exist. Once there is no way for the program to refer to the beginning of the list, any object not referred
to by a variable will be discarded. If the third element of the list is still referred to by a variable but the
base is not, then the base and all elements preceding the third member will be discarded. If, however,
each object in the list has a property that refers to the preceding object as well as one that refers to the

Variable and Object Persistence

43

next object (a doubly-linked list) then as long as any member of the list is referred to by a variable (or
by another object that is anchored by a variable) then the entire list is safe and will not be discarded.

This allows for the creation and use of quite complex data structures in memory while only retaining a
single base variable to anchor the entire structure. Once a function is exited, all local variables created
within the function are destroyed. If the local variable were in the parameter list, then the corresponding
variable in the calling function will be assigned the value of the local variable prior to the variable
being destroyed.

An important point to remember is that if a variable is passed to a function and the variable has not
yet been initialized to refer to an object, then it cannot receive any changes made within the original
function since no object exists to assign the results to. Also, it is not possible to create an object in a
function and assign it to a local variable and then have that object returned to the calling function. The
only way to do this is to have the new object be the return value of the called function and to assign
the results of the function call using the object reference assignment operator (=@).

44

45

Chapter 8. Intrinsic Functions
The Nature of Intrinsic Functions

In SIMPOL intrinsic functions are defined as functions that are always available (that are part of
SIMPOL). They always begin with a dot (.), take a constant number of parameters (although the data
type of the parameters may not be fixed), have no named parameters (so all parameters must always
be specified), operate only on values and they always return a value. Also there is no function object
to represent an intrinisic function. The dot operator preceds the function name to ensure that no user
function can be defined that would conflict with a current or future intrinisic function (user functions
cannot be defined with a name that begins with the dot operator).

The remainder of this chapter is divided into sections that briefly describe the various intrinsic func-
tions grouped under a specific heading. The various types of intrinsic functions can be roughly grouped
under the following headings:

• Compression Functions

• Conversion Functions

• Numeric Functions

• Selection Functions

• Blob Functions

• String Functions

The name of each group describes the type of functions that it includes. As time passes, the list of
intrinsic functions will undoubtedly grow and quite possibly additional groups will be added as well.
When that happens this section will be updated.

Compression Functions
SIMPOL provides some basic compression and decompression functions for compressing strings and
blobs. Currently there is only one of each type, listed below:

• .compress1()

• .decompress1()

The functions will normally be supplied in pairs. The names of the current set end in the digit 1,
primarily to make clear that they are not the only version nor are they very likely to be the last version
as well as to associate them with each other. For the actual usage details see the Intrinsic Compression
Functions section in the "SIMPOL Language Reference".

Conversion Functions
The conversion functions group includes functions that are used to convert from one value type to
another. Whether converting from string to integer or number, from one of the numeric types to string,
or even converting from a blob to a string, the functions will be classified as conversion functions.
The list of the current intrinsic functions from the conversion group is:

• .char()

• .charval()

Numeric Functions

46

• .deintegerize()

• .integerize()

• .lcase()

• .tcase()

• .toblob()

• .tostr()

• .toval()

• .ucase()

The details of the proper syntax and usage of each of these can be found in the "SIMPOL Language
Reference" in the "Conversion Functions" section of the "Intrinsic Functions" chapter.

Numeric Functions
Numeric intrinsic functions are specific to working with numeric values, whether they are integers or
numbers. They are generally used to perform some mathematical operation using the value or values
passed. The following is the current list of numeric intrinsic functions:

• .fix()

• .ipower()

• .ipowermod()

The details of the proper syntax and usage of each of these can be found in the "SIMPOL Language
Reference" in the "Numeric Functions" section of the "Intrinsic Functions" chapter. Of the three, the
.fix() function is the most useful for most people. The other two are primarily used in the imple-
mentation of RSA encryption.

Selection Functions
Intrinsic selection functions as a group includes those functions that are used to make a choice from
among the arguments and then to return one of them. The list of functions in this group is:

• .if()

• .min()

• .max()

The simplest of these is the .if() function, which evaluates the first argument and then if it is equal
to .true it returns the second argument otherwise it returns the third argument. The other two func-
tions: .min() and .max() return either the item with the lowest value or the highest value respec-
tively. For full information regarding the proper syntax and usage of each of these see the "Selection
Functions" section of the "Intrinsic Functions" chapter in the "SIMPOL Language Reference".

Blob Functions
The blob data type requires certain special functions to cater for the ways in which it will be manipu-
lated. The functions currently available are:

• .inblob()

String Functions

47

• .subblob()

The first is used to find the first matching blob in another blob. The second is used to extract a blob
from a blob beginning at some offset for a specified length. These two functions are comparable to the
string functions .instr() and .substr. For further information about these two functions see the
"Blob Functions" section of the "Intrinsic Functions" chapter in the "SIMPOL Language Reference".

String Functions
There is a special set of intrinsic functions for working with strings, just as there are for blobs. The
following list contains all of the string-specific intrinsic functions:

• .instr()

• .len()

• .lstr()

• .rstr()

• .substr()

The first of the functions is used for finding a match for a string within another string. The sec-
ond returns the length of the string in characters (not bytes!), and the last three are for slicing up a
string; .lstr() returns a string beginning at the first character for the desired number of characters,
.rstr() does the same starting from the end of the string and working toward the beginning, and
.substr() takes a starting point and a count and works from left-to-right to return any substring
from any point in the original string. For the precise technical description of these functions, see the
"String Functions" section of the "Intrinsic Functions" chapter in the "SIMPOL Language Reference".

48

49

Chapter 9. System Functions

The Nature of System Functions
System functions differ from intrinsic functions in several ways. They are allowed to have named
parameters (or not), the parameters can have default values, and not all parameters are required. To
differentiate between the intrinsic functions and the system functions, the former begin with a dot and
the latter with an exclamation mark. In both cases this has been done to ensure future compatibility of
code. New functions that are added to the language as part of core SIMPOL will have either the dot
or the exclamation mark at the beginning and will therefore never be able to have the same name as a
user-defined function. This chapter discusses the various system function that are part of SIMPOL.

The !beginthread() Function
SIMPOL provides a multi-threaded program execution environment regardless of whether or not the
target development platform implements support for multiple threads. Writing programs to use multi-
ple threads can generally be considered an advanced topic, but in SIMPOL it is fairly straightforward.
All that is necessary to start a new thread is to call the !beginthread() function passing the name
of the function where execution should begin. A second optional parameter allows the user to pass a
reference to any type. This will most often be some type that provides some additional information
to the function that would otherwise not be available. When a new thread is begun the original thread
continues execution without waiting for the results of the new thread. In SIMPOL a common use of
multiple threads can be found in the way that the tcpsocketserver type works. Each time a connection
is made to the server, a new thread is created that begins execution at the function that is passed in the
listen() method. Each of the threads executes concurrently with the others and with the original
server thread.

Another place that will see regular use of threads is the user interface support provided by the window1
type. For each window that is visible (including child windows but not including form controls) a
separate thread is required to manage the events for that window. If no thread is provided then the
window will appear to be dead, because it will not respond to events.

The first parameter to the function is a reference to the function that should be called. In practice, this
will simply be the name of the function but it could also be a function variable that has the function
assigned dynamically during program execution. The second parameter is optional, a reference to any
type. This parameter is very important since it is the only way to provide access to information about
the remainder of the program that may be needed within the function. Remember there are no global
variables in SIMPOL.

The biggest problem with having multiple threads all having access to the same object at the same
time is when more than one thread wishes to change the value of some property within the object.
This is not generally safe since there is no way of knowing which thread is doing what at what time
compared with the others. The only safe way to modify values would be to lock the object or some
portion of the object. This can be done using the lock1 type. It is provided specifically to facilitate the
safe use of common objects by multiple threads concurrently. If one thread wishes to modify a value
in a common object it can attempt to lock the lock1 object that is a member of the common object.
If that fails, then it needs to wait and try again (retries can also be built into the call to lock). This
allows for the safe regulation of access to the common object. For more information about the lock1
type see the "SIMPOL Language Reference".

The !loadmodule() Function
The capability to create libraries implies an ability to not only link the libraries at compile time but
also to load a library dynamically at runtime. This function provides that capability. It has limited

The !wait() Function

50

use in most cases currently because there is no capability for detecting loaded modules nor is there a
method for unloading them. These capabilities are planned for the future.

The !wait() Function
This function provides are system friendly method of waiting for a specified amount of time. The
argument to the function is the number of microseconds that the function should wait. While the
function is waiting, it will not make unnecessary use of system resources, however, if there is more
than one thread being processed, a true wait will only occur if all of the threads are waiting for some
reason (waiting for a connection, waiting via this function, waiting in some operation that includes
a retry and timeout, etc.).

51

Chapter 10. User-Defined Functions
User-defined functions are one of the most important characteristics of any modern programming
language. They provide the programmer with the ability to write modular programs and create reusable
code components. Over the course of time a good programmer will build up a powerful toolbox of
regularly-used functions that have been well-tested. This toolbox of functions enables the programmer
to produce powerful and reliable programs quickly and easily.

Defining and Calling Functions
To define a function the keyword function is placed at the beginning of the line and outside the
body of any other function. That is followed by at least one space and then the name of the func-
tion. Following the name is an opening parenthesis, the parameter list and then the closing parenthe-
sis. The parameter list may be empty. If it is not, then the parameters are listed starting with their
type and then the name of the parameter. A default value can also be assigned to a parameter by
placing an equals sign after the parameter. The entire syntax diagram would look like: function
<name>([<parameter type> <parameter name>[=<value>],…]). The return value
of the function is placed on the last line of the function following the end function statement. This
can be a variable, an expression, or even the entire function body (assuming it is a single statement).
A function does not need to return a value.

To call a function it is sufficient to place the name of the function followed by the open parenthesis,
the argument list, and the close parenthesis in the program code. If the function returns a value that can
be assigned to a variable or used within an equation. Even if a function returns a value that value can
be ignored if the programmer so chooses. The following is an example of the definition and calling
of a function:

function main()
end function hello("world")

function hello(string s)
 string t

 t = "hello " + s
end function t

Function Scope
A user-defined function is only visible within the unit in which it is compiled unless the function
was also defined with the export keyword. This makes it possible to create reusable code modules
compiled as SIMPOL library files (*.sml) and to only expose the functions that represent the interface.
All of the supporting functions that are not exposed are invisible to external callers.

Function References (Pointers)
SIMPOL supports the concept of function references, so it is completely permissable to declare a
variable of type function, then assign a reference to a function to the variable, and finally use the
variable to call the function that is referenced. This provides a powerful mechanism for writing generic
code that can allow function references as parameters enabling functions to be written that pass off
the responsibility for certain operations to functions that are defined by the caller. The caller can pass
these functions as references. An traditional example of this would be a sort function that takes a
comparison function as a parameter. The sort function only needs to be able to manipulate the contents
of the array, it does not need to know how to compare the members.

52

Part III. Web Server Applications
— CGI, ISAPI, and FastCGI
for Dynamic Web Content

In this part we will cover using SIMPOL to generate dynamic web pages and truly powerful web-based applications
using a variety of techniques all based on creating web content at the server. Using the technology described in
this part, it is possible to build some fast, powerful, and reliable server-side web applications.

55

Table of Contents
11. SIMPOL Web Server Applications .. 57

Introduction .. 57
How it Works ... 57
Other Features ... 58
Web Server Application Tutorial .. 59
CGI Samples ... 65

56

57

Chapter 11. SIMPOL Web Server
Applications
Introduction

One of the powerful features in the new SIMPOL language is the built-in support for producing web
server applications. The key to this is the cgicall type and the various loader programs for supporting
this type. SIMPOL supports several standard ways of working with this type, which provides access
to the Common Gateway Interface (CGI). This includes standard CGI, ISAPI (Internet Information
Server API), and Fast-CGI. All of these technologies work in similar ways and ISAPI and Fast-CGI
are based on the older CGI technology.

A significant difference between the ISAPI approach and traditional CGI is that the ISAPI server
extension is normally loaded once and then left loaded, whereas the standard CGI program is loaded
and then unloaded each time it is called. The advantage, especially in the case of an interpreted or
byte-code compiled program is that the interpreting environment is left loaded and only the program
must be loaded and run each time. This is similar to Microsoft's ASP (Active Server Page) and Sun's
JSP (Java Server Page) technology in that the interpreters for these technologies are built in or else
dynamically loaded by the web server enabling them to provide improved performance. One difference
in this is that SIMPOL programs are not combinations of code and HTML markup, but are instead
compiled programs. The difference in performance can be considerable. The ease of design of ASP
and JSP pages is also supported within the SIMPOL IDE. Using the server page support SIMPOL
source code can be mixed with HTML on the same page in exactly the same style as in ASP pages.
When the project is compiled, the server page is also compiled, providing the best of both approaches
— mixed-mode design plus the speed of compiled code.

If performance is really what you are looking for though, then the real answer is Fast-CGI. Using the
Fast-CGI support in SIMPOL it is possible to not only load the execution environment and leave it
loaded, it is also possible to load the actual program and allow it to perform its initialization once and
then thereafter only respond to calls. This approach is the fastest that is realistically possible (short of
adding a special program in a compiled language like C directly to the web server code). A SIMPOL
Fast-CGI program has an initialization function, an execution function, and a termination function.
The initialization function is only called the first time the program is loaded. The execution function
is called each time a call is made to the program by the web server and the termination function is
called only when the program is being unloaded. Fast-CGI is currently supported by a number of web
servers on various platforms, most notably though by the Apache web server.

All of these technologies are very unified in the way that they are implemented in SIMPOL. In each
case a parameter of type cgicall is passed to the starting point in each program. In each case the
program can then act in a similar fashion, retrieving server variables using the getvariable()
method or key values from a posted form using the keyvalue() method. In fact, with careful design
it is possible to write a program that will work in all environments without change. Such examples can
be found in the examples included with the product. One item of good design that is used consistently
throughout the examples is that of storing parameters that might change in a configuration file and
retrieving them at runtime. This means that the program does not need to be recompiled or modified
to run in different locations or even on different platforms.

How it Works
To produce a program that can be called from a web server is fairly easy. Below is a standard web
version of a "Hello World" program that is written in SIMPOL:

function main(cgicall cgi)
 string s

Other Features

58

 s = "Content-type: text/HTML{d}{a}{d}{a}"
 s = s + "<html><body>Hello World!</body></html>"
end function s

This program might be saved as cgihello.sma. When compiled the program would normally be
called cgihello.smp. To get the Apache web server to run this program it would have to be pref-
aced by what is known as a shebang line. This is a convention that originated on Unix. It is formatted
in such a way that it is normally considered a comment in shell scripts but this one has a special format
and is interpreted to determine which program should be used to execute the remainder of the script.
In the case of a web server program this line is retrieved by the web server and used to find out what
program should be used to execute that script. For a Windows-based program, the shebang line might
look like this:

#!C:\Program Files\SIMPOL\bin\smpcgi32.exe{d}{a}

The SIMPOL IDE is especially designed to make building these types of programs quite easy. Simply

go into the dialog called from the Project → Settings menu item and add a target. In the target add/
modify dialog add the target and the shebang line that is appropriate. When you build the project it
will automatically copy the result to the target directory and prepend the shebang line to it. To get it
to be called is web server specific. On Apache, in the httpd.conf file the line: Add-Handler
cgi-script .smp would need to be added and if running, Apache would need to be restarted.
This program is already available on the Superbase web site: SIMPOL Hello World Sample [http://
www.superbase.co.uk/cgi-bin/cgihello.smp].

Other Features
Obviously just being able to respond to requests isn't bad, but there are a number of things that a pro-
gram needs to be able to do when acting as a web application. One common requirement is to support
cookies, both session cookies (that expire when the browser is closed) and standard cookies with an
expiration date. The cookie support built into the cgicall type fulfills both of these requirements. An-
other useful feature is the ability to return content of various types, such as sending a file to be saved
on the target machine. This is also supported, since the first line that must be sent back by the cgicall
object is the Content-type line. This is different from the HTML meta tag content-type, since that
already presumes a content-type of text/HTML. Using this capability it would be possible to create
an e-commerce site that sells programs and after payment sends the file automatically to the browser
where it can be saved. By not having a download directory that is static, the files are not available
except via the program, which can test the user's right to access the download in the first place. It
is also possible to interact with web server applications elsewhere that require a content-type that is
different from the basic one.

In addition to the content-type and cookie support SIMPOL's CGI implementation also includes full
support for both GET and POST. The correct way to use these items is specific to CGI and is outside the
bounds of this document, but there are a multitude of books and web pages that discuss the use of CGI.

Finally, there is also support for retrieving environment variables, form variables, and even the input
stream for allowing uploads from browsers directly to the program (such as uploading a company
logo as a JPEG). In addition to all of the CGI-specific capabilities, there is still the entire range of
capabilities built into SIMPOL. For example, using the CGI support combined with the TCP/IP socket
support it is possible to create a web-based email system. Using the tcpsocket type an SMTP email
client (even a server) together with a POP3 client could be written. Add to that the support for PPCS and
the web pages can even be built based on data in a Superbase database. This would permit any number
of web-enabled front-ends to be written to work together with an existing Superbase application. There
is simply no advantage to trying to use a product like Microsoft's ASP framework with Superbase
database tables via the ODBC driver when access via SIMPOL using PPCS will provide a faster and
more reliable solution all from the same software house. Not only that, but once the application has
been written and compiled, all that is needed to switch to a Linux or Unix-based web server is to
link the appropriate Linux shebang line (which must have only a trailing linefeed) to the front of the

http://www.superbase.co.uk/cgi-bin/cgihello.smp
http://www.superbase.co.uk/cgi-bin/cgihello.smp
http://www.superbase.co.uk/cgi-bin/cgihello.smp

Web Server Application Tutorial

59

already compiled program and place it on the Linux machine in the appropriate location. No change
to the source or even the compiled program is necessary!

Web Server Application Tutorial
In this section we will try to build a moderately sophisticated example that uses a design that will
allow the program to run using all of the various web server deployment strategies. As our example,
we will use the sbisreportfast.sma program provided in the Projects directory. The program starts
with the function main() as shown below.

function main(cgicall cgi)
 string sReturnval
 ContactFile cf
 string sISAPIPhysPath

 sISAPIPhysPath = cgi.getvariable("APPL_PHYSICAL_PATH")
 sISAPIPhysPath = .if(sISAPIPhysPath > "", \
 rtrim(sISAPIPhysPath, "{0}"), "")

 cf =@ init(sISAPIPhysPath)
 sReturnval = fcgi(cgi, cf)
 fcgiterm()
end function sReturnval

The interesting thing to note in this function is that there is very little to the function itself. The function
calls the init() function, then passes the return value from that function to the fcgi() function and
receives the return value from that and finally calls the fcgiterm() before returning the return value
from the fcgi function. The reason for this design is that although both ISAPI and CGI programs (like
almost all SIMPOL programs) begin with the main() function, Fast-CGI programs are initialized
using the fcgiinit() function, subsequent calls only call the fcgi() function, and when the
Fast-CGI instance is closed, only then will the fcgiterm() function be called. To write for all
three architectures requires a little bit of planning, so since the Fast-CGI version would never call the
main() function, everything is designed for the Fast-CGI version and the other two use the main()
function to call the Fast-CGI components. In the case above, since the init() function is used in
several places in the contact system, it was decided to have both the main() and fcgiinit()
functions call a common function which in both cases returns what is then required.

Taking a closer look at the beginning of the program another ISAPI-specific item can be seen. That is
the request for the variable APPL_PHYSICAL_PATH. This variable is only available in ISAPI (and
possibly only in Microsoft Internet Information Server (IIS). There are a number of ISAPI-specific
variables that can be retrieved, see the IIS documentation for details. The reason that this is so important
is that unlike when using CGI or Fast-CGI, ISAPI is done via a Dynamically Linked Library or DLL.
DLL's don't have a concept of a current directory when they are executing, so they always inherit the
current directory of the parent process, in this case that of the web server. That may or may not be
important depending on your web server application, but as you will see later, in this case, knowing
the current directory or more importantly the location where the web server application was loaded
from is important.

The next thing to note about the main() function is the use of a user-defined type called ContactFile.
This type was automatically created using an SBL program and in this case is included using the
include directive and compiled into the program. In other cases, it may be copmiled as a standalone
library. It is a type that wraps up a Superbase file that is hosted using PPCS. In the near future a
utility program will be created in SIMPOL that produces this from an SBD or by interrogating a PPCS-
based table. Using this automatically generated type, it is much easier to access the various parts of the
CONTACT database table used by the sample contact system. Below is the code that makes up the type:

Web Server Application Tutorial

60

//---//
// CONTACT //
// Constants and Type definitions //
//---//

constant fCONTACTNAME "CONTACT"
constant CONTACT_LASTNAME "LastName"
constant CONTACT_FIRSTNAME "FirstName"
constant CONTACT_CONTACTNO "ContactNo"
constant CONTACT_PHONE "Phone"
constant CONTACT_FAX "Fax"
constant CONTACT_ADDRESS "Address"
constant CONTACT_CITY "City"
constant CONTACT_STATE "State"
constant CONTACT_ZIP "ZIP"

type ContactFile export
 ppcstype1file file
 ppcstype1field sLastName
 ppcstype1field sFirstName
 ppcstype1field sContactNo
 ppcstype1field sPhone
 ppcstype1field sFax
 ppcstype1field sAddress
 ppcstype1field sCity
 ppcstype1field sState
 ppcstype1field sZIP
 function open
end type

function ContactFile.open(ContactFile me, ppcstype1 ppcs, \
 string sIpaddress)
 ppcstype1file f
 integer iErrnum

 iErrnum = 0
 f =@ ppcs.openudpfile(sIpaddress, fCONTACTNAME, error=iErrnum)

 if f !@= .nul
 me.file =@ f
 me.sLastName =@ getfield(f, CONTACT_LASTNAME)
 me.sFirstName =@ getfield(f, CONTACT_FIRSTNAME)
 me.sContactNo =@ getfield(f, CONTACT_CONTACTNO)
 me.sPhone =@ getfield(f, CONTACT_PHONE)
 me.sFax =@ getfield(f, CONTACT_FAX)
 me.sAddress =@ getfield(f, CONTACT_ADDRESS)
 me.sCity =@ getfield(f, CONTACT_CITY)
 me.sState =@ getfield(f, CONTACT_STATE)
 me.sZIP =@ getfield(f, CONTACT_ZIP)
 end if
end function iErrnum

Our next step is to have a look at the init() function. It is shown below:

function init(string sISAPIPhysPath="")
 ppcstype1 ppcs

Web Server Application Tutorial

61

 string sIpaddress
 integer iErrnum
 ContactFile cf

 cf =@ ContactFile.new()

 iErrnum = 0
 ppcs =@ ppcstype1.new(udpport=.nul, error=iErrnum, \
 username="sbiscontact")
 sIpaddress = ""

 getprivateprofilestring(sCGISECTION, sCGIPPCSSERVER, \
 sDEFIPADDRESS, sIpaddress, \
 sISAPIPhysPath + sCGIINIFILE, \
 sCGIINIEOLCHAR)
 if sIpaddress > ""
 if cf.open(ppcs, sIpaddress) != 0
 cf =@ .nul
 end if
 end if
end function cf

As we can see from the program code, the primary purpose of this function is to create an object of
type ContactFile, create a ppcstype1 object, and then using these two objects and the IP address that
is retrieved from a configuration file, to open the CONTACT database file. In a complex example this
function might be opening dozens of database files for use in a web server application. Earlier we
discussed the need to retrieve the physical path to the SIMPOL program in an ISAPI environment. The
reason is the code in this function that reads a setting from a configuration file. It would not be a very
good design to hard code the IP address and port of the PPCS server, since moving the server would
require recompiling the code each time. It is more effective to put these kinds of settings in a con-
figuration file and retrieve them at runtime. The implementation of the function getprivatepro-
filestring() is reasonably compatible with the Windows function of the same name, minus a
few limitations and the fact that it works on multiple platforms. It can be found in the conflib.sml
library in the lib directory.

The actual fcgi() contains little more than a call to the actual function that does the work, as can
be seen below:

function fcgi(cgicall cgi, ContactFile cf)
 SBISReportFast(cgi, cf)
end function ""

The basic design of a typical web server application uses a sandwich approach. The top of the page is
one slice of bread, the bottom of the page is the other, and the output from the program is the filling.
If the application is designed carefully making use of cascading style sheets, then changing the look
and feel of the web site can be done without even recompiling the program. The way that is done is
to use the HTML_Include() function to output the top and bottom from files that are located in the
directory from where the program is loaded or some other consistent location. This function is part
of the sbislib.sml.

function SBISReportFast(cgicall cgi, ContactFile cf)
 integer iErrnum
 string sTmp, sDateFormat, sTmp2, sTmp3
 ppcstype1record r
 date dt
 objset obsBase
 objsetelementref n

Web Server Application Tutorial

62

 SBLlocaledateinfo ldiLocale
 string sISAPIPhysPath
 datetime dtStart, dtEnd
 boolean bFound

 sISAPIPhysPath = cgi.getvariable("APPL_PHYSICAL_PATH")
 sISAPIPhysPath = .if(sISAPIPhysPath > "", \
 rtrim(sISAPIPhysPath, "{0}"), "")

 ldiLocale =@ SBLlocaledateinfo.new()
 sDateFormat = "mmmm dd, yyyy"
 iErrnum = 0
 sTmp = ""
 dtStart =@ datetime.new()
 dtEnd =@ datetime.new()

In the initial segment of the SBISReportFast() the initialization is done. The function makes use
of a number of types and functions provided by libraries that are written and compiled in SIMPOL
itself. These types include the objset, objsetelementref, and the SBLlocaledateinfo. The first two types
are part of the objset.sml library, which provides a set object that operates very similarly to the
set object in SBL but which has a key value that must be a string and an optional object reference.
This allows the collection and sorting by key value of a set of objects of any type. In this example
we will use it for storing the output string in order by a three-level sort. The last of the types is part
of the implementation of date format functions to be found in the SBLDateLib.sml file. In SBL
there are certain global values that determine the formatting for dates, including the names of the days
of the week, the months of the year, and the abbreviated months of the year. Since there is nothing
global in SIMPOL, this needs to be handled differently. In this program we initialize an object of type
SBLlocaledateinfo and then pass it to the functions that require this object. This particular library is
compatible with functions found in SBL, so there are no options that would not exist in SBL. There are
other libraries being built that provide more sophisticated date formatting routines, though the SBL-
compatible ones should be used when working with data from tables via the PPCS type 1 protocol.

The next section of the program checks to see if the return value from the init() function actually
contains an object or if it failed (returned .nul). If it succeeded, it then outputs the content type.
Unlike the older Superbase Internet Server product (SBIS), web server programs in SIMPOL can work
with any content type desired or required. After outputting the content type and the header, the top of
the sandwich is loaded and output by the HTML_Include function. Finally, the table is set up and
the header is output including the current date.

 if cf =@= .nul or cf.file =@= .nul
 CGIFileError(cgi, .nul, "Error opening database \
 file 'CONTACT'")
 else
 cgi.output("Content-type: text/HTML{d}{a}{d}{a}", 1)
 cgi.output("<html><head><title>" + sTITLE + \
 "</title>" + CRLF, 1)

 ///////////////////////////////////////
 // External HTML File //
 // Include the header and css //
 ///////////////////////////////////////
 HTML_Include(cgi, sISAPIPhysPath + "header.htm")

 //////////////////////////////////////
 // Program title //
 //////////////////////////////////////
 //cgi.output(CRLF, 1)
 cgi.output('<tr><td><center><h2 class="titledblue">' + \

Web Server Application Tutorial

63

 sTITLE + '</h2></center></td>'+ CRLF, 1)
 cgi.output('</tr>'+ CRLF, 1)

 /////////////////////////////////
 // Center the table //
 /////////////////////////////////
 dt =@ date.new()
 dt.setnow()
 sTmp = DATESTR(dt, sDateFormat, ldiLocale)

 cgi.output('<tr><td align="center"><center><h3 \
 class="titledblue3">' + sTmp + ' - Partial \
 Client Quick Listing</h3></center></td></tr>\
 <tr><td><center>Where \
 the first letter of the last name is equal to \
 ''D'' and the result is sorted by City\
 , then LastName, \
 then FirstName.\
 </center>
</td></tr>'+ CRLF, 1)

 cgi.output('<tr><td><center><table border=1 width="510">' + \
 CRLF, 1)
 cgi.output('<tr>' + CRLF, 1)
 cgi.output('<th class="stdhdr" width="25%">City</th>' + \
 CRLF, 1)
 cgi.output('<th class="stdhdr" width="25%">Last name</th>' + \
 CRLF, 1)
 cgi.output('<th class="stdhdr" width="25%">First name</th>' + \
 CRLF, 1)
 cgi.output('<th class="stdhdr" width="25%">Telephone</th>\
 </tr>' + CRLF, 1)

Once the preparations are complete, the main part of the program can begin. This is the part of the
program that reads the records that match the search criteria, formats the output, and then outputs the
result. In this case the program begins by recording the starting time for the search. It then selects the
first record in the table according to the LastName index that begins with the letter "D". To make the
selection the ContactFile object is used. Each of the properties corresponds to a field in the file with
the same name (fields with spaces in the name have the spaces converted to underscores). Also, each
field is prepended with a single letter that indicates the data type of the field. Fields that are indexed
will have an object associated with their index property and using that the first selection can be made.
Afterwards, the record object is used to select the next record in the same index order with which the
record itself was selected. As each record is selected and determined to be a valid part of the result
set, a string is formulated to hold the three-level sort key, first using the name of the city, then the
last name, and finally the first name. Following that another string is assigned the components of the
final output, which equates to a row of the HTML table. That string is then added as an object to the
objset using the first string as the sort key.

Note

The string is actually passed to the addelement() method of the objset by creating
a new string using string.new(sTmp2). The reason for this is the objset stores a
reference to a string object, not a string itself. If only the sTmp2 string had been passed,
each time it goes around the loop a reference to the exact same string object using a
different key would be assigned to the element of the objset so that at the end, all of the
elements would point to only one string that contained the last value created. To avoid
this, a new string object is created and initialized with the value of the string in sTmp2.
This ensures that each element references a different string. At that point, the objects

Web Server Application Tutorial

64

are only anchored by the objset, so once the objset goes out of scope, all of the strings
are also freed.

This continues until the first non-matching record is found in the index. At that point, the loop exits
and the objset contains all of the results in the desired sort order.

 // Record the starting time for the search
 dtStart.setnow()

 // Select the first record that starts with a D in the
 // Lastname index and then continue to select records
 // until the first letter is no longer a D.
 bFound = .false
 r =@ cf.sLastName.index.selectkey("D", error=iErrnum, \
 found=bFound)

 obsBase =@ objset.new()

 //SELECT ;
 //WHERE Lastname.CONTACT LIKE "D*"
 //ORDER City.CONTACT,LastName.CONTACT,FirstName.CONTACT
 //TO APPEND
 //END SELECT

 // This section performs the actual report and stores
 // the sort key plus the desired output into the set.
 // The set will automatically be stored in sorted order.

 while r !@= .nul and .lcase(.lstr(r.get(cf.sLastName),\
 1)) == "d"
 sTmp = PAD(r.get(cf.sCity), 40) + \
 PAD(r.get(cf.sLastName), 60) + \
 r.get(cf.sFirstName)

 sTmp2 = '<tr><td class="stdtext">' + \
 .lstr(r.get(cf.sCity),15) + \
 '</td><td class="stdtext"><a href="' + \
 HTML_Page("sbiscontactdisplay.smp", cgi) + \
 '?cno=' + r.get(cf.sContactNo) + '">' + \
 .lstr(r.get(cf.sLastName),15) + \
 '</td><td class="stdtext">' + \
 .lstr(r.get(cf.sFirstName),15) + \
 '</td><td class="stdtext">' + \
 .lstr(r.get(cf.sPhone),10) + '</td></tr>' + CRLF

 obsBase.addelement(sTmp, string.new(sTmp2))
 r =@ r.select(.false, error=iErrnum)
 end while iErrnum > 0

Finishing the report is now just a matter of retrieving the first element of the objset, outputting the
element, and then retrieving the next element until we run out of elements. There is no real need to
find out how many elements there are, since we can just continue until either the returned element is
equal to a reference to .nul or the t property is equal to a reference to .nul. Then we retrieve the
time again and output the rest of the the table and close up the remaining bits of the HTML.

 // This part now outputs the results of the report that
 // had been stored in the set while gathering the

CGI Samples

65

 // results. The output comes out in the correct order
 // sorted three levels deep, by using a combined key
 // composed of the City, the lastname and the first name
 // where each of the first two have been padded to 60
 // characters wide.
 n =@ obsBase.getfirst()
 while n !@= .nul and n.t !@= .nul
 cgi.output(n.t.element, 1)
 n =@ n.t.getnext()
 end while

 dtEnd.setnow()

 // After report section
 cgi.output('</table>' + CRLF, 1)
 cgi.output('<p>Total: ' + \
 .tostr(obsBase.totalcount, 10) + " match" + \
 .if(obsBase.totalcount <> 1,"es","") + \
 ' found from a total of ' + \
 .tostr(cf.file.recordcount(error=iErrnum), 10)\
 + ' records. The total search time was ' + \
 .tostr((dtEnd - dtStart)/1000000, 10) + \
 ' seconds.\
 </p>
</center></td></tr>' + CRLF, 1)
 ////////////////////////

 ///////////////////////////////////////
 // Include external HTML file //
 // as the footer //
 ///////////////////////////////////////
 HTML_Include(cgi, sISAPIPhysPath + "footer.htm")
 end if
end function ""

The very end of the program occurs when the fcgiterm() is called either from the main() function
or directly by the Fast-CGI support. In this case, there is nothing for the function to do, so it is empty.

CGI Samples
As mentioned earlier, on the Superbase web site their are a number of samples of programs that
are already running using SIMPOL to serve dynamic web pages. More will be added as time
passes. To access the samples visit the page: SIMPOL Samples Page [http://www.superbase.co.uk/
simpolsamples.htm]. On this page there are links and explanations as well as the ability to view the
source code of each program.

http://www.superbase.co.uk/simpolsamples.htm
http://www.superbase.co.uk/simpolsamples.htm
http://www.superbase.co.uk/simpolsamples.htm

66

Part IV. Using Databases
Working with databases is an important part of most programming languages that deliver dynamic web content or
that are used for desktop application development. SIMPOL comes ready to work with different types of database
content but the one thing that they have in common is that they are all represented using objects. In this part we will
learn how to access databases in Superbase PPCS format and also use the new SBME format for single program
multithreaded access. Eventually there will also be objects in SIMPOL for using volatile databases (typically
hosted only in memory) and for accessing various SQL databases, but they will come later.

69

Table of Contents
12. Using Databases in SIMPOL .. 71

Terminology .. 71
Traditional File-Oriented Databases .. 71

Introduction .. 71
SBL Database Commands ... 71
Common Database Programming Problems .. 72

Object-Oriented Database Access in SIMPOL ... 72
Introduction .. 72
Database Type Tags for Generic Database Functionality 73
A Comparison of SBL Commands and SIMPOL Methods 73
Summary .. 74

13. Using PPCS in SIMPOL .. 75
What is PPCS? .. 75
Setting Up a PPCS Server Using Superbase .. 75
Object-Oriented Database Access ... 76

14. Using SBME Databases in SIMPOL .. 81
Introduction .. 81
Difference Between SBME and SBF's ... 81
Programming with SBME Databases ... 82

70

71

Chapter 12. Using Databases in
SIMPOL

This chapter will describe the approach to databases using objects in SIMPOL. This chapter should
be read first before trying to use any of the database access technologies from SIMPOL.

Terminology
A good place to start in this chapter is a discussion of terminology. In traditional desktop databases like
Superbase, dBase, FoxPro, and Paradox, it is common to refer to database files, fields, indexes, and
records. In SQL databases it is more common to use the terms tables, columns, and rows. Loosely it
would be accurate to say that database files equate to tables, fields equate to columns, and rows equate
to records. In SIMPOL we tend to stick with the desktop database terminology when refering to non-
SQL data sources, although we are attempting to standardize on the terms: tables, fields, and records.
The reason for selecting tables rather than files is that in some databases more than one table can be
stored in the same physical file, as is the case with Microsoft Access and with the new Superbase
Micro Engine. That would result in overuse of the word file and as such the decision was made to
use table instead.

Traditional File-Oriented Databases

Introduction
In traditional desktop database environments such as Superbase and dBase, there are numerous com-
mands in the programming languages to handle the various tasks associated with working with data-
base files. In some cases the command set can be quite large and often somewhat ambiguous in that
command names may be reused in various combinations with slightly or even widely different effects.
The result is that generally the programmer is required to remember a large number of commands
with various parameters in order to accomplish very basic manipulation of the database. Since in most
cases these commands are considered key words in the language, they also reduce the available group
of obvious variable names that can be used by the programmer.

SBL Database Commands
SBL has a large array of database oriented commands that are composed of one or more key words in
the programming language. For example, in Superbase Basic Language (SBL) there is a wide variety
of SELECT commands. These include:

• SELECT FIRST
• SELECT LAST
• SELECT NEXT
• SELECT PREVIOUS
• SELECT CURRENT
• SELECT KEY
• SELECT DUPLICATE
• SELECT WHERE
• SELECT REMOVE
• SELECT

Each of these commands also has various parameters that can be appended to the end or in some cases
inserted earlier in the command. There are numerous other commands that exist purely to manipulate
databases.

Common Database Pro-
gramming Problems

72

Common Database Programming Problems
One of the biggest issues by far, however, which people run into when working with these languages
for manipulating databases is what I call the current everything problem. The assumption is made that
files are globally visible and that field names in files are globally visible identifiers. Although that
simplifies things when doing simple things, it results in great complexity and confusion when doing
more complex things. It also results in limitations such as not being able to open the same file twice
in the same instance of the program because there would be no way to differentiate between the two
versions (or only with great complexity).

A common error made by SBL programmers is that of selecting a record using an index different to the
current index as seen from the user's perspective, and then after establishing that the selection worked,
reselecting the record with a lock. Unfortunately, the second selection occurs using the current index,
which is not that used when they selected the record the first time and so they lock the wrong record
and possibly make and save changes to the wrong record. See the code in the example below:

' The current index is LastName and the current file is ADRB
SELECT KEY 12345 FILE "ADRB" INDEX RecNo.ADRB
IF FOUND ("ADRB") THEN
 ' Here the SELECT CURRENT LOCK operates on the LastName
 ' index which is whatever was current before the
 ' SELECT KEY took place against the RecNo index.

 SELECT CURRENT LOCK

 ' Correct would have been to use:
 ' SELECT CURRENT LOCK FILE "ADRB" INDEX RecNo.ADRB
 ' but this is a common error.

 AccountBalance.ADRB = AccountBalance.ADRB + deposit%

 ' The program now assigns the deposit amount into the wrong
 ' account number and stores it. This problem will be difficult
 ' to track down because the deposit to the wrong account won't
 ' always happen. If the current index is RecNo, then the code
 ' will work, if it is not, then the deposit will be made to
 ' whichever record is current in the current index.

 STORE
END IF

In an object-oriented environment these kinds of issues don't exist since all selections are made as a
call to a method of an object, so there is no way that you can accidentally call the wrong object (at
least not easily).

Object-Oriented Database Access in SIMPOL

Introduction
There are a number of different object-oriented approaches to working with databases and in general
those methods are directly related to the type of database access that they attempt to model. With SQL
style access the approach tends toward recordset objects, which is completely understandable since
SQL is all about doing queries and doesn't really have an idea of direct table access. That is reserved to
the routines that actually implement a SQL database engine. In SIMPOL the database access is based
around accessing database sources (which can be files or servers) and then from that file or server

Database Type Tags for Gener-
ic Database Functionality

73

accessing tables. Each table has a ring of field objects and a ring of index objects. Record objects
are created as the result of selecting a record using one of the selection methods. Index objects carry
a reference to the field for which they are an index. In later releases there may be a ring of objects
that describe the elements of an index that is either multiple field or based on something other than
field information.

One big difference between the older Superbase approach to working with tables and field names and
the object-oriented version is that opening a table does not simply create a group of globally visible
identifiers. This means there is a little more work involved when using objects. At the same time, there
is no limit to how many times a table can be opened concurrently or how many records could be the
current record. Since records are objects whenever a record object exists it is available.

Another significant difference is in the way that records are selected. The object-oriented approach
takes a little getting used to, but is perfectly logical and will eventually feel quite natural and obvious.
Table objects can either select the first or last record in a table in sequential order. Index objects can
select either the first or last record in index order or select via a key value into the index. So what
about selecting the next or previous record? That is reserved to record objects. Only a record object
knows how it was selected and therefore its index position. A record can also select only the next
or previous record according to the order that was used to select the record, either in index order or
sequential order of the table. To change the index of a record the record can be reselected with an
option to change the index.

Database Type Tags for Generic Database Functionali-
ty

In keeping with the object-oriented design of SIMPOL a set of type tags (see the section called “Value
Types, Reference Types, and Type Tags”) was created for use with databases that are of a consistent
form. This set of type tags is known as the db1 set. This set of tags includes the following:

• db1table
• db1field
• db1index
• db1record

By writing generic functions to use the type tags rather than the specific object type declarations it
makes it very easy to switch between different database types without rewriting the functionality for
each individual type.

Note

One difference between sbme1 types and ppcstype1 types is that the former have a
table or tablename property where the latter have a file or filename property in
addition to the tablename. This does not affect the use since when working with the
db1* type tags the table can be used in most cases. A more signficant difference is that
ppcstype1fields have a much greater array of properties than sbme1fields. They include
help text, comments, display formats, and other things that are not provided by the more
storage-oriented and lower level engine from sbme1. In general, generic database rou-
tines should not be dependent on a display format that is provided with a column (or
column widths that may not exist, etc.).

A Comparison of SBL Commands and SIMPOL Meth-
ods

Comparing the two approaches should help to clarify much of the difference in approach between the
command based and the object based methods. To summarize and compare the SBL commands to the
SIMPOL object methods then, here is a small table:

Summary

74

Table 12.1. Comparison of SBL file access commands to SIMPOL methods

SBL SIMPOL

SELECT FIRST INDEX "" db1tablevar.select(lastrecord=.false)

SELECT LAST INDEX "" db1tablevar.select(lastrecord=.true)

SELECT FIRST INDEX
RecNo.TEST

db1indexvar.select(lastrecord=.false)

SELECT LAST INDEX
RecNo.TEST

db1indexvar.select(lastrecord=.true)

SELECT KEY 123 INDEX
RecNo.TEST

db1indexvar.selectkey(123)

SELECT NEXT db1recvar.select(previousrecord=.false)

SELECT PREVIOUS db1recvar.select(previousrecord=.true)

SET INDEX Name.TEST db1recvar.selectcurrent(db1indexvar_Name)

SELECT FIRST LOCK IN-
DEX ""

db1tablevar.select(lastrecord=.false,
lock=.true)

SELECT FIRST LOCK IN-
DEX RecNo.TEST

db1indexvar.select(lastrecord=.false,
lock=.true)

SELECT KEY 123 LOCK
INDEX RecNo.TEST

db1indexvar.selectkey(123, lock=.true)

SELECT NEXT LOCK db1recvar.select(previousrecord=.false,
lock=.true)

SELECT CURRENT LOCK db1recvar.selectcurrent(lock=.true)

SELECT REMOVE db1recvar.delete()

There are numerous other combinations, but the previous table should show a reasonable cross-section.
One of the interesting abilities in SIMPOL is that of deleting a record but still having the record
available. When the delete() method is called, the record is deleted but the record object still
exists. Its stored property is set to .false and it is reset internally to appear like a new record that
has been filled in. That means that the record could now be saved as a new record (possibly with some
modification).

Summary
In this chapter we have looked at the generic differences between working with databases in com-
mand-oriented languages like SBL and the methods employed by SIMPOL. In the following chapters
we will discuss the specific issues affecting access to PPCS and SBME databases in SIMPOL.

75

Chapter 13. Using PPCS in SIMPOL
This chapter will describe in detail the issues surrounding database access in SIMPOL using the Su-
perbase Peer-to-Peer Client/Server (PPCS) approach. By the end of the chapter you should feel rea-
sonably confident in accessing PPCS database tables from SIMPOL.

What is PPCS?
PPCS provides a protocol for accessing database tables and binary files using a variety of communi-
cation methods. Currently there is support for direct serial cable connections using RS-232 and also
modem-based connectivity. There is also support for NetBIOS and UDP/IP. PPCS is a connectionless
protocol. In practical terms, that means that there is no actual maintained connection between the client
and the server. Each transaction between the client and the server is complete and independent of any
other connection. For example, assume that a UDP connection is made across the Internet and a data-
base table is opened and the client selects a record via an index. Then for some reason the connection
to the Internet goes down. After a short while the connection comes back up and the user selects the
next record. In such a situation, since no request had been made to the server in the interim, the PPCS
client program would not be aware that anything had happened and would successfully receive the
next record. This would not be the case with a connected protocol.

As described in the previous paragraph, PPCS allows access to database tables and binary files that
have been shared on a PPCS server. The type of access provided is record level access to the database
tables in a shared read-write mode. That means that only operations that can work in a shared read-
write mode are supported. Records can be created, locked, modified and deleted using this access
technology. Not supported is changes to the database structure, such as adding, modifying, or removing
fields and indexes or even creating or removing database tables. In SIMPOL this is known as PPCS
Type 1. At some stage we will release a PPCS Type 2. This will support the full range of capabilities
of the new Superbase Micro Engine database and will also allow for complete remote management
of the database backend. The binary file support allows the sharing of binary files for direct transfer
via PPCS from the server to the client. The name space within a PPCS Type 1 server is flat, so binary
and database files with duplicate names even if from different directories cannot be served on the
same server.

In SIMPOL there is currently only support for using PPCS via UDP. Preparation has been made to
support serial connections, but the actual capability has not yet been implemented. Also, it is not
possible to transfer binary files using PPCS in SIMPOL. By using the TCP/IP sockets a file transfer
protocol can easily be created. Sample programs including a client and server program are provided.

Setting Up a PPCS Server Using Superbase
Setting up a PPCS server using Superbase is relatively easy, especially if you are using Superbase
2001 or later. At the very least, Superbase 3.6i build 478 or later is required since that is the first release
of Superbase with the PPCS technology. In all cases there is a remote connections wizard provided
with each version and a document included in Adobe Acrobat format that describes how to set up a
PPCS server, client, etc. using the wizard. If you are using 2001 or later, the wizard can save off the
configuration as a standalone program for later use (and modification).

Note

SIMPOL Professional includes a SIMPOL-based PPCS server engine and is licensed
for three concurrent users for testing purposes. The server engine and a readme.txt
file that explains how to use it can be found in the simpolserver directory in your
SIMPOL installation.

Object-Oriented Database Access

76

Object-Oriented Database Access
Unlike the standard command-based approach provided with SBL, dBase, and other products, in SIM-
POL database access is done via objects. To use the database access in SIMPOL easily and effective-
ly it is very useful to learn about the logic behind the decisions on how the database objects were
designed. Once the underlying system is clear, it will feel very natural using the database objects to
accomplish database-oriented tasks in SIMPOL. Also, the object-oriented approach will completely
eliminate many sources of errors that occurred in SBL programs in the past. As is true in general in
SIMPOL, there is nothing global about database objects. There is no current record, current file, cur-
rent index, etc. Instead, it is possible to have as many current records as required, simply by having a
different variable (or element in a set, or element in an array) that references each record object.

In the beginning, there is the ppcstype1 object. This is used to open tables from various backend PPCS
servers. Unlike the implementation in SBL, it is only necessary to create one of these per communi-
cation method, since the connector is not specific to a target backend (in the case of UDP connections
— in the case of serial connections it would be necessary since this is a hardware limitation). Using
the ppcstype1 object, a database table is opened from a backend and a reference to the database file is
assigned to a ppcstype1file variable. At this point we can already retrieve records in sequential order
from the database table, either starting at the beginning or the end. The database file object holds all of
the information necessary to analyze the structure of the database table. There is a firstfield property
that holds a reference to the first field in the database table definition. It contains a property called
next that holds a reference to the next database field in the file definition. The next property of the
last field in the file definition will contain a reference to the first field in the definition thus forming
a ring. A similar ring exists for the indexes.

When a record is selected from the database using either an index object, a database table object, or
a record object, then a ppcstype1record object is returned. This object contains the data, but has no
concept of the actual file description, fields, etc. The reason for this is fairly technical, but essentially
for it to do so, it would have needed to be a record object for a specific data type created at the time
the database was opened that was designed specifically for that database file and would have made it
impossible to easily use the same variable for records from different database tables. As such, to access
the data for a given field from a record object it is necessary to make use of the ppcstype1field object
for the field from which the information is to be read (or to which the data is to be assigned). There is
a get() method and a set() method for reading and writing data from and to the various fields of a
record. Both take a field reference as a parameter although the set() method also takes a value as its
second parameter. Another approach is to use the member operator. This was specially implemented
for accessing the data in the record object in a visually more elegant way, but has several disadvantages,
such as the fact that it can't use a variable, and if a field name is passed that is incorrect (including
incorrect case) then it will cause a runtime error that cannot currently be trapped. The example below
will demonstrate accessing a record from a table via PPCS and reading the values from the fields.

The beginning of the program starts as usual in the function main(). We begin by declaring the
various variables that will be needed for this function. The remainder of the description can be found
directly in the comments of the program itself.

function main()
 string sResult
 integer iErrnum
 ppcstype1 ppcs
 ppcstype1file f
 ppcstype1record r
 ppcstype1field fld
 ppcstype1index idx
 boolean bFound

 // iErrnum MUST be initialized or there will be
 // no object in which to return the result

Object-Oriented Database Access

77

 iErrnum = 0

 // We now attempt to create a ppcstype1 object which should
 // almost always work. In this case we pass .nul to the
 // udpport parameter because we don't care which port we
 // get, we just want one. We have to pass .nul to the named
 // parameter udpport since otherwise the function won't know
 // whether we want a UDP or a serial (not yet supported)
 // connection.
 ppcs =@ ppcstype1.new(udpport=.nul, error=iErrnum, \
 username="example1")

 // We can test for an error value here or for the ppcs
 // variable containing .nul
 if ppcs =@= .nul
 sResult = "Error number " + .tostr(iErrnum, 10) + \
 " creating ppcs object!{d}{a}"
 else
 // Now we are going to open the database table using
 // the ppcstype1 object
 f =@ ppcs.openudpfile("ppcs.superbase.co.uk:1280", \
 "CUST", error=iErrnum)
 if f =@= .nul
 sResult = "Error number " + .tostr(iErrnum, 10) + \
 " opening file 'CUST'!{d}{a}"
 else
 // We got this so far so we have the table open

 // Now we are going to locate the reference to the
 // index we want to use for selecting the record.
 // The following loop will start at the firstindex
 // and then go around until it either finds the desired
 // index or returns to the first index in the ring.
 bFound = .false
 idx =@ f.firstindex
 while idx !@= .nul
 if idx.field.name == "LastFirstName"
 bFound = .true
 else
 idx =@ idx.next
 end if
 end while idx =@= f.firstindex or bFound

 if not bFound
 sResult = "Index 'LastFirstName' not found!{d}{a}"
 else
 // We found the index for our test so now we select
 // the record that we are looking for using the
 // selectkey() method.
 r =@ idx.selectkey("Johnson, Amanda", error=iErrnum)

 // If the selection fails then r will not refer to an
 // object because we did not pass a found parameter to
 // the method. When using an inexact match that we
 // expect might fail (like looking for Joh*) we would
 // pass a found parameter so that we always get the
 // closest matching record returned.
 if r =@= .nul

Object-Oriented Database Access

78

 sResult = "Error number " + .tostr(iErrnum, 10) + \
 " retrieving record!{d}{a}"
 else
 // We found the record we were looking for, so let
 // us now output the contents of the record. This
 // time we will use the get() method and a loop that
 // tests the datatype of the field to allow us to
 // format it properly. We loop around the fields in
 // the file retrieving each field's name and value
 // and then add it to the result string.
 fld =@ f.firstfield
 sResult = "Record for Amanda Johnson:{d}{a}"
 while
 if fld.datatype =@= string
 sResult = sResult + " " + fld.name + ": " + \
 r.get(fld) + "{d}{a}"
 else if fld.datatype =@= integer or \
 fld.datatype =@= date or \
 fld.datatype =@= time
 sResult = sResult + " " + fld.name + ": " + \
 .tostr(r.get(fld), 10) + "{d}{a}"
 else if fld.datatype =@= number
 sResult = sResult + " " + fld.name + ": " + \
 .tostr(.fix(r.get(fld), 100), 10) + \
 "{d}{a}"
 end if
 fld =@ fld.next
 end while fld =@= f.firstfield

 // As you can see from the code above, we treat
 // dates and times as if they were integers. This
 // is because there are no built in functions to
 // format a date, a time, or a datetime. The reason
 // is that there are too many different ways this
 // might be done for different locales and it is
 // best solved with a SIMPOL-based library. Such a
 // library is part of the current distribution but
 // not relevant for this example.

 // Now let's get the next record in the same index
 // and output that.
 r =@ r.select(error=iErrnum)
 if r =@= .nul
 sResult = sResult + "Error number " + \
 .tostr(iErrnum, 10) + \
 " retrieving record!{d}{a}"
 else
 // Again we succeeded in getting the next record
 // without error, so this time we will output the
 // fields expressly using the member operator for
 // the ppcstype1record object. The advantage to
 // using the member operator is the code looks
 // easier to understand. The disadvantage is that
 // if the field name changes the code will break
 // whereas the previous version would not. The
 // previous version neither knows nor cares what
 // the fields are called.
 sResult = sResult + "{d}{a}Next Record:{d}{a}"

Object-Oriented Database Access

79

 sResult = sResult + " RecNum: " + \
 .tostr(r!RecNum, 10) + "{d}{a}"
 sResult = sResult + " Firstname: " + \
 r!Firstname + "{d}{a}"
 sResult = sResult + " Lastname: " + \
 r!Lastname + "{d}{a}"
 sResult = sResult + " Organization: " + \
 r!Organization + "{d}{a}"
 sResult = sResult + " Street: " + \
 r!Street + "{d}{a}"
 sResult = sResult + " City: " + r!City + "{d}{a}"
 sResult = sResult + " Country: " + \
 r!Country + "{d}{a}"
 sResult = sResult + " LastFirstName: " + \
 r!LastFirstName + "{d}{a}"
 sResult = sResult + " CreditLimit: " + \
 .tostr(.fix(r!CreditLimit, 100), 10) + \
 "{d}{a}"
 sResult = sResult + " Balance: " + \
 .tostr(.fix(r!Balance, 100), 10) + \
 "{d}{a}"
 end if
 end if
 end if
 end if
 end if
end function sResult

As we can see from the previous program, there is a little bit more overhead when accessing the parts
of the database programmatically from SIMPOL as compared with SBL, but there is absolutely no
possibility of errors in the SIMPOL method, since the record object is always a known quantity. There
are also a larger number of ways to write things so that the program code does not need to know too
much about the actual data to still do its job. This allows us to write more generic and library code
that gradually adds to our ability to do a job more quickly.

Almost every bit of the preceding program could be applied to accessing a database using the sbme1,
simply by changing the data types and the opening method. In SIMPOL a great deal of effort has been
invested to ensure that program code will be able to deal with different database types without needing
to be greatly rewritten.

80

81

Chapter 14. Using SBME Databases in
SIMPOL

This chapter will describe in detail the issues surrounding database access in SIMPOL using the Su-
perbase Micro Engine (SBME). The SBME is a new, next-generation database design that incorpo-
rates support for all of the value data types (as well as some additional data types that have a single
value for an object of that type that is of one of the value types) that are included in the SIMPOL
programming language. The database engine has few limitations and is extremely fast with a very
small footprint (ca. 150 KB).

Note

The single-user engine is accessed using the "sbme" component. The multiuser engine
currently only provides PPCS Type 1 access. This engine is included as a three-user test
version on the same machine where the IDE is installed. The multi-user engine compo-
nent "ppsr" is the only current way to access the new database engine for multi-user
access. A later multi-user engine will provide PPCS Type 2, which will allow for the
full array of capabilities provided by SIMPOL. If you are planning to use the multi-user
engine then it is recommended that no use be made of blob, boolean, or datetime fields
since these are not supported for mapping to PPCS Type 1.

Introduction
The SBME database engine is a high-performance database engine that provides a fairly low-level
API for accessing database tables and records. It is not an SQL-style API but rather a table and record-
oriented one. The current engine provides a storage-only database (no calculations, constants, valida-
tions, triggers, etc.). The format is as follows:

• SBME database files have an sbm extension

• The file can contain one or more database tables

• All of the parts of the database table are contained within the database file

• Each table consists of one or more fields and 0 or more indexes

• A field has a datatype that must be one of the value types or else a date, time, or datetime

• An index is currently associated with a specific field, though in future may be over multiple fields

One of the more significant points to be aware of is that there is no column width or display format
associated with a field.

Difference Between SBME and SBF's
There are a number of differences between the SBME database design and that of the older Superbase
format. One thing that immediately is noticeable is the lack of a column width or display format.
Another big difference is that there are no field characteristics like "read only", "required", "non-
stored", nor any validation, default or calculation formulae. The reasons for this are numerous. Ovedr
the years most of the more advanced Superbase programmers have found that the use of these features
tends to cause more trouble than they are worth. The only ones to profit from the use of such features
tend to be very simple databases with little or no significant program code. The more complex an
application becomes the more restrictive the use of these features becomes. As such, the right place
to put these types of features is in the code that is responsible for saving records in a given table.

Programming with SBME Databases

82

One of the common complaints voiced by some customers was the fact that Superbase databases tend
to clutter up a directory with many files (sbd, sbf, sb!, 1 - 999 — indexes). Other customers liked
the ability to change a file definition by simply copying over the sbd file (though this is not generally
recommended). In the new design, all of the components of the database file are in one container.
Optionally more than one database table can be stored in the same container. Because the SBME API
is so low-level, there is no built-in referential integrity, data dictionary, etc. but if desired, much of
this can be implemented inside of any sbm file.

Programming with SBME Databases
Essentially, working with SBME databases from a programmatic standpoint is virtually no different
to working with PPCS databases. For a fairly in-depth description please see the section called “Ob-
ject-Oriented Database Access” and Chapter 12, Using Databases in SIMPOL. The only significant
differences arise in the creation and opening of SBME databases. To open an SBME database, the
new() method of the sbme1 is called. In that call the name of the database file and the action to take
must be specified. The action can be one of the following characters or combinations of characters:

• O — open

• C — create

• R — replace

• OC — open if exists otherwise create

• RC — replace if exists otherwise create

Once the file has been opened the sbme1 object can be used to retrieve the list of tables and if the
table name is known the opentable() method can be used to retrieve a reference to the table. From
that point onwards things work identically to the way PPCS works for accessing fields, indexes, and
records other than a difference in terms of the types of information available for the actual objects
(properties and methods for things like readonly, required, etc.).

Creating an SBME database is done by first opening or creating an sbm file and then by calling the
newtable() method. The following function is part of the db1util.sml library that is included
in the lib directory. The entire source code to the project can be found in the projects\libs
\db1util directory.

function create_sbme1table_from_db1table(type(db1table) dbSrc, \
 sbme1 sbmFile,
 string sNewTableName) export
 integer iResult, iErrnum
 string sTablename
 type(db1field) fld
 sbme1newtable sbmnt
 sbme1newfield sbmnfld
 sbme1newindex sbmnidx

 iResult = iIMEX_ERR_SUCCESS

 if dbSrc =@= .nul
 iResult = iIMEX_ERR_PPCSOBJNUL
 else if sbmFile =@= .nul
 iResult = iIMEX_ERR_SBMEOBJNUL
 else
 if sNewTableName > ""
 sTablename = sNewTableName
 else

Programming with SBME Databases

83

 iErrnum = 0
 if dbSrc.type =@= ppcstype1file
 sTablename = dbSrc.filename
 else if dbSrc.type =@= sbme1table
 sTablename = dbSrc.tablename
 end if
 end if

 if sTablename > ""
 iErrnum = 0
 sbmFile.lock("shared", iErrnum)
 if iErrnum != 0
 iResult = iIMEX_ERR_SBMEOBJLOCKED
 else
 sbmnt =@ sbmFile.newtable(sTablename)
 if sbmnt =@= .nul
 iResult = iIMEX_ERR_SBMETABLECREATEFAILED
 else
 fld =@ dbSrc.firstfield

 while
 sbmnfld =@ sbmnt.newfield(fld.name, fld.datatype)
 if fld.index !@= .nul and fld.datatype !@= number
 sbmnidx =@ sbmnt.newindex(sbmnfld, 100, "")
 end if

 fld =@ fld.next
 end while fld =@= dbSrc.firstfield

 sbmnt.create(iErrnum)
 if iErrnum != iSIMPOL_ERR_SUCCESS
 iResult = iIMEX_ERR_SBMETABLECOMMITFAILED
 end if
 sbmFile.commit()
 end if
 iErrnum = 0
 sbmFile.unlock(iErrnum)
 end if
 end if
 end if
end function iResult

From the preceding program code, specifically following the statement if sTablename > ""
the order of events when creating a new table is:

• Get at least a shared lock on the sbme1 object using the lock() method

• Create a new table with the desired name using the newtable() method, which returns a
sbme1newtable object

• For each field desired create a new field using the newfield() method of the sbme1newtable
object

• If a field should also be indexed then create an index on the new field using the newindex()
method of the sbme1newtable object and passing the reference to the sbme1newfield object

• Create the table by calling the create() method of the sbme1newtable object

• Call the commit() method of the sbme1 object to write the changes back to the file

Programming with SBME Databases

84

• Call the unlock() method of the sbme1 object

There is also a number of tools and library modules being created that are intended to make importing
data and creating files easier. Watch the projects directory for ongoing changes.

Part V. Calling SIMPOL
Functions as DLL Calls

We felt that one way to make SIMPOL available would be to allow the calling of SIMPOL functions as if they were
DLL calls. This could be useful for interacting with other Windows programs and would also assist existing Su-
perbase users to gradually port their applications to the new language by allowing them to write new functionality
in SIMPOL but still call the functions from the older Superbase language. In this part of the reference guide we will
explore how to call SIMPOL functions and programs from Superbase (and other languages) as if they were DLLs.

87

Table of Contents
15. Calling SIMPOL Functions as DLL Calls ... 89

Introduction .. 89
Using SMEXEC .. 89
SMEXEC Example Using SBL .. 89
SMEXEC-Compatible Function In SIMPOL ... 93

88

89

Chapter 15. Calling SIMPOL
Functions as DLL Calls
Introduction

In this chapter we will discuss how we might call a SIMPOL program or even just a function as a DLL
call from Superbase or Visual Basic. In order to use this functionality from Superbase it is essential
that the user be running Superbase 3.6i build 496 or later, since only as of that release is it possible
to call Win32 DLLs.

This functionality is not in as flexible a form as may be provided over the long term, but it is provided
in a usable way in order to promote interoperability between existing Superbase applications and
SIMPOL programs. There are a few limitations such as only a single string argument can be passed
to the function being called in SIMPOL and only a single string can be returned as the result of the
function call to the calling program. This is partly related to the differences in datatypes that are
available to each language. In SIMPOL there are virtually no limitations on the size and precision
of numeric types and the language supports both .nul and .inf as special values. Strings are also
based on Unicode and are essentially unlimited in size. At another point in the future, there will be a
method of accessing SIMPOL functions as DLL calls for interoperability but then it will be specifically
designed to work with Win32 (and Linux and Mac OS-X) in as transparent a manner as possible.

In spite of the fact that only one string can be passed as an argument to the SIMPOL function, if it
contains TAB-delimited items these will be asigned to separate string parameters in the target function.

Using SMEXEC
There are three API functions that are provided in SMEXEC for allowing calls to SIMPOL functions
from external applications and languages. Those three functions are:

• SMExec_LoadSMPModule()

• SMExec_UnloadSMPModule()

• SMExec_RunSMPFunction()

The first of these functions is used to load a compiled SIMPOL program (either an SMP or an SML).
The second is used to free that program and release the memory that it is using. The third is used to call
a function in the program that was loaded. It is important that the return value from the load function be
tested for success (0). If the load has failed, then none of the other functions should be called. Calling
the unload function with an invalid handle can also result in a general protection fault (GPF).

SMEXEC Example Using SBL
In this section we will examine a source code program in SBL that makes calls to a SIMPOL library
called jpeglib.sml. The complete SBL source code for this program is called SMEXEC.SBP and
is included in the samples/SBL directory.

The program below begins by declaring a few variables that simply hold the location of the various
paths for parts of SIMPOL. It also stores the current directory so that it can be restored later and
prepares Superbase for using API calls.

Note

The following program is written in the Superbase Basic Language (SBL). To fit it into
the available space, lines have occasionally need to be continued on the following line.

SMEXEC Example Using SBL

90

The SIMPOL line continuation character, the backslash, has been used for this. However,
SBL does not have a line continuation character, so wherever this character is used the
following line must be rejoined to the line containing the character and the character
must be removed!

Example 15.1. SBL program calling SIMPOL function

SUB main()
 DIM cd$,simpolpath$,simpolbin$,simpollib$

 simpolpath$ = FN spath("C:\Program Files\SIMPOL\")
 simpolbin$ = simpolpath$ + "BIN\"
 simpollib$ = simpolpath$ + "LIB\"

 cd$ = DIRECTORY
 REGISTER CLEAR

The next line of the program does a change of directory to the SIMPOL bin directory. This is nec-
essary because the SMEXEC32.DLL is statically linked to the SMPOL32.DLL and if it is not in the
current directory then the operating system won't be able to find it unless it is added to the path. SIM-
POL is not installed such that anything has to be added to the path and therefore it is better to make
this change. In the future the change should not be necessary, but to use the functionality at the time
of writing, it is necessary to be in the location of the DLLs.

 DIRECTORY simpolbin$

It is also necessary to use the fully qualified path name when laoding the DLL on Windows NT, 2000,
and XP because there is no guarantee that on those OS's that the operating system will look for the
DLL in the current directory. The format used in this example will work on all operating systems
and is therefore recommended. If you put the SIMPOL bin directory into the path, then the full path
names are not required. In the standard installation the directory is not added to the path.

 ' * SBUINT UTILFUNC
 ' SMExec_LoadSMPModule(PSBUBYTE pmodname,
 ' * SBRAMSIZE modnamecharcount,
 ' * SBRAMSIZE bytesperchar,
 ' * PPVOID ppmodinfo)
 REGISTER simpolbin$ + "SMEXEC32.DLL",\
 "SMExec_LoadSMPModule","JCJJM"

 ' * SBUINT UTILFUNC SMExec_UnloadSMPModule(PVOID pmodinfo)
 REGISTER simpolbin$ + "SMEXEC32.DLL",\
 "SMExec_UnloadSMPModule","JJ"

 ' * SBUINT UTILFUNC
 ' * SMExec_RunSMPFunction(PVOID pmodinfo,
 ' * PSBUBYTE pfuncname,
 ' * SBRAMSIZE funcnamecharcount,
 ' * PSBUBYTE pparams,
 ' * SBRAMSIZE paramcharcount,
 ' * PSBUBYTE poutput,
 ' * SBRAMSIZE maxoutputcharcount,
 ' * PSBRAMSIZE poutputcharcount,

SMEXEC Example Using SBL

91

 ' * SBRAMSIZE bytesperchar)
 REGISTER simpolbin$ + "SMEXEC32.DLL",\
 "SMExec_RunSMPFunction","JJCJCJFJMJ"

The program now declares a few variables that are used with the calls to the SMEXEC functions. It
then clears the screen, prints the start time (this for doing time tests of calls to SIMPOL functions),
and assigns the SIMPOL program file and function names to their respective variables.

 DIM smp$,func$,params$,h&%(10),res$,pos%%

 CLS

 ? "Start time: " + TIME$ (NOW ,"hh:mm:ss.sss") + " - ";
 ? DATE$ (TODAY ,"dd mmm yyyy")
 ?
 smp$ = simpollib$ + "JPEGLIB.SML"
 func$ = "smexec_getjpegsize"

Now we load the compiled SIMPOL program/library (*.smp or *.sml). The parameters to the
function call are the program/library name (smp$), the length of the program/library name parameter
(LEN (smp$)), the number of bytes per character (always 1 in SBL but it could be 2 if called by
a program that is operating internally in Unicode), and a pointer or reference to a long integer where
the handle can be stored if the function is successful (h&%(1)). In our example, if the call to load the
library is successful, a handle to the library is returned in the variable h&%(1). It is necessary to use
an array here since the function needs to assign the handle and this is the only reasonable way to do
that in SBL. Array variables are passed by reference rather than by value. It is also possible to load any
number of SIMPOL programs/libraries at the same time and to make calls to them as needed, freeing
them at the end. They do not need to be loaded and then unloaded right away.

 h&% = CALL ("SMExec_LoadSMPModule",smp$, LEN (smp$),1,h&%(1))

At this point we can reset the directory. Prior to loading the program the current directory needs to be
that of where the SIMPOL components are located. After the program is loaded the directory can be
changed. This is a temporary restriction and it will be removed in later versions.

 DIRECTORY cd$

Now we test the return value from loading the program and if it is not equal to zero then something
has gone wrong. If an error occurs here, the likelyhood is that the file was either not found or that a
required component could not be loaded. The return values will be SIMPOL error values.

 IF (h&% <> 0) THEN
 ? "Error " + STR$ (h&%,".") + " loading '" + smp$ + "'"
 ELSE

Only one parameter can be passed to the SIMPOL function and it is always a string, but it is easily
possible to place multiple parameters inside the string and to separate them with TAB characters. The
TAB-separated entries will be assigned in order to each argument (which must be of type string) within
the function paramter list. The maximum size of the parameter that can be passed when calling from
SBL is the size of a Superbase string, which is 4000 characters. When calling from another language
like Visual Basic, the limitation would be the maximum size of a VB string. In the case of this example
the parameter being passed is the name of a JPEG file from which the size of the image is to be read.

SMEXEC Example Using SBL

92

 params$ = "SBLOGO.JPG"

The maximum size of the return value, which is always a string, is 4000 characters. Here the variable
is being presized to accomodate the maximum amount being returned.

 res$ = SPACE$ (4000)

Now we call the function in the SIMPOL program/library. The return value of the call indicates
whether SIMPOL was able to call the function and if the function had any errors. It is not the return
value of the SIMPOL function. That is returned in the res$ parameter. The h&% variable receives
the return value and the parameters to the function call are the handle to the program/library that we
received when it was loaded (h&%(1)), the name of the function we are calling in the loaded SIM-
POL program/library (func$), the length of the function name that we are passing in the previous
parameter (LEN (func$)), the string parameter that we are passing to the function we are calling
(params$), the length of the value passed as the parameter (LEN (params$)), a variable to hold
the return value of our function call (res$), the size of the return buffer (4000), a pointer or reference
to a long integer variable that will receive the number of characters written to the return buffer (h&
%(2)), and the number of bytes per character that should be used in the return buffer (in the case of
SBL this is always 1).

 h&% = CALL ("SMExec_RunSMPFunction",h&%(1),func$,\
 LEN (func$),params$, LEN (params$),\
 res$,4000,h&%(2),1)
 IF (h&% <> 0) THEN
 ? "Error " + STR$ (h&%,"9999");
 ? " executing '" + func$ + "'"
 ELSE

Assuming that the function call succeeded, we can retrieve from the return value in res$ the actual
string that may have been returned. For safety's sake we are using the LEFT$() function to retrieve
the number of characters that we were told was returned in the result. Then we output the results of
the function call, once as we received it to show what the return value actually was, and once after
having interpreted it. Normally a programmer would decide their own best return format and simply
interpret the results as needed.

 res$ = LEFT$ (res$,h&%(2))
 ? "Size of the returned result string: ";
 ? STR$ (h&%(2),".")
 ? "Result: '" + res$ + "'"
 pos%% = INSTR (res$," ")
 IF pos%% THEN
 ? "The size of the JPEG image called: " + params$;
 ? " is " + FN numeric(LEFT$ (res$,pos%% - 1));
 ? "x" + FN numeric(MID$ (res$,pos%% + 1))
 END IF
 END IF

Now we need to unload the SIMPOL program since we are finished using it. Forgetting to unload
the program could result in memory and resources not being freed. Superbase does not free resources
on behalf of external programs when it closes. It is the responsibility of the programmer that uses
external calls to do that. We pass in the handle to the program (h&%(1)) in the unload call. If this

SMEXEC-Compatible
Function In SIMPOL

93

handle is incorrect or does not exist, then a GPF can occur, so it is important to maintain these handle
values carefully.

 h&% = CALL ("SMExec_UnloadSMPModule",h&%(1))
 END IF

Finally, we output the finishing time for comparison purposes and clear the registered API calls from
memory.

 ? :? "End time: " + TIME$ (NOW ,"hh:mm:ss.sss") + " - ";
 ? DATE$ (TODAY ,"dd mmm yyyy")

 REGISTER CLEAR

 END SUB

The preceding program should provide a useful template for building calls to SIMPOL functionality
into a program based on SBL. The basic approach should also be clear to anyone working with similar
languages such as Visual Basic, although the REGISTER command would need to be replaced with
the Declare syntax.

SMEXEC-Compatible Function In SIMPOL
In the previous section we discussed in-depth a program in SBL that calls a SIMPOL function in a
library called jpeglib.sml. The actual function in the SIMPOL source code needs to be written to
the interface provided by SMEXEC. In this section we will look at that function.

The original function prototype in SIMPOL is as follows:

function getjpegsize (string sFilename, integer iWidth, integer
iHeight) export

Unfortunately this function cannot be called via SMEXEC directly, since functions that are called
from SMEXEC, as we learned in the previous section, can only take a single string argument and can
only return a string result. That means that we will have to create an interface function that can be
called via SMEXEC and that can then call the desired function and return the results in the correct
format. For ease of understanding later, we can call this function smexec_getjpegsize(). The
source code for the interface function is shown below:

function smexec_getjpegsize(string sFilename) export
 string sResult
 integer iWidth, iHeight, iResult

 iWidth = 0
 iHeight = 0
 iResult = getjpegsize(sFilename, iWidth, iHeight)
 if iResult == 0
 sResult = "w:" + .tostr(iWidth, 10) + " h:" + \
 .tostr(iHeight, 10)
 else
 sResult = "e:" + .tostr(iResult, 10)
 end if
end function sResult

SMEXEC-Compatible
Function In SIMPOL

94

In the interface function the only parameter passed in is the sFilename parameter and the values of
the two integers are converted to strings and passed in the return value if the function succeeds and
if it fails the error value is passed in the return value. The programmer is free here to implement any
method desired to transmit the information via the string result back to the caller.

Part VI. Working with Sockets
One of the more powerful features that is built into SIMPOL is the support for TCP/IP. This includes both client
and server components. Using these components it is possible to build a wide range of programs that can interact
natively with the Internet. Email clients, web servers, mail servers, file exchange servers and any number of other
programs that might require communication over the Internet can be built on top of the SIMPOL sockets support.
In this part we will explore basic client and server functionality, which the user can continue to expand upon as
required.

97

Table of Contents
16. Client Applications Using TCP/IP ... 99

Introduction .. 99
The tcpsocket Type .. 99
To Block, or not to Block … ... 99
Practical Example — URLDump .. 99

In the Beginning … .. 100
The Main Event ... 100

17. Server Applications Using TCP/IP ... 107
Introduction ... 107
The tcpsocketserver Type .. 107
When a Connection Occurs .. 107
Exiting the listen() Method .. 107

98

99

Chapter 16. Client Applications Using
TCP/IP
Introduction

The best place to begin when learning about the tcpsocket type is building a simple client program.
In this chapter we will examine the code that is used for a basic URL dumping program. It makes a
connection to a web server and requests a resource using the GET method of the HTTP protocol. For
details of how to program HTTP-compliant applications, the reader is directed to the various RFC's
that are associated with this protocol (starting with RFC1945).

Tip

One of the more useful tools when building any type of TCP/IP-based service is the pro-
gram telnet. Telnet provides a console with which the user can examine what is going
on when a server connection is made and then can test the interaction with the server.
Regardless of whether the objective is to build a server or a client, it is always useful to
have a console available with which to test the interaction of the target components.

The tcpsocket Type
SIMPOL's tcpsocket type provides the necessary functionality to create powerful TCP/IP-based pro-
grams. The properties of the object are not terribly important for client programs. They are destination
and port; both are read-only and contain the destination IP address and port number and the local port
number used. More interesting for client programs is the methods: new(), sendblob(), send-
string(), receiveblob(), and receivestring(). The new() method of the tcpsocket
type is used to create an object of this type as the result of making a TCP/IP connection to a server
using the destination parameter provided to the new() method. The two receive methods are
for receiving data and the two send methods for sending data. Either can be used, but the blob versions
will normally be more efficient since most protocols over TCP/IP tend to use byte-oriented data and
not Unicode.

To Block, or not to Block …
The methods of the tcpsocket type do not block in SIMPOL. However, if no timeout is specified
then the default value of .inf will result in the operation never exiting. When waiting on data using
either of the receive methods if no data ever arrives the program will wait forever (or until the socket
closes). It is far better to control this in the program by setting a timeout value and using it as the
optimum time to exit if nothing happens. By placing the receive operation in a loop, the program can
continue to loop until no data is received within the allotted timeout period. At that point the program
can exit, or in the case of a GUI-style program it can ask the user whether to retry or cancel, etc.

Practical Example — URLDump
The program urldump.sma implements a basic HTTP client that permits the sending of a GET
request to a web server. It then receives the result and outputs the entire returned page into a target file
name. Although the same thing can be done with a browser, what makes this program interesting is the
fact that it also outputs the headers that were sent from the server, which the browser normally strips
off. These are the most interesting part, especially if you are trying to track down why something might
be going wrong. The code used in this example could also be reused to eventually provide a light-
weight browser component or a web crawling robot or any of a number of different useful programs
based on the HTTP protocol.

In the Beginning …

100

In the Beginning …
To start with, we need to create a few useful symbolic constants. The use of symbolic constants is
what makes a program readable and easy to maintain. Just as using styles in a document makes it easy
to change the look and feel of a document very quickly, the same is true of a good computer program.

Example 16.1. Constants portion of the urlget program

//////////////////////////////////////
// Symbolic Constants //
//////////////////////////////////////

constant sURLID "://"
constant sSTDPORT ":80"
constant iTIMEOUT 1000000
constant sGET "GET"
constant sSP " "
constant sCRLF "{d}{a}"
constant sHTTPVER "HTTP/1.0"
constant sURIBASE "http://"
constant sCONTENTLENGTH "content-length:"
constant sHTTP "HTTP"
constant sIGNORECHARS " {d}{a}"

constant sERRTXT_CONNECT "Failed to connect to host"
constant sERRTXT_SEND "Error sending request to host, \
 error number: "
constant sERRTXT_RECEIVINGDATA "Error receiving results from \
 host, number: "
constant sERRTXT_FILEOPENFAILED "Error opening output file"
constant sERRTXT_PAGE "Page '"
constant sERRTXT_NOTFOUND "' not found"
constant sERRTXT_SUCCESS "' successfully retrieved"

There are two types of constants listed in this section, one set consists of the values used in various
parts of the program, the other is specifically error and success messages that are returned to the user.
Many of these values may not currently make much sense, although the name of the constant may
help clarify their meaning and later in the actual program code how they are used will also help clear
things up.

The Main Event
Now that we have established the constants we will be using (obviously, these actually got created
during the writing and restructuring of the program, not before the work began), let's have a look at
the program code.

Example 16.2. Beginning of the main() function of the urlget program

function main(string sUrl, string sOutfile)
 tcpsocket http
 string sDomain, sResult
 integer iErrnum, iPos, iContentLength, iPos2
 fsfileoutputstream fpo
 blob bContent, bReceive, bTmp, bHeader, bStatus

The Main Event

101

 sResult = ""
 bTmp = ""

 if .instr(sUrl, sURLID) == 0
 sUrl = sURIBASE + sUrl
 end if
 sDomain = getdomainroot(sUrl)

 // Now do a quick check and make sure that if they provided
 // a URL like www.foobar.com without the ending slash, that
 // we add it.
 if sDomain == .rstr(sUrl, .len(sDomain))
 sUrl = sUrl + '/'
 end if

 if .instr(sDomain, ":") == 0
 sDomain = sDomain + sSTDPORT
 end if

The start of the program is the main() function. It takes two parameters: the URL of the page to
retrieve and the name of the output file in which the retrieved page should be stored. After declaring
and initializing the variables the program first evaluates the URL and extracts the root domain from
it, since tht is what is needed to create the connection. It also checks the URL to ensure that if a base
domain was based that the closing slash has been appended (otherwise it adds one) since without the
closing slash it will fail when attempting to retrieve the default page from the web server. Finally the
root URL is checked to see if it includes the optional port information. If it does (such as :8080) then
the program does nothing but if there is no port information (the normal case) then it adds :80 to the
end of the domain root. This is necessary since the first parameter to the tcpsocket.new() method is
the destination in the format of either IP address:port or domain name:port.

Once the basic initialization has been completed, the program then attempts to open a TCP/IP connec-
tion to the web server named in the sUrl parameter. The variable was named http to make clear to
anyone reading the source code what the object is used for.

Example 16.3. Creating the socket connection in the urlget program

 iErrnum = 0
 http =@ tcpsocket.new(sDomain, error=iErrnum)

If the connection fails, an error message is assigned to the return variable and the program exits. If it is
successful, however, then the GET request is formulated and sent to the web server via the tcpsocket
object referenced via the http variable.

Example 16.4. Beginning the TCP/IP conversation in the urlget program

 if http =@= .nul
 sResult = sERRTXT_CONNECT + sCRLF
 else
 // Full-Request and Full-Response use the generic message
 // format of RFC 822 for transferring entities. Both
 // messages may include optional header fields (also
 // known as "headers") and an entity body. The entity
 // body is separated from the headers by a null line
 // (i.e., a line with nothing preceding the CRLF).
 //
 // Full-Request = Request-Line ; Section 5.1
 // *(General-Header ; Section 4.3

The Main Event

102

 // | Request-Header ; Section 5.2
 // | Entity-Header) ; Section 7.1
 // CRLF
 // [Entity-Body] ; Section 7.2

 //
 // This is known as a full request in the format of HTTP
 // 1.0 but without any additional headers or an entity
 // body, therefore the closing second CRLF to complete
 // the message:
 // Request-Line = Method SP Request-URI SP HTTP-Version
 // CRLF

 bContent = sGET + sSP + sUrl + sSP + sHTTPVER + sCRLF + \
 sCRLF

 // Although it may not normally be necessary, it is far
 // more elegant to use a socket that will not wait
 // forever. By setting a timeout on the various socket
 // operations (default is .inf -- never) we remain in
 // control of the program, so that if a long time passes
 // with no or insufficient activity, the program can
 // exit properly. In a GUI-style program the user can be
 // asked whether to continue waiting or if they wish to
 // cancel the operation.

 http.sendblob(bContent, timeout=1, error=iErrnum)

Assuming that there is no error when sending the request, the program now prepares to receive the
response. The program sets up a loop to receive the response from the server. As described earlier, to
ensure that the program doesn't hang while waiting for a response (which could happen if the server or
the connection went down after the request was sent), the loop is entered and the receiveblob()
method is called and set to time out when the standard timeout value expires. The loop will only exit
if an error occurs, nothing is received on the connection within the scope of the time out period, or the
content received contains two carriage-return plus linefeed pairs.

Note

Technically this implementation is not as forgiving as it should be, since according to the
standard published in RFC-1945 applications should be reasonably tolerant in terms of
which formatting they accept and the carriage return and linefeed pair specifically should
be treated as merely linefeed and any carriage return should be dropped (this supports
UNIX-based programmers where carriage return is not normally considered to be part
of the end of line character).

Example 16.5. Retrieving the header from the web server in the urlget program

 if iErrnum != 0
 sResult = sERRTXT_SEND + .tostr(iErrnum, 10) + sCRLF
 else
 bReceive = ""

 // Now we retrieve the header (it may be more than
 // just the header that comes in, but we are technically
 // interested in the header at the moment).
 bHeader = ""
 while

The Main Event

103

 bTmp = ""
 bTmp = http.receiveblob(timeout=iTIMEOUT, error=iErrnum)
 bHeader = bHeader + .if(bTmp > "", bTmp, "")
 iPos = .inblob(bHeader, .toblob(sCRLF + sCRLF))
 end while iErrnum != 0 or bTmp <= "" or iPos > 0

The previous receive loop may or may not have received the entire page but it should have received
either the entire header or it exited for some other reason. The next piece of code tests to see if, in fact,
it did receive the header and the associated separator. If so, the portion following the header (minus
the separator) is assigned to the variable bReceive and the header alone is reassigned to the variable
bHeader.

Example 16.6. Checking the response code in the web page header in the urlget
program

 // Now that we have received the entire header, we
 // examine the header The first thing to evaluate is
 // the response code, since it needs to be in the 2XX
 // class for success. If it is a 4XX then we won't be
 // getting any content back.

 if iPos > 0
 bReceive = .subblob(bHeader, iPos + 4, .inf)
 bHeader = .subblob(bHeader, 1, iPos - 1)
 end if

The next step is to check the header and see what type of response was received from the web server.
Unless the web server is using HTTP 0.9 there should be a response code. If there is none, then all
we will get back is the body of the response, which will either be the requested page or some error
text. If there is a full response, then we can evaluate the status line and see if the request succeeded.
If it did not, then there is no additional content to retrieve. The bReceive variable is set to be equal
either to its current value if it has any content or else to the empty string. This is to ensure that the
concatenation of the variables later does not result in a value of .nul.

Example 16.7. Parsing the web page header in the urlget program

 // After receiving and interpreting a request message,
 // a server responds in the form of an HTTP response
 // message.
 //
 //
 // Response = Simple-Response | Full-Response
 //
 // Simple-Response = [Entity-Body]
 //
 // Full-Response = Status-Line ; Section 6.1
 // *(General-Header ; Section 4.3
 // | Response-Header ; Section 6.2
 // | Entity-Header) ; Section 7.1
 // CRLF
 // [Entity-Body] ; Section 7.2
 //
 // Status-Line = HTTP-Version SP Status-Code SP
 // Reason-Phrase CRLF
 // "HTTP/" 1*DIGIT "." 1*DIGIT SP 3DIGIT SP PHRASE CRLF
 //

The Main Event

104

 // Either we will get a simple response or a full
 // response.

 if .subblob(bHeader, 1, 4) == .toblob(sHTTP)
 iPos = .inblob(bHeader, .toblob(sSP))
 if iPos > 0
 bStatus = .subblob(bHeader, iPos + 1, 3)
 end if
 end if

 if bStatus > "" and bStatus[1] != '2'
 // The page was not found for some reason
 // If the bReceive section is empty, we need to
 // set it to the empty blob (and not .nul) for
 // output later.
 bReceive = .if(bReceive >= "", bReceive, "")

Assuming that the request succeeded the next thing to look for is the content length field in the header.
Once we either have a content length value or we establish that there is not one to be found, the final
step is to read the remainder of the output from the web server. The content length can assist us in
deciding when to stop, but it is not necessary, nor is it always correct, according to the standard, but
for the purpose of this program we will assume that it is.

Example 16.8. Retrieving the web page content in the urlget program

 else
 // and look for the "content-length" header field.
 iContentLength = -1
 iPos = .inblob(.toblob(.lcase(bHeader.getstring(1, .inf,\
 1))), .toblob(sCONTENTLENGTH))
 if iPos > 0
 iPos2 = .inblob(.subblob(bHeader, iPos + \
 .len(sCONTENTLENGTH), .inf),\
 .toblob(sCRLF))
 if iPos2 > 0
 bTmp = .subblob(bHeader, iPos + .len(sCONTENTLENGTH),\
 iPos2)
 iContentLength = .toval(bTmp.getstring(1, .inf, 1),\
 sIGNORECHARS, 10)
 end if
 end if

 // If we found a "content-length" header, then we know
 // how much data is still to come. If we don't, then we
 // can only rely on the timeout and continually loop
 // until we receive nothing on the connection.

 if iContentLength >= 0
 while bReceive.size < iContentLength
 bTmp = ""
 bTmp = http.receiveblob(timeout=iTIMEOUT, \
 error=iErrnum)
 bReceive = bReceive + \
 .if(bTmp > "", bTmp, .toblob(""))
 end while iErrnum != 0 or bTmp <= ""
 else

The Main Event

105

 while
 bTmp = ""
 bTmp = http.receiveblob(timeout=iTIMEOUT, \
 error=iErrnum)
 bReceive = bReceive + \
 .if(bTmp > "", bTmp, .toblob(""))
 end while iErrnum != 0 or bTmp <= ""
 end if
 end if

Now that we have all of the output from the web server (regardless of how much that actually is) it is
time to formulate the response to the user, either one of success or failure. Also the output from the
web server needs to be written to the output file.

Example 16.9. Returning the results to the user in the urlget program

 // Finally, we deal with the result, which is either
 // success or failure. If failure, we need to tell the
 // user what went wrong.

 if iErrnum != 0 and iErrnum != 705
 sResult = sERRTXT_RECEIVINGDATA + \
 .tostr(iErrnum, 10) + sCRLF
 else
 fpo =@ fsfileoutputstream.new(sOutfile, error=iErrnum)
 if fpo =@= .nul or iErrnum != 0
 sResult = sERRTXT_FILEOPENFAILED + sCRLF
 else
 if bStatus > "" and bStatus[1] != '2'
 sResult = sERRTXT_PAGE + sUrl + \
 sERRTXT_NOTFOUND + sCRLF
 else
 sResult = sERRTXT_PAGE + sUrl + \
 sERRTXT_SUCCESS + sCRLF
 end if
 fpo.putblob(bHeader + .toblob(sCRLF + sCRLF) + \
 bReceive)
 end if
 end if
 end if
 end if
end function sResult

106

107

Chapter 17. Server Applications
Using TCP/IP
Introduction

In the previous chapter we discussed the creation of client applications using TCP/IP. In this one
we will explore the other side of the process, a TCP/IP-based server program. In SIMPOL TCP/IP
server programs are largely similar to client programs except in one specific area: the initialization of
the program. Aside from that, they merely use a tcpsocket object to conduct the opposite half of the
conversation to that of the client.

The tcpsocketserver Type
Server programs make use of the tcpsocketserver type for their initialization. The new() method
takes a port number and an error object as parameters. The port number must be in the range from
1 through 65535. More importantly it is advisable that the port should be appropriate for the type of
service being supplied. If you are implementing a web server, then port 80 is appropriate. Check for
the standard port assignments and try to use one that is either appropriate for a standard service or one
that is generally unused. Also, unless you are implementing a service that normally uses a port below
1024, it is strongly recommended that a port in the range from 1025-65535 be selected. Ports between
1 and 1024 are in a range that is typically restricted and they may not as easily pass through a firewall.

Assuming that a tcpsocketserver object is successfully returned from the new() method, the only
thing left to do is to call the listen() method of the object. The listen method takes four para-
meters: a function reference, a reference to an object of any type, a timeout value, and an
error object. The first of these is a reference to the function that is to be called when a connection
is made, the second is an optional reference to any object type. The object would typically be some
user-defined datatype holding references to resources that are commonly needed by each connection,
such as database table references, a reference to the tcpsocketserver object, etc. The timeout value
would probably be set to .inf for most systems. The final parameter should by now be familiar. It
is an integer object that will be filled with an error value in case anything fails while trying to listen
on the port.

When a Connection Occurs
When a client connects to the port on which the server is listening, SIMPOL makes a call to the
function referred to by the function reference passed into the listen() method. The function must
defined with the following prototype:

funcname (tcpsocket connectionname, type(*) user-defined-type)

The first parameter is the tcpsocket object representing the connection from the caller and the second is
the optional user-defined object (this can be .nul). Each connection will begin a new thread that starts
by calling the function reference passed to the listen() method. The conversation with the caller
then takes place in exactly the same way that a conversation would take place in a client application
(see the previous chapter for details). When the function ends then the thread will also end.

Exiting the listen() Method
Calling the listen() method of the tcpsocketserver object results in the code in that thread halting at
the call to the method until either an error occurs, the timeout expires, or the break() method of the
tcpsocketserver object is called. At that point, the original thread where the listen() method was
invoked will continue execution. If that results in the object going out of scope, which would normally

Exiting the listen() Method

108

destroy the object, that will only happen if no thread is running that was invoked via a connection to
the object and no other reference to the object still persists. A connection can be used to shutdown or
restart the server if the programmer chooses to implement such functionality. This would require that
a reference to the server object also be passed to the function that is called for each connection.

Part VII. User-Interface Components
SIMPOL provides a number of different components for interacting with the user interface. This includes windows,
forms, and common dialogs. Some programming environments only provide forms and fail to actually provide
windows themselves, but with SIMPOL we have chosen to provide the full range of possible items in order to give
the greatest range of functionality to the programmer. User-interface components are the basic building blocks
that can make a program easy to use or a nightmare for the user, which of these depends on the choices made
by the programmer. When designing a user interface, it is important that the programmer design for simplicity
and ease of use. It also helps if they actually have direct contact with those who may be using the interface, to
get useful feedback.

111

Table of Contents
18. Using the wxWidgets Component in SIMPOL ... 113

Windows and Dialogs ... 113
Introduction to Windows and Dialogs .. 113
Creating a Single Window ... 114
Creating Multiple Windows ... 114
Working with Dialogs ... 116

Menu Bars, Menus, and Menu Items ... 121
Forms and Form Controls .. 123

Introduction to Forms ... 123
Creating Simple Forms .. 123
Working with Form Controls ... 125
The Grid Control ... 129
Summary .. 131

Common Dialogs ... 131
Parting Notes ... 131

19. Common Dialogs and Other UI Utilities in SIMPOL ... 133
Common Dialogs in SIMPOL .. 133
Message Boxes in SIMPOL ... 134

112

113

Chapter 18. Using the wxWidgets
Component in SIMPOL

In this chapter we will cover the basics of using the wxWidgets support in SIMPOL. Currently this
component is available for Win32 and Linux. Other platforms will follow. We have every expectation
that the other platforms will come up fairly quickly, since the wxWidgets toolkit is by nature a cross-
platform toolkit.

Note

For information about developing data-aware form applications, see Part X, “Program-
ming Data-Aware Form Programs”.

All of the main examples in this chapter are available in the projects\examples directory.

Windows and Dialogs

Introduction to Windows and Dialogs

The window support in SIMPOL using the wxWidgets component is designed to allow the creation
of a broad variety of windows. Currently we only support the creation of a top-level window or a
dialog. The dialog can be either modal or non-modal. The windows can have either sizeable or simple
borders; they can have various types of controls such as vertical and horizontal scroll bars (in various
styles), the maximize button, the minimize button, the visibility button (this is the close button — it
is called the visibility button in SIMPOL because it only affects whether the window is shown or not,
it is not destroyed when the user clicks this button, that is left to the programmer). For full details of
what is available, see the "wxwindow" entry in the "The wxWidgets-based (WXWN) Components"
of the "Components" appendix in the "SIMPOL Language Reference".

Note

If you wish to have scrollbars on the window, or specify which buttons are shown, this
must be decided when the window is created, these things cannot be modified after the
window has been created!

Windows are not simply provided to house a form, although to start with, that is all that they are able
to do. Windows in SIMPOL have been designed with the idea of containership, so that later on, other
types of content can be placed into a window without requiring the additional overhead of placing
that content on a form. An example might be a terminal or console control that is used to provide a
console window with output from the program and input from the user. Another use might be to house
a document filter for display of images and other content types in a free-floating window. For this
reason it is not a good idea to get into the habit of thinking that windows and forms in SIMPOL are
synonymous. It is better to think of a form as one of the types of content that a window can provide.

In order to process the events that occur when a window is shown, there is a special function, called
wxprocess() that is responsible for processing all of the events that occur in the wxWidgets-based
controls in all windows (except for modal dialogs). This function takes a single parameter that tells
it how long to process events before returning. In many cases, you may wish to leave the program in
this processing state for the entire duration of the program once you have done the initialization and
shown the first window. In that case, passing the value .inf to the function will keep it processing
messages until you call the wxbreak() function. As an alternative, you can place the wxprocess()
call in a loop and have it exit the call after a set period of time.

Creating a Single Window

114

Creating a Single Window

It is best to start out working with windows by creating a single standard window. Examine the small
example program below (it can be found in the projects\examples directory.

Example 18.1. Creating a Single wxwindow

function main()
 wxwindow w
 integer iErrnum
 string sResult

 iErrnum = 0
 w =@ wxwindow.new(0, 0, 640, 480, captiontext="Main test window", \
 error=iErrnum)
 if w =@= .nul
 sResult = "Error number: " + .tostr(iErrnum, 10) + " opening \
 main window{d}{a}"
 else
 w.onvisibilitychange.function =@ quit
 wxprocess(.inf)
 end if
end function sResult

function quit(wxwindow w)
 wxbreak()
end function

As can be seen from the above example, the window is created by calling the new() method of the
wxwindow type. Almost all of the features of the wxwindow object can be specified during creation,
and some must be specified at that time since they cannot later be changed. The example defaults
to showing the window once it has been created, as well as various other features, such as having a
system menu, minimize and maximize buttons, making the window sizeable, and so on. The next thing
is the assignment of a function to handle the onvisibilitychange event. This event is called when the
user takes some action to dismiss the window. Instead of the window being closed, it is hidden. If the
programmer has defined a handler for the onvisibilitychange event, then that function will be called
and it will be passed the object responsible for the call, in this case the wxwindow object represented
by the variable w in the main() function.

In the example the argument to the wxprocess() function was the value .inf, so it is essential
to assign an event handler to the window's onvisibilitychange event. Otherwise the window will be
hidden when the user clicks on the Close button but the thread will continue indefinitely and since
there is no longer any method of closing the window the program will not exit unless closed externally

(using Ctrl+C from the command line or Project → Stop Execution from the IDE).

Creating Multiple Windows

Building upon the beginning made in the previous section, creating additional windows is also quite
simple. The following program demonstrates the creation of the main window from the first example
followed by the creation of two other windows.

Example 18.2. Example of Creating Multiple Top-Level wxwindows

Creating Multiple Windows

115

function main()
 wxwindow w, w2, w3, w4
 integer iErrnum
 string sResult

 iErrnum = 0
 w =@ wxwindow.new(0, 0, 320, 240, captiontext="Main test \
 window", error=iErrnum)
 if w =@= .nul
 sResult = "Error number: " + .tostr(iErrnum, 10) + " opening \
 main window{d}{a}"
 else
 w.onvisibilitychange.function =@ quit
 w2 =@ wxwindow.new(320, 0, 320, 240, captiontext="Second test \
 window", error=iErrnum,\
 menubutton=.false, border="simple",\
 backgroundrgb=0xFFFFFF, vscrollbar=.true,\
 hscrollbar=.true)
 if w2 =@= .nul
 sResult = "Error number: " + .tostr(iErrnum, 10) + \
 " opening second window{d}{a}"
 else
 w3 =@ wxwindow.new(0, 240, 320, 240, captionbar=.false, \
 error=iErrnum, vscrollbar=.true)
 if w3 =@= .nul
 sResult = "Error number: " + .tostr(iErrnum, 10) + \
 " opening third window{d}{a}"
 else
 w4 =@ wxwindow.new(320, 240, 320, 240, \
 captiontext="Fourth test window", \
 error=iErrnum, maxbutton=.false, \
 backgroundrgb=0xC0C0C0)
 w2.onvisibilitychange.function =@ quit
 w3.onvisibilitychange.function =@ quit
 w4.onvisibilitychange.function =@ quit
 wxprocess(.inf)
 end if
 end if
 end if
end function sResult

function quit(wxwindow w)
 wxbreak()
end function

The program above is somewhat more complicated than the earlier program, but the basic technique of
creating the windows hasn't changed. Please note that all of the windows are top level windows. The
way the program is currently written, closing any of the windows will close all of them. This could
easily be modified to use a different (or no function) to handle the closing of all but one of the windows,
to prevent the program from exiting except, for example, when the main window is closed. The second
window has been created so that it cannot be resized and has no buttons or system menu. It can be
closed only using the Alt+F4 keyboard combination, as can the third window, which has no caption
and therefore no close gadget or system menu. The fourth window can be resized but not maximized.
Most commonly you might actually make the window not resizeable and take away the maximize
button if you wanted to prevent any resizing. Two of the windows have the default background window
color for the operating system, one has the color white and the last has the color gray.

Working with Dialogs

116

Working with Dialogs
Dialog windows in SIMPOL are very similar to regular windows. The only significant difference is
the fact that dialogs can be shown modally. That means that no further access to the application via
the GUI is available as long as the dialog is displayed. The user must deal with the modally displayed
dialog before they can continue. This is the way most dialogs are displayed. Another type of dialog
is the non-modal dialog. These dialogs always stay in front of the windows of the application, but it
is possible to click on the windows behind while the dialog is displayed. This sort of dialog is often
used for things like a "Find and Replace" dialog in a word processor, where the user should still be
able to click into the document while the dialog is displayed. One significant change from the older
SBL language is that forms are used both in windows and in dialogs, unlike the older product that
differed between forms and dialogs, including having different properties and events for things like
editable text controls.

Modal Dialogs

The wxprocess() is not used to handle events for a modal dialog, but rather the dialog has a spe-
cial method for showing itself modally and for handling events while it is shown. The process-
modal()) method is called to show the dialog and handle events while it is shown. See the examples
below:

Example 18.3. A Minimal Modal wxdialog Example

function main()
 wxdialog d
 integer e

 e = 0
 d =@ wxdialog.new(1, 1, 600, 400, captiontext="Hello World", visible=.false, error=e)
 if d !@= .nul
 d.processmodal(.inf)
 end if
end function

This dialog program is very simple. Unlike the one for the wxwindow type, there is no quit() func-
tion and no onvisibilitychange event handler. An important point to note is that the dialog was created
with the visible parameter set to .false. It is then shown using the processmodal() method
of the wxdialog type. Again the value.inf is supplied. If the dialog is created with the parameter
visible set to .true, then it must be managed by a wxprocess() statement.

When a modal dialog is set to invisible, it automatically exits the processmodal() method. This
happens if the user clicks the close gadget of the window. It can also be done programmatically, in an
event handling function called by a button on a form, as shown in the next example.

Example 18.4. A Modal wxdialog

function main()
 wxform f
 integer e
 wxdialog d
 wxformbutton b

 e = 0
 f =@ wxform.new(100, 80, 0xC0C0C0, error=e)

Working with Dialogs

117

 if f !@= .nul
 f.addcontrol(wxformtext, 10, 10, 80, 20, "Hello world!")
 b =@ f.addcontrol(wxformbutton, 30, 55, 40, 22, "OK")
 b.onclick.function =@ quit
 // It is essential to create the dialog invisible, since
 // otherwise it will already be shown and cannot be then
 // shown modally.
 d =@ wxdialog.new(50, 50, innerwidth=f.width, \
 innerheight=f.height, captiontext="Hello", \
 visible=.false, error=e)
 if d !@= .nul
 f.setcontainer(d)
 d.processmodal(.inf)
 end if
 end if
end function

function quit(wxformbutton me)
 // Setting a modal dialog to invisible is the only
 // programmatic way to close the dialog.
 me.form.container.setvisible(.false)
end function

Note that it is important to create the dialog invisibly. If it is not, then it will cause an error when you
try to show it using the processmodal()) method, since it is already being shown. To close the
modal dialog programmatically, all that is required is to set its visibility back to .false.

Non-Modal Dialogs

Non-modal dialogs are created in exactly the same way as modal dialogs. The only significant differ-
ence is that non-modal dialogs are simply shown, either by creating them visibly, or by setting them
to visible, and their events are handled by the wxprocess() function. Here is the same sample
modified to be non-modal:

Example 18.5. A Non-Modal wxdialog

function main()
 wxform f
 integer e
 wxdialog d
 wxformbutton b

 e = 0
 f =@ wxform.new(100, 80, 0xC0C0C0, error=e)
 if f !@= .nul
 f.addcontrol(wxformtext, 10, 10, 80, 20, "Hello world!")
 b =@ f.addcontrol(wxformbutton, 30, 55, 40, 22, "OK")
 b.onclick.function =@ quit
 // It is still good to create the dialog invisible and then
 // show it after loading the form into it.
 d =@ wxdialog.new(50, 50, innerwidth=f.width, \
 innerheight=f.height, captiontext="Hello", \
 visible=.false, error=e)
 // Now we need to trap the onvisibilitychange event (closing
 // the window), since if we don't, the window will close and
 // the program will not.

Working with Dialogs

118

 d.onvisibilitychange.function =@ quit

 if d !@= .nul
 f.setcontainer(d)
 d.setvisible(.true)
 wxprocess(.inf)
 end if
 end if
end function

function quit(type(*) me)
 // Here we allow dual use of the function
 wxbreak()
end function

Dialogs Using Standard Buttons

Another area where dialogs can differ, is that on many operating systems they have a specific look
and feel associated with them. Thanks to the cross-platform nature of the wxWidgets library, SIMPOL
provides an additional capability to the dialogs, called "Standard Buttons". By using this functionality,
the dialog buttons such as OK and Cancel or Yes and No are created and managed by the dialog, rather
than being placed by the programmer. This ensures that they are handled correctly for each target
platform. For example, on the Macintosh it is customary to put the Cancel on the left, whereas the
same button is found on the right on Microsoft Windows.

Note

Currently the only style of dialog that will close when the user presses the Esc key is
the one using standard buttons.

Here is the modal-dialog example converted to use standard buttons:

Example 18.6. A Modal wxdialog with Standard Buttons

function main()
 wxform f
 integer e
 wxdialog d

 e = 0
 f =@ wxform.new(100, 40, 0xC0C0C0, error=e)
 if f !@= .nul
 f.addcontrol(wxformtext, 10, 10, 80, 20, "Hello world!")
 // It is essential to create the dialog invisible, since
 // otherwise it will already be shown and cannot be then
 // shown modally.
 d =@ wxdialog.new(50, 50, innerwidth=f.width, innerheight= \
 f.height, captiontext="Hello", \
 visible=.false, stdbuttons="ok", error=e)
 if d !@= .nul
 d!ok.onclick.function =@ quit
 f.setcontainer(d)
 d.processmodal(.inf)
 end if
 end if

Working with Dialogs

119

end function

function quit(wxdialogstdbutton me)
 // Setting a modal dialog to invisible is the only programmatic
 // way to close the dialog.
 me.dialog.setvisible(.false)
end function

When you run this program, you may find that it looks a bit strange. That is because the area of the
dialog that is controlled by the standard buttons support may be in a different color. The reason for
this is that when using the standard buttons, the default font and default system colors are used for the
various components, together with where they are supposed to be positioned in the dialog itself.

The wxdialog with standard buttons, showing the color problem.
The solution to this is to use the default system font and default system colors for the form and controls
on the form that is being shown in the dialog. To make this easier, there is a supplied library called
uisyshelp.sml that contains a function called getdefaultfont() that returns the default
system font as a wxfont object. Another useful item in the library is the syscolors type. Just create an
object of this type and call the new() method of the type assigning it to the variable, and it will contain
an array of all of the available system colors. The total number of colors is found in the count property.
A SIMPOL source file called uisyshelphdr.sma can be found in the include directory. That
file contains the symbolic constants for the various colors used on the various versions of Windows.
Other operating systems will also eventually be catered for by this library. The colors are stored in
the array as sysrgb objects. You can access the individual color components or the entire color value,
as shown below:

sysrgb color
syscolors colors
integer colorvalue, red, green, blue

colors =@ syscolors.new()
color =@ colors[COLOR_BTNFACE]
colorvalue = color.value
red = color.red
green = color.green
blue = color.blue

Another useful type is the windowsversion type. It is the return value of the getwindowsver-
sion() function. All of the components are available as properties. If all that is needed is a string, the
companion function getwindowsversionstring() will prove handy. Finally, two more com-
panion functions provide information about the display size. The function getdisplaysize()
returns the size of the physical display and the getusabledisplaysize() returns the size of the
display minus the area used by the taskbar.

Using the facilities provided by uisyshelp.sml it is possible to rewrite the standard buttons dialog
to not have the color problem. Also, to ensure that the font used in the text in the dialog is consistent
with that used by the buttons, the default system font is also retrieved. Here is the changed program,

Working with Dialogs

120

please note that it requires the library file to be added to the project settings and the include directory
must be added to the include directories section:

Example 18.7. A Modal wxdialog with Standard Buttons Using
uisyshelp.sml

include "uisyshelphdr.sma"
// This requires the uisyshelp.sml library to be added to the project
function main()
 wxform f
 integer e
 wxdialog d
 syscolors colors
 wxfont deffont
 sysrgb color

 e = 0
 colors =@ syscolors.new()
 f =@ wxform.new(100, 40, colors.colors[COLOR_BTNFACE].value, \
 error=e)
 if f !@= .nul
 deffont =@ getdefaultfont()
 f.addcontrol(wxformtext, 10, 10, 80, 20, "Hello world!", font=\
 deffont)
 // It is essential to create the dialog invisible, since
 // otherwise it will already be shown and cannot be then
 // shown modally.
 d =@ wxdialog.new(50, 50, innerwidth=f.width, innerheight=\
 f.height, captiontext="Hello", \
 visible=.false, stdbuttons="ok", error=e)
 if d !@= .nul
 d!ok.onclick.function =@ quit
 f.setcontainer(d)
 d.processmodal(.inf)
 end if
 end if
end function

function quit(wxdialogstdbutton me)
 // Setting a modal dialog to invisible is the only programmatic
 // way to close the dialog.
 me.dialog.setvisible(.false)
end function

The results can be seen in the image below. The color is now consistent throughout and the font has
changed slightly (the letter "H" in "Hello" is taller and the rendering of the "rl" is different).

Menu Bars, Menus, and Menu Items

121

The wxdialog with standard buttons, without the color problem.

Menu Bars, Menus, and Menu Items
Any reasonably modern user-interface offers various methods of accomplishing the same goals, such
as keyboard commands, tool bar and form buttons, and menus. Some user-interface design guides go
so far as to say that any functionality that is reachable via a tool bar button or a form button, should
always provide a menu item to accomplish the same thing. Part of the reason for this is that many users
may not be inclined to use a mouse, or under certain circumstances the user may not have a mouse
available. Also, providing menus and menu items allows the user to look around in a (hopefully) well-
sorted and logically devised set of various groups of functionality. It is an easy way to get to know a
product if the menus provide a clear overview of what can be done with the program.

The wxWidgets-based menu support that is part of SIMPOL offers the usual menu capabilities: menus,
sub-menus, and menu items that can also be either checkable or one of a group of options. An example
menu program is show below:

Example 18.8. A wxmenu Example

function main()
 wxwindow w
 wxmenubar mb
 wxmenu filemenu, printmenu
 integer iErrnum
 string sResult

 iErrnum = 0
 w =@ wxwindow.new(0, 0, 640, 480, captiontext="Main test \
 window", error=iErrnum)
 if w =@= .nul
 sResult = "Error number: " + .tostr(iErrnum, 10) + \
 " opening main window{d}{a}"
 else
 w.onvisibilitychange.function =@ quit

 mb =@ wxmenubar.new()
 filemenu =@ wxmenu.new()
 mb.insert(filemenu, "&File", name="filemenu")
 filemenu.insert("", "&New", enabled=.false, name="new")
 filemenu.insert("separator")

 printmenu =@ wxmenu.new()
 printmenu.insert("radio", "&Laser Printer", checked=.true, \
 name="laserprinter")
 printmenu.insert("radio", "&Inkjet Printer", \
 name="inkjetprinter")
 printmenu.insert("radio", "La&bel Printer", \
 name="labelprinter")

 filemenu.insert("submenu", "&Printer", submenu=printmenu, \
 name="printmenu")
 filemenu.insert("checkable", "Print Second &Copy", \
 checked=.true, name="secondcopy")
 filemenu.insert("separator")
 filemenu.insert("", "E&xit{9}Ctrl+Q", name="exit")
 filemenu!exit.onselect.function =@ quit

Menu Bars, Menus, and Menu Items

122

 mb.setwindow(w)
 wxprocess(.inf)
 end if
end function sResult

function quit(type(*) me)
 wxbreak()
end function

The program above demonstrates most of the capabilities of the menu support in SIMPOL. A menubar
(like all other SIMPOL GUI objects) exists indepently of its representation in a window. A menubar
can be assigned to a window and then be replaced by another. Looking at the preceding program, we
first create a menu bar and then an empty menu that we insert into the menu bar. It is not necessary
to do it this way, we could just as easily have filled the menu first and then inserted it into the menu
bar. Next we insert a menu item that is set to disabled from the start. Following this, a separator is
inserted and then a printer menu is created that contains three radio items, only one of which can be
selected and we pre-select the first one. The printer menu is then inserted into the file menu as a sub
menu. This is then followed by a checkable item, entitled "Print Second Copy". Next we add another
separator and the item to exit the program. This item is also given a keyboard accelerator (by adding a
tab character and the desired accelerator combination). In closing the quit() function is assigned to
the onselect event of the exit item. Finally the menu bar is set into the window and the program then
waits for events. A picture of the menu can be seen below:

An example of the wxmenu in action.
The trickiest part of working with menus may be learning how to correctly address the various parts.
The containership model of the menus is as follows: wxmenubar contains objects of type wxmenubar-
entry. That contains objects of type wxmenu. The wxmenu objects contain objects of type wxmenu-
item, which can themselves contain objects of type wxmenu. So, assuming that there is a variable
called mb and the menu bar from the program above, to access the labelprinter item, the fol-
lowing code would be used:

mb!filemenu.menu!printmenu.submenu!labelprinter

The member operator (!) is used to access the wxmenubarentry that contains a reference to the file-
menu menu object. The member operator is again used to access the wxmenuitem represented by
the printmenu object, and then accesses the labelprinter item of the sub menu by using the
member operator on the submenu property of the printmenu menu item.

Creating menus by hand can be quite boring, but until there is a menu editor available, the menu editor
provided by the older Superbase product (including the downloadable demo) can be used, together with

Forms and Form Controls

123

the conversion utility provided for converting Superbase menu programs to SIMPOL source code. The
menu conversion utility is in the utilities directory and the program is called: ngmengen.sbp.

Forms and Form Controls
Now that we have windows, dialogs, and menus, it might be useful if we had something to actually put
into the windows. That is where forms and form controls come in. This is the primary user-interface
area that makes up the real "meat" of most applications.

Introduction to Forms
The form capability in SIMPOL is intended to provide the primary interface support for creating
desktop applications. Forms are normally contained in windows or dialogs, so make sure that you read
the section called “Windows and Dialogs” before trying to make use of the content of this section.
Currently the following form control types are available for use on a form:

• wxformtext — for providing labels and other text on the form

• wxformedittext — provide controls for data-entry from the user

• wxformbutton — pushbuttons for every occasion

• wxformbitmapbutton — pushbuttons with images instead of text

• wxformcheckbox — for getting individual choices from the user

• wxformoption — to get one of a set of choices from the user

• wxformcombo — to allow the user to select a single choice from a drop-down list or to enter a
new option

• wxformlist — to get one or more selections from a list of options

All of the form controls have the type tag wxformcontrol so that a variable can be created that
can hold a reference to any valid form control.

Creating Simple Forms
The form has a background color, and a height and width. It also has a container property that holds
a reference to the current container object (or .nul). Forms and form controls exist outside of their
visible representation. This is quite handy, since a form does not need to be displayed or even be
associated with a container and in spite of that, the contents of the various controls can be assigned or
read. A form can be moved from one window to the next simply by calling the setcontainer()
method of the form and passing the target window reference to the method.

To assign a color to a form, window, or form control, SIMPOL makes use of the rgb type. This provides
a method of assigning a color using the standard RGB methodology. An rgb object has as its value the
combined integer value of the color. This can also be used to assign colors to controls and forms, etc.
but in general it is better to use an rgb object since under certain conditions the requested color may not
be available and when the color is created using the rgb type the closest available color will be selected.

Creating a basic form is quite simple, as can be seen from the following program code:

function main()
 string sResult
 wxform f
 integer iErrnum
 wxwindow w

Creating Simple Forms

124

 // Initialize the error variable so that we are passing a valid
 // object to be filled.
 iErrnum = 0

 // Create our initial form
 f =@ wxform.new(640, 400, error=iErrnum)
 if f =@= .nul
 sResult = "Error " + .tostr(iErrnum, 10) + \
 " creating form{d}{a}"
 else
 // Assuming the form was created successfully, assign a color
 // to the background. Here, since we are creating the rgb
 // object from pure values, we should use the red, green, and
 // blue properties to ensure that a valid color is produced.
 f.setbackgroundrgb(red=0xa0, green=0xa0, blue=0xa0)

 // Create a window to contain the form
 w =@ wxwindow.new(0, 0, 640, 480, captiontext="Test form \
 window", error=iErrnum)
 if w =@= .nul
 sResult = "Error " + .tostr(iErrnum, 10) + " creating \
 window{d}{a}"
 else
 // Assuming the window was created successfully, assign the
 // function to handle someone clicking the close gadget.
 w.onvisibilitychange.function =@ quit
 // Now we assign the background color from the form to the
 // window so that they match. This time we can assign the
 // rgb object since it will be certain to be a valid color.
 w.setbackgroundrgb(f.backgroundrgb)

 // Now let's add a minimal title to the form, roughly
 // centered
 f.addcontrol(wxformtext, 285, 19, 70, 16, "Test Form")

 // Finally, we move the form into the window that we have
 // prepared
 f.setcontainer(w)

 // Enter the wxprocess() function and wait for events
 // The user pressing the close gadget (or Alt+F4) will cause
 // the onvisibilitychange method to fire which will then
 // call the wxbreak() function. That will cause it to drop
 // out of the wxprocess() function, ending the program.
 wxprocess(.inf)
 sResult = "Success{d}{a}"
 end if
 end if
end function sResult

function quit(wxwindow w)
 wxbreak()
end function

The majority of what is going on can be read from the program comments in the code. Note that the
form creation actually takes place before the window creation. This is a very basic form program that

Working with Form Controls

125

doesn't have all that much happening. Still, it is an excellent little program to study, since it teaches
a number of very important concepts when creating forms. It is also a good idea to read the section
in the "SIMPOL Language Reference" regarding the form and each of the form controls. The form's
addcontrol() method has been designed to allow virtually all of the various properties for each
control to be set when the control is created. This will allow the program code to be compacter for those
who prefer such an approach. Many people complained about the wordiness of the object SBL code.

Although it is a little early in the life-cycle of the SIMPOL language to talk about best practice there
are certain things that are standard with most event-driven programs that can already be applied here.
Most programs can be broken down into three pieces: initialization, execution, and termination. Ini-
tialization sets up the program, execution runs the program, and termination closes the program per-
forming any necessary cleanup. From this we can see that the previous program is initialized, then
enters the wxprocess() function and remains there processing events until some event results in
the wxbreak() function being called. The termination of the program is quite minimal since SIM-
POL tends to cleanup most things for you, all that is left is assigning the return value of the program
and returning it.

Working with Form Controls
Now that we have had a chance to work a bit with forms, the next step is to add more controls to the
form. As such, the next program wxforms2.smp builds on the work done in the first program. It
will look a bit more complicated, but not too much more.

function main()
 string sResult
 wxform f
 integer iErrnum
 wxwindow w
 type(wxformcontrol) fc
 wxfont font

 // Initialize the error variable so that we are passing a valid
 // object to be filled.
 iErrnum = 0

 // Create our initial form
 f =@ wxform.new(640, 400, error=iErrnum)
 if f =@= .nul
 sResult = "Error " + .tostr(iErrnum, 10) + " creating form{d}{a}"
 else
 // Assuming the form was created successfully, assign a color to
 // the background. Here, since we are creating the rgb object
 // from pure values, we should use the red, green, and blue
 // properties to ensure that a valid color is produced.
 f.setbackgroundrgb(red=0xc0, green=0xc0, blue=0xc0)

 // Create a window to contain the form
 w =@ wxwindow.new(0, 0, 640, 480, captiontext="Test form \
 window", error=iErrnum)
 if w =@= .nul
 sResult = "Error " + .tostr(iErrnum, 10) + " creating \
 window{d}{a}"
 else
 sResult = "Success{d}{a}"

 // Assuming the window was created successfully, assign the
 // function to handle someone clicking the close gadget.

Working with Form Controls

126

 w.onvisibilitychange.function =@ quit
 // Now we assign the background color from the form to the
 // window so that they match. This time we can assign the rgb
 // object since it will be certain to be a valid color.
 w.setbackgroundrgb(f.backgroundrgb)

 // Now let's add a minimal title to the form, roughly centered
 fc =@ f.addcontrol(wxformtext, 285, 19, 70, 16, "Test Form")
 fc.setbackgroundrgb(red=0xC0, green=0xC0, blue=0xC0)
 fc.settextrgb(red=0x0, green=0x0, blue=0x0)
 font =@ wxfont.new("Arial", 10)
 fc.setfont(font)

 // Now a few more controls just for playing with
 // a place to type:
 fc =@ f.addcontrol(wxformtext, 39, 84, 98, 16, "Editable text\
 box")
 fc.setbackgroundrgb(red=0xC0, green=0xC0, blue=0xC0)
 fc.settextrgb(red=0x0, green=0x0, blue=0x0)
 fc.setfont(font)
 fc =@ f.addcontrol(wxformedittext, 146, 82, 175, 20)
 fc.setbackgroundrgb(red=0xFF, green=0xFF, blue=0xFF)
 fc.settextrgb(red=0x0, green=0x0, blue=0x0)
 fc.setfont(font)

 // some option buttons
 fc =@ f.addcontrol(wxformoption, 146, 132, 63, 22, "one")
 fc.setbackgroundrgb(red=0xC0, green=0xC0, blue=0xC0)
 fc.settextrgb(red=0x0, green=0x0, blue=0x0)
 fc.setfont(font)
 fc =@ f.addcontrol(wxformoption, 146, 154, 63, 22, "two")
 fc.setbackgroundrgb(red=0xC0, green=0xC0, blue=0xC0)
 fc.settextrgb(red=0x0, green=0x0, blue=0x0)
 fc.setfont(font)
 fc =@ f.addcontrol(wxformoption, 146, 176, 63, 22, "three")
 fc.setbackgroundrgb(red=0xC0, green=0xC0, blue=0xC0)
 fc.settextrgb(red=0x0, green=0x0, blue=0x0)
 fc.setfont(font)

 // a check box
 fc =@ f.addcontrol(wxformcheckbox, 148, 107, 70, 22, "Do it")
 fc.setbackgroundrgb(red=0xC0, green=0xC0, blue=0xC0)
 fc.settextrgb(red=0x0, green=0x0, blue=0x0)
 fc.setfont(font)

 // a combo box
 fc =@ f.addcontrol(wxformcombo, 148, 210, 172, 126, edittype=\
 "droplist")
 fc.setbackgroundrgb(red=0xFF, green=0xFF, blue=0xFF)
 fc.settextrgb(red=0x0, green=0x0, blue=0x0)
 fc.setfont(font)
 fc.insert("red")
 fc.insert("green")
 fc.insert("blue")
 fc.insert("yellow")
 fc.insert("magenta")
 fc.insert("cyan")

Working with Form Controls

127

 // a list box
 fc =@ f.addcontrol(wxformlist, 381, 103, 182, 217, \
 selectiontype="extended")
 fc.insert("red")
 fc.insert("green")
 fc.insert("blue")
 fc.insert("yellow")
 fc.insert("magenta")
 fc.insert("cyan")
 fc.setbackgroundrgb(red=0xFF, green=0xFF, blue=0xFF)
 fc.settextrgb(red=0x0, green=0x0, blue=0x0)
 fc.setfont(font)
 fc =@ f.addcontrol(wxformtext, 381, 85, 117, 16, "Choose one\
 or more")
 fc.setbackgroundrgb(red=0xC0, green=0xC0, blue=0xC0)
 fc.settextrgb(red=0x0, green=0x0, blue=0x0)
 fc.setfont(font)
 fc =@ f.addcontrol(wxformtext, 69, 212, 69, 16, "Choose one")
 fc.setbackgroundrgb(red=0xC0, green=0xC0, blue=0xC0)
 fc.settextrgb(red=0x0, green=0x0, blue=0x0)
 fc.setfont(font)

 // and some buttons: an OK and a Cancel button
 fc =@ f.addcontrol(wxformbutton, 226, 352, 83, 27, "OK")
 fc.setfont(font)
 // here we assign the event handling function
 fc.onclick.function =@ evaluateform
 // and here we assign a reference to the object we want passed
 // to the function.
 fc.onclick.reference =@ sResult
 fc =@ f.addcontrol(wxformbutton, 334, 352, 83, 27, "Cancel")
 fc.setfont(font)
 fc.onclick.function =@ evaluateform
 fc.onclick.reference =@ sResult

 // Finally, we move the form into the window that we have
 // prepared.
 f.setcontainer(w)

 // Enter the process() function and wait for events
 // The user pressing the close gadget (or Alt+F4) will cause
 // onvisibilitychange method to fire which will then call the
 // the wxbreak() function. That will cause it to drop out of
 // the wxprocess() function, ending the program.

 // Also, clicking on either of the wxformbutton controls will
 // call the evaluateform() function which in turn will read the
 // contents controls and assign that plus which button was
 // pressed to the string of the object referred to by sResult.
 // Then it will call the wxbreak() function with the same result
 // as above.
 wxprocess(.inf)
 end if
 end if
end function sResult

function quit(wxwindow w)

Working with Form Controls

128

 wxbreak()
end function

function evaluateform(wxformbutton b, string s)
 type(wxformcontrol) fc
 integer i
 boolean bDoneone

 if b.text == "Cancel"
 s = "You pressed Cancel{d}{a}"
 else
 s = "You pressed OK{d}{a}"
 end if

 fc =@ b.form.firstcontrol
 while
 if fc.type =@= wxformedittext
 s = s + "You typed: " + fc.text + "{d}{a}"
 else if fc.type =@= wxformcheckbox
 s = s + "Do it was " + .if(fc.state == "", "not ", "") + \
 "checked{d}{a}"
 else if fc.type =@= wxformoption
 if fc.state == "on"
 s = s + "You selected the option '" + fc.text + "'{d}{a}"
 end if
 else if fc.type =@= wxformlist
 i = fc.getselected(1)
 bDoneone = .false
 if i == .nul
 s = s + "You did not select an entry from the list{d}{a}"
 else
 while
 if not bDoneone
 s = s + "You selected the following items from the \
 list:{d}{a}"
 bDoneone = .true
 end if
 s = s + " '" + fc[i] + "'{d}{a}"
 i = fc.getselected(i + 1)
 end while i == .nul
 end if
 else if fc.type =@= wxformcombo
 if fc.text >= ""
 s = s + "You selected the entry '" + (fc.text) + "' from \
 the combo box{d}{a}"
 else
 s = s + "You did not select an entry from the combo \
 box{d}{a}"
 end if
 end if
 fc =@ fc.next
 end while fc =@= b.form.firstcontrol
 wxbreak()
end function

As we can see from the previous program listing, although it is somewhat longer than the first example,
it is not greatly different. It simply contains more controls and an additional event handling function.

The Grid Control

129

The technique for exiting the wxprocess() function is identical to the one used by the quit().
In both cases the wxbreak() function is called.

Creating the form control information by hand could be quite long-winded, but fortunately the content
shown in the program was not created by hand, but rather generated using a utility program from a
Superbase form created with the Superbase Form Designer. Until a form designing utility has been
created for SIMPOL-based forms, we will use the older Superbase Form Designer to provide this
functionality. The current utility can convert all of the supported form objects including the event
procedure names. The actual utility is more sophisticated than the example code shown here. It also
creates an array of controls that is indexed according to the original control name from the Superbase
form and which provides the form control reference as the array element. This makes it fairly easy to
work with the form controls since they are all placed into the form controls array. Later in the life-
cycle of the forms, this will probably not be needed but the technique will still work and be valid. The
form conversion utility is in the utilities directory and the program is called: sbv2wxsm.sbp.

The Grid Control
In this section we will look at the grid control. In SIMPOL one of the new controls that has been
added to the mix is a general purpose grid control. The grid control can be used for any number of
things. Internally in SIMPOL we will use it for implementing record and table view, for creating
and modifying database table definitions, as the properties grid for the form and report designers,
and much more. The grid functionality is currently a moving target, so this section will be regularly
revisited during the pre-release cycle as new capabilities are added to the grid control. The most current
information will always be found in the SIMPOL Language Reference book.

Let's build a little sample program, like the other programs that went before, to play a bit with the
grid control. As is the case with the other sample programs, this program will always be found in the
projects\examples directory. This program will be called wxgrid.sma.

function main()
 wxform f
 wxwindow w
 wxformgrid g
 integer e
 string s

 s = ""
 e = 0
 w =@ wxwindow.new(0, 0, 800, 600, visible=.false, \
 captiontext="wxgrid example", \
 border="simple", maxbutton=.false, error=e)
 if w =@= .nul
 s = "Error " + .tostr(e, 10) + " creating window{d}{a}"
 else
 // Assign the function to handle the user clicking the close gadget
 w.onvisibilitychange.function =@ quit
 // Create a new form
 f =@ wxform.new(w.innerwidth, w.innerheight, 0xC0C0C0, error=e)

 if f =@= .nul
 s = "Error " + .tostr(e, 10) + " creating form{d}{a}"
 else
 // Add the grid control to the form
 g =@ f.addcontrol(wxformgrid, 1, 1, f.width - 2, f.height - 2,\
 rowcount=50, colcount=30, error=e)
 if g =@= .nul
 s = "Error " + .tostr(e, 10) + " creating grid{d}{a}"

The Grid Control

130

 else
 // Change some of the labels, just to show we can
 g.setcollabels(startcol=1, "a column label", "b", "3", "d", \
 "5", "Foo", "gosh!")
 g.setrowlabels(startrow=1, "a very long row label", "bb", \
 "C", "IV")
 // Increase the width of the row labels to accomodate the
 // long one
 g.setrowlabelwidth(130)
 // Now we create a cell with a set of choices (combo box),
 // we could easily assign this to multiple cells in the
 // same statement
 g.setcellchoices(row=2, col=2, allowothers=.false, \
 "<pick one>", "United Kingdom", \
 "United States", "Germany", "France", \
 "Italy", "Sweden", "Spain", "Portugal", \
 "Norway", "Denmark", "Belgium", \
 "Netherlands", "Luxembourg", "Greece", \
 "Ireland", "Austria", value="<pick one>")
 // Assign some normal text content to one cell
 g.setcellvalue(3, 3, "This is read only")
 // Now make that cell read only
 g.setcellreadonly(3, 3, .true)
 // Widen the first column just to show we can
 g.setcolwidths(col=1, 190)
 // Assign the same text to a bunch of cells in a range
 g.setcellvalue(startrow=5, endrow=10, startcol=4, endcol=5, \
 value="This is sooooo cool!!")
 // Widen the two columns to which we assigned the text
 g.setcolwidths(startcol=4, endcol=5, colwidth=130)
 // Assign a multi-line text. Currently it is not possible
 // to edit multiline text and allow the entry of new line
 // characters.
 g.setcellvalue(row=7, col=1, \
 value="This is a text that goes over{a}\
 multiple lines. We will also increase{a}\
 the height of the row to compensate")
 // Now we can increase the height of the row to show the
 // multiline text
 g.setrowheights(row=7, rowheight=60)
 // Place the form into the window
 f.setcontainer(w)
 // Now show the window and wait for events
 w.setstate(visible=.true)
 wxprocess(.inf)
 end if
 end if
 end if
end function s

function quit(wxwindow w)
 wxbreak()
end function

There are numerous other things that we can do with the grid control, this is only a very simple exam-
ple. More capabilities will be added gradually as they become necessary, but already using the current
state of the grid control, a great deal can be done, just use your imagination!

Summary

131

Summary
In this section we have looked at the basics of working with forms in SIMPOL. For more information
about the specifics of working with each individual control, see the appropriate sections in the "SIM-
POL Language Reference". Working with the forms is not greatly different than working with forms
in the older Object SBL language. The event type that is embedded in the various controls is similar
to the events from the older language. One notable difference is that an optional reference property,
which must be an object reference, can be assigned. This provides a solution to the question of how to
pass important information into the event handling function. If more than one piece of information is
required then a user-defined type can be created that consolidates all of the information that is needed
into a single object that is then passed around as required. A major advantage of this approach is that
if later more information is needed, the interface of the functions need not be changed, merely the
definition of the type needs to be expanded to include the additional information.

Common Dialogs
An important part of working with a graphical user interface is the area known as Common Dialogs.
These are the dialogs that are presented to the user to provide access to features that are common across
applications, thus retaining a standard look and feel. These types of dialogs include: file selection (for
opening or saving files), directory selection (with or without a new directory button), message boxes,
color selection, font selection, page setup, printer setup, and progress meters (gauges). All of these
are available through wxWidgets and will eventually be part of the capabilities provided by SIMPOL.
Most of these will be provided as functions, such as the wxfiledialog(), the wxdirectory-
dialog(), and the wxmessagedialog() functions. The use of each is quite straightforward, so
check out the associated information in the "SIMPOL Language Reference" book. These common
dialogs replace the ones provided by the older UTUI component, which is deprecated. For further
information regarding the Common Dialog support, see Chapter 19, Common Dialogs and Other UI
Utilities in SIMPOL.

Parting Notes
In this chapter an attempt has been made to introduce you to the various graphical user interface
components that are currently available in SIMPOL. The example do not include the message box and
common dialog components (yet), though those can be found in a preliminary form in Chapter 19,
Common Dialogs and Other UI Utilities in SIMPOL. For a fairly thorough and more in-depth program
code example, examine the demo project in the projects\forms directory.

132

133

Chapter 19. Common Dialogs and
Other UI Utilities in SIMPOL

Common dialogs are typically provided by the operating system to perform commonly required tasks.
Typical common dialogs would be those for picking a file to open or to save, for configuring the printer,
or selecting a font or color. Currently SIMPOL provides support for the selecting of a file to open and to
save, presenting a message to the user, and the selection of a directory (with or without a new directory
button). Others will follow as we progress. The look and feel of these dialogs including largely the
functionality that is provided is very operating system dependent, so it may be that certain capabilities
are not provided that might otherwise be possible, in order to retain a common user-interface cross-
platform. The message box is a good example. This may have a different name on different platforms
but the functionality is fairly consistent: a dialog window is presented with a message to the user,
possibly including an icon, and one or more buttons from which the user must choose.

Note

Please come back and check this chapter regularly in each release. The common dialog
support is a currently moving target. The older UTUI components that provided the ini-
tial common dialog support are now deprecated! Please migrate to the newer wxWid-
gets-based common dialog support.

Common Dialogs in SIMPOL
Common dialogs provide a method of accessing standard user-interface components that are provided
to allow a common look and feel. These are implemented using functions rather than types in most
cases. The following functions are currently implemented:

• wxfiledialog() — for getting a file name for opening or saving

• wxdirectorydialog() — for getting the name of a directory, including allowing the user to
create a new one

• wxmessagedialog() — for showing some information to the user and getting their response
(one of "ok", "cancel", "yes", or "no")

The wxfiledialog() function implements the functionality that allows the user to select an exist-
ing file to be opened as well as that of selecting the path and then typing in a file name for a file to be
saved. The behavior of the dialog depends on the purpose for which it is being used. If it is being used
to select a file name for saving and the user selects a file that already exists, and if the style includes
the value "overwriteprompt" then they will automatically be prompted for confirmation that
they wish to overwrite the file that they have selected. In some operating systems, if the user enters
the name of a file that does not exist when using this technology to open a file, they will be prompted
with the question of whether they wish to create a new file. In other cases they may not be able to open
a file that does not exist. The style value "mustexist" plays a role here.

The full syntax of this function is:

wxfiledialog (type(wxdialogparent) parent, string message, string defaultdirectory,
string defaultfilename, string wildcard, string style, string filename, string result)

Currently the style can contain either the value "open" or "save" to decide the basic type of file
dialog. In addition to these two values, the style values "mustexist", "overwriteprompt",
and "multiple" are provided to further influence how the dialog works. Generally, the viable com-
binations are: "open,mustexist", "open,multiple", "open,mustexist,multiple",
and "save,overwriteprompt". The wildcard parameter provides the capability to have a
number of different extensions and file descriptions on some platforms. However, not all platforms

Message Boxes in SIMPOL

134

support this capability so an application should not rely on this ability in a cross-platform environment.
A default value for the file name can be provided using the defaultfilename parameter. The
starting directory is defined normally by the defaultdirectory parameter, but this is a fairly
complicated issue, so check the description of this parameter in the "SIMPOL Language Reference"
book. The filename and result parameters must be actual objects, since they will be filled with a
value by the function. The result parameter will contain either "ok" or "cancel" indicating the
action taken by the user. Although a number could have been chosen, the decision was taken that using
strings for the return value is more programmer-friendly and that in the majority of places that they
will be used, they would not be difficult strings for most programmers to understand. They can still
be assigned to constants if desired by the programmer. For complete documentation on the features of
this function, see the "wxWidgets" section of the "Components" chapter in the "SIMPOL Language
Reference" book.

Note

SBL programmers should note that this function corresponds to the REQUEST com-
mand in SBL for types 26 and 27.

The syntax and usage of the wxdirectorydialog() function is very similar to that of the pre-
ceding one. It is less complex, since the number of options is less. It is used to retrieve the name of a
directory and can optionally provide the user with the ability to create a new directory.

Note

SBL programmers should note that this function corresponds to the REQUEST com-
mand in SBL for type 28.

Message Boxes in SIMPOL
An extremely common requirement in programming is to be able to communicate with the user via a
dialog box that displays a message. The dialog box should normally not permit the user to continue
until they have responded to the message. Most operating systems provide this type of functionality
although they differ in the details of how many different styles of message box may exist and therefore
how many different icon types or button combinations can be provided.

The message box function can be very simple. As little as:

 string sResponse
 sResponse = .nul
 wxmessagedialog(.nul, "Hello world!", "Message from SIMPOL", \
 "ok", result=sResponse)

It can also be as complicated as:

 string sResponse
 sResponse = .nul
 wxmessagedialog(.nul, "Hello world!", "Message from SIMPOL", \
 "yesno_defaultno", "question", result=sResponse)

This example shows a Yes and a No button and also shows an icon indicating the purpose of the
message. Currently there are only six possible values for the icon, "", "question", "error",
"exclaim", "hand", or "information". For full information on the various parameters see the
section covering the wxmessagedialog() function in the "SIMPOL Language Reference".

Part VIII. Converting From SBL
This part is dedicated to discussing the similarities and differences between SBL and SIMPOL in an effort to
ensure that moving applications and programming knowledge from the older Superbase product line to the newer
is as painless as possible. This part will also include information about program code and utility programs designed
to assist in the conversion process.

137

Table of Contents
20. Moving from SBL to SIMPOL .. 139

The Basics .. 139
Comparison Between Language Primitives in SIMPOL and SBL 141
SBL Commands and Functions and the SIMPOL Equivalents 144
Differences Between SIMPOL and SBL ... 158
Tools for Converting SBL to SIMPOL ... 158

138

139

Chapter 20. Moving from SBL to
SIMPOL

Making the move from being a traditional Superbase SBL programmer to being a SIMPOL program-
mer doesn't need to be as complicated as many people might believe. Although SIMPOL is an ob-
ject-oriented programming language, it is not nearly as complex or difficult as learning Java, C#, or
even VB.NET. There are very few key words and no real commands in SIMPOL. In SBL there are
literally hundreds of key words and a very complicated set of parameters that can be passed to each
command. If your SBL programs begin with a SUB main() and tend to be event-driven, spending most
of the time in a loop waiting for the user to do something, then writing programs in SIMPOL won't be
terribly complicated for you, but even if you have gotten into the habit of just using global variables and
GOTO, GOSUB, and RETURN, it is still possible to learn to write programs in SIMPOL without too
much effort. In the latter case, the job is complicated somewhat by needing to learn to use structured
programming techniques and do some advance planning before writing the program, but the benefits
are considerable: easier to understand code, easier and faster maintenance, and a greater amount of
code reuse resulting in smaller programs and an ever-growing toolbox of useful functions (and types).

The Basics
It is probably useful to discuss the available data types and programming elements, and then have a
look at the various commands from SBL and see how they are done using SIMPOL. In SBL there are
four basic data types: strings (maximum length 4000 characters), short integers (-32,768 to +32,767),
long integers (-2,147,483,648 to +2,147,483,647), and IEEE double-precision floating point numbers
— decimal values — (± 10-323.3 to 10308.3). Variables of these types are indicated by using the dollar
sign ($) for strings, a percent symbol (%) for auto variables (can hold any of the numeric types), two
percent symbols (%%) for short integers, the ampersand and percent characters (&%) for long integers,
and either the hash and percent (#%) or exclamation mark and percent (!%) characters for decimal
values. In SIMPOL there is also a string type (maximum length is limited by memory), an integer type
(greater degree of significant digits than an SBL HugeInteger), a number type (exact precision, not
floating point and virtually unlimited size), a boolean type (true and false values), and the blob type
(virtually unlimited in size array of bytes). SIMPOL does not use any characters to indicate data type
for variables so it is generally a good idea to use some sort of convention, such as a leading s character
for strings, i for integers, b for booleans, bl for blobs, and n for numbers. Which convention is used
is not as important as simply picking one and being consistent in its use. It is even okay to use b for
both blobs and booleans if it is obvious which is which.

One of the biggest and most significant differences between SBL and SIMPOL is the capability in
SIMPOL to create user-defined data types. This capability can completely change the approach to
solving a problem. It also makes it possible to use a much more object-oriented approach to solving
a problem, though it is not required to do so. User-defined types can include properties that are of
any of the standard types, be references to other objects, or be actual embedded objects of some other
complex type including user-defined types. This allows for fairly complex object design, which can
help to solve many problems that in SBL programs would only be able to be solved by using sets of
variables and variable arrays. One of the biggest advantages to using user-defined types is that when
passing information from one function to another, the interface does not need to change if one more
piece of information is required. Instead the type is changed and the information is added to the object
that is being passed, so no change to the parameter list of the function is necessary.

SIMPOL has a very small set of key words, which are listed below:

• and

• AND

• else

• embed

The Basics

140

• end

• export

• function

• if

• mod

• not

• or

• OR

• reference

• resolve

• type

• while

• XOR

It also has a useful set of operators, which are summarized in the following list:

• :, ;

• ,

• +

• -

• *

• /

• ==

• >

• <

• >=

• <=

• <>, !=

• @=, =@

• =@=

• !@=, <@>

• ()

• []

• {}

• ", '

• //

• "", ''

Comparison Between Language
Primitives in SIMPOL and SBL

141

• \

For a complete description of the key words and operators please see the SIMPOL Language Refer-
ence. Unlike classic SBL, SIMPOL has an extremely small set of key words, a slightly larger set of
operators, a number of intrinsic and system functions, and an ever growing number of components,
free functions and types (some of which are created using SIMPOL itself). In SBL there is a large
number of key words, some of which are operators, some of which are commands, and some of which
are functions. There is also a fairly large set of objects that model a number of the components of the
system, such as the forms, form controls, and windows, but which do not have a representation for the
database files, fields, indexes, and records. In SIMPOL everything that is not a key word, an operator,
an intrinsic function, or a system function, is a type and to work with the type it provides built-in
methods (functions) and in some cases allows the assignment of event handling functions. In the next
section we will compare the key words that actually represent the underlying language structure and
in a later section we will explore the special commands and functions.

Comparison Between Language Primitives in
SIMPOL and SBL

The following table contains a comparison between the language primitives in SBL and SIMPOL.

Table 20.1. Comparison of SBL key words to SIMPOL equivalents

SBL SIMPOL Comments

AND and, AND The AND operator in SBL although not described as such in the
online documentation is actually a bit-field operator. The reason
that this is not obvious is that in most cases it is used for Boolean
comparisons together with the IF statement and that particular
statement in SBL compares with false, which is the value ze-
ro. Anything that is not equal to zero is considered to be true. In
SIMPOL there are two different operators, the and and the AND.
The lowercase version is used for Boolean comparisons where the
result will be one of the special values: .true or .false. The
uppercase version is specifically used for testing whether certain
bits in a value are on or not by using a mask. For a proper expla-
nation of bitwise operators see the Appendix in the SIMPOL Lan-
guage Reference manual.

DIM, GLOB-
AL, REDIM,
ERASE,
CLEAR

typename vari-
ablename

There has been some discussion about adding the dim and as key
words to the language as aliases but the current assessment is that
with the advent of so many languages that use the same approach
as SIMPOL there is no real advantage to providing an alternative
method of declaring variables. In SBL there is a number of ways
to create a variable: using the DIM key word within a procedure
or function creates a local variable, using it outside (assuming the
program is not started with a SUB main() creates a global vari-
able. Forms that have variables on them cause those variables to
be created as global variables. Using the GLOBAL key word
creates a global variable. Just using a variable name (this does
not apply to object variables) within a procedure or function cre-
ates the variable locally if no variable exists with that name at
the global level. If the program is not in a procedure or function
and was started without a SUB main() then using a variable name
creates a global variable. The ERASE command erases a single
variable or multiple variables (both local and global)when using
wild cards. The ERASE command works only if the variable is
not used on a form (and never has been) if any form is open. The
REDIM command is used to resize an array variable in SBL In

Comparison Between Language
Primitives in SIMPOL and SBL

142

SBL SIMPOL Comments

SIMPOL there are no global variables, so all of that complexi-
ty disappears. All variables must be declared in SIMPOL before
they can be used. If a variable is declared at one point in the func-
tion and then redeclared in another point, then it is destroyed and
recreated at that point. Many SBL programmers use the DIM
command only to create arrays. One of the common causes of
difficult to detect side-effects in SBL programs is that of not di-
mensioning (declaring) variables in the appropriate locations. Al-
though it allows faster programming it results in more expensive
maintenance. Arrays in SIMPOL are quite different from those in
most languages, since they do not need to be sized at the begin-
ning and they are not an array of a specific type, they are them-
selves an object and can contain any arrangement of items desired
and can also contain a mixture of types. This makes them quite
flexible, but requires some thought at times to decide if they are
the best approach to a problem. SIMPOL comes with a library of
various pre-designed types that often provide a better solution to
storing a collection of items, such as the objset and the list types.
Just as the ERASE command is unnecessary, the same is true of
the CLEAR.

FOR …
NEXT
[STEP]

while … end
while

In addition to the WHILE loop construct SBL also provides a
FOR block statement. In SIMPOL the while … end while block
statement is the only looping construction. The reasoning behind
this decision was that the FOR statement is essentially a special
case of the WHILE and therefore unnecessary. There would be
no speed advantage since the language is compiled.

FUNCTION
… END
FUNCTION

function …
end function

A function in SBL is required to have a data type extension of ei-
ther the dollar sign ($) or one of the numeric value symbols (%, %
%, &%, #%, or !%). The return value of the function is assigned
to a local variable that carries the same name as the function it-
self. In SIMPOL, the return value of the function is the value of
the expression that immediately follows the end function state-
ment. This value (or object) can be of any type and there is no
standard syntactic way of telling the type of the return value of a
function. The type of the return value can even change depend-
ing on certain things, such as the data typea that are passed to the
function to begin with! Also, it is not required to make use of the
return value in SIMPOL, so a function that has a return value can
be called without assigning the return value.

IF … THEN|
GOTO …
ELSE IF
… THEN
… ELSE …
END IF

if … else if …
else … end if

In SBL there are several kinds of IF statement. There is the
IF…GOTO single-line statement that has no equivalent in SIM-
POL (GOTO is not supported in SIMPOL). There is also the nor-
mal single-line IF … THEN … ELSE command that does not re-
quire an associated END IF statement. Finally there is the mul-
tiline block version that requires an END IF statement. In SIM-
POL the only form that exists is the latter block form that requires
the end if statement. This is part of the design philosophy of SIM-
POL, in that every command and/or block statement has a sin-
gle entrance and exit. Also, SBL is essentially a line-oriented lan-
guage that is interpreted, whereas SIMPOL is a statement-based
language that is compiled. The end-of-line character still ends a
statement in SIMPOL and there is also a line continuation char-
acter so that long programming lines can be spread over multi-
ple lines. Even if an if-statement is on a single line in SIMPOL

Comparison Between Language
Primitives in SIMPOL and SBL

143

SBL SIMPOL Comments

it must be followed by an end-of-statement character (: or ;) and
then the end if statement.

NOT not The NOT operator in SBL although not described as such in the
online documentation is actually a bit-field operator. The reason
that this is not obvious is that in most cases it is used for Boolean
comparisons together with the IF statement or in a WHILE loop
as an exit condition. To work as a Boolean operator it needs to
be applied to an expression and that particular statement in SBL
compares with false, which is the value zero. Anything that is not
equal to zero is considered to be true. In SIMPOL there are two
different operators, the and and the AND. The lowercase version
is used for Boolean comparisons where the result will be one of
the special values: .true or .false. The uppercase version is
specifically used for testing whether certain bits in a value are on
or not by using a mask. For a proper explanation of bitwise opera-
tors see the Appendix in the SIMPOL Language Reference manu-
al.

OR or, OR The OR operator in SBL although not described as such in the
online documentation is actually a bit-field operator. The reason
that this is not obvious is that in most cases it is used for Boolean
comparisons together with the IF statement and that particular
statement in SBL compares with false, which is the value ze-
ro. Anything that is not equal to zero is considered to be true. In
SIMPOL there are two different operators, the or and the OR.
The lowercase version is used for Boolean comparisons where the
result will be one of the special values: .true or .false. The
uppercase version is specifically used for setting certain bits in a
value to the on or off by using a mask. For a proper explanation
of bitwise operators see the Appendix in the SIMPOL Language
Reference manual.

SELECT
CASE …
CASE …
CASE ELSE
… END
CASE |
SELECT

if … else if …
else … end if

There is currently no SELECT CASE block statement in SIM-
POL. Although the SBL block statement provides a certain ease
of reading and expression in the code, it was decided that unless
the implementation of a block statement of this nature actually
provided more or different functionality to that of the if statement,
it was not worth crowding the field of key words with yet anoth-
er. There is discussion about adding a statement like this but with
the added capability that is found in the C programming language
of being able to fall through to the next case unless a break state-
ment is encountered. This would add a useful capability that is not
otherwise provided by the if statement.

SUB … END
SUB

function …
end function

In SIMPOL there is no difference between a function and a pro-
cedure (SUB) except that a function that is used like a procedure
has no return value. The other basic difference is that there is no
practical limit to the number of parameters that can be passed (in
SBL this is limited to 15), and parameters can be passed by name
or even left out. There is no CALL key word in SIMPOL, func-
tions are called by using their name directly.

WHILE …
WEND

while … end
while

The SBL version of the WHILE loop always tests the condi-
tion at the beginning of the loop. It also allows the programmer
to break out of the loop using the END WHILE command. In
some cases programmers have used additional WEND state-
ments inside the loop to cause the program to immediately return
to the beginning of the loop, but this is technically incorrect and

SBL Commands and Functions
and the SIMPOL Equivalents

144

SBL SIMPOL Comments

is not supported by the language. The SIMPOL version allows
a condition at the beginning and the end of the loop, and either
or both can be set. There is no command for breaking out of the
loop from somewhere in the middle, in keeping with the design
philosopy of SIMPOL. Some languages provide a slight varia-
tion of the WHILE loop known as: REPEAT … UNTIL or Do
… Loop While. This block statement allows the block to always
execute once before the test is applied since the test is at the end
of the block. In SIMPOL this is accomplished by using the while
statement with an ending condition but no starting condition. In
current SIMPOL code it is quite common to see both conditions
used: the first for the main test and the last to test for errors. The
final test is best read as: "end the while if the condition is true".

SBL Commands and Functions and the SIM-
POL Equivalents

The following table contains an alphabetical list of SBL key words and their SIMPOL equivalent
together with some explanatory text describing the differences.

Table 20.2. Comparison of SBL commands and functions to SIMPOL
equivalents

SBL SIMPOL Comments

ASC() .charval() The ASC() function in SBL returns
the ASCII (OEM) value of the first
character in the string that is passed
as the argument. In SIMPOL the
.charval() function returns the
Unicode character value of the first
character in the string passed as the ar-
gument.

BLANK type(db1table).newrecord() Creating a new record in a database
in SIMPOL is done by calling the
newrecord() of the associated
database table object.

Unlike with SBL, the default formulae
are not executed at the point in time of
creating a new record, so it is the re-
sponsibility of the SIMPOL program-
mer to perform any default calcula-
tions and assign the results to the asso-
ciated fields.

CALL !execute() The CALL command in SBL that is
used to execute external programs has
its equivalent in SIMPOL in the form
of the !execute() system function.
One current difference between the
two is that the SIMPOL version does
not create a shell, so if you are using
it in Windows to call things like the
COPY or DEL commands, you need
to call the command shell with appro-

SBL Commands and Functions
and the SIMPOL Equivalents

145

SBL SIMPOL Comments

priate command line switches or call a
batch file that contains the commands
instead.

CHAR$() .char() The CHAR$() function in SBL re-
turns the value passed as an ASCII
(OEM) character. In SIMPOL the
.char() function returns a Unicode
character that is the equivalent of the
value passed as the argument.

DATE$() DATESTR() The DATE$() function in SBL takes
a date and an optional format string
and returns the date as a string for-
matted using the format string passed.
The SIMPOL version requires the for-
mat string to be passed. Supported for-
mats are the same in both versions:
"day month year", "month day year",
or "year month day". Separators can be
any character, though sensible choic-
es should be made. The actual format
string supports the following:

Table 20.3.

dd Day no leading zero

0d Day with leading zero

zd Day with leading space

mm Month no leading zero

0m Month with leading zero

zm Month with leading
space

mmm Three letter abbreviated
month name

mmmm Month fully spelled out

yy Two digit year

yyyy Four digit year

DAYS string2date() The SBL command DAYS takes ei-
ther a date or a text containing a date
and returns an integer representing
the number of days since 01 January,
0001. The SIMPOL version only sup-
ports converting a date expressed as a
string. It requires a format string in or-
der to know how to process the date.
It returns a date object represnting that
time. The value of a date object is an
integer containing the number of days
since 01 January, 0001.

SBL Commands and Functions
and the SIMPOL Equivalents

146

SBL SIMPOL Comments

Note

Because of an error in
the way SBL calculates
the dates prior to the
Gregorian Reform in
England (September 2,
1752), the value of the
days in SBL is 11 days
off. Also, SIMPOL starts
from 0, rather than 1, so
the effect is actually a
difference of 10 days.
This normally makes no
difference, but can be-
come an issue if working
with actual integer val-
ues and using the data in
both SBL and SIMPOL
as a hybrid system. Al-
so, in SIMPOL no sup-
port is provided for the
Gergorian Reform. In-
stead the Julian integer
value for the number of
days assumes no error
occurred. For historical
dates it would be neces-
sary use your own date
formatting function as
this is considered a local-
ization issue.

END no equivalent The SBL command END allows the
program to stop executing. In SIM-
POL programs will exit only when the
reach an error condition or they exit
through the end of the main() func-
tion.

ERR$(), ER-
RNO, ERROR,
ON ERROR,
RESUME, etc.

No equivalent In SIMPOL there is no error handling
in the form of interrupts such as is the
case in SBL. Instead, most function
calls that can cause an error take an er-
ror object and in some cases an error
text object. In the case of an error, if
the error object has been passed, then
the error will be returned in the object.
If no object has been passed, then the
program will halt at that point with an
error. Most syntax errors will be found
during compilation and post-process-
ing of the IDE. In some cases errors
will occur at runtime but should nor-
mally be found during testing.

EXISTS() fileexists() In SBL the EXISTS() function has
two variants. One variant checks

SBL Commands and Functions
and the SIMPOL Equivalents

147

SBL SIMPOL Comments

whether the argument passed exists
as a file in the file system. That func-
tionality is provided for in SIMPOL
by the fileexists() function. The
other variant takes a value and an in-
dex and returns whether a record exists
with that value in the target database
table without changing the current
record pointer in the target index. No
exact equivalent exists for this since
none is really needed. There is a func-
tion called lookup() that is found
in the appframework.sml library
and which takes an index object, a val-
ue, and an error variable and which
returns a record object if a match is
found, otherwise it returns .nul.

FCASE$() .tcase() In SBL to convert a string such that
only the first character is capitalized
the programmer calls the FCASE$()
function; the equivalent in SIMPOL is
the .tcase() (titlecase) function.

FIX() .fix() The FIX() function is commonly
used in SBL to ensure that a floating
point value is as close as possible to a
desired number of decimal places as
desired (floating point numbers are not
precise because base ten fractions are
not reliably representable in binary).
In SIMPOL the more important use
of the .fix() function is to truncate
the exactly precise but potentially ex-
tremely large number of trailing digits
from a value. It would not be uncom-
mon to have a decimal value as the re-
sult of a division operation that had
tens, hundreds, or even thousands of
digits trailing the decimal point.

HRS() HRS() There is essentially no difference be-
tween these two functions, other than
that in SIMPOL the parameter passed
must be a time object. In both cases
the number of hours in the time are re-
turned as an integer.

IF() .if() There is essentially no difference be-
tween these two functions, other than
that in SIMPOL the argument must
result in a Boolean value of either
.true or .false, whereas in SBL
zero is false and non-zero is consid-
ered to be true.

INSTR() .instr() In both SBL. and SIMPOL these func-
tions are used to determine whether
some substring can be found in the tar-

SBL Commands and Functions
and the SIMPOL Equivalents

148

SBL SIMPOL Comments

get string. The only real difference be-
tween the two is that the SBL version
can take an optional leading parame-
ter that tells the function where in the
string to begin looking. The equivalent
in SIMPOL is to pass only the portion
of the string in which to look, and then
to adjust the value returned by adding
the offset to the beginning of the sub-
string that was passed.

IS() =@= In SBL the IS() fuction is used to
compare if two variables refer to the
same object. In SIMPOL this handled
using an operator. This question can
be negated in SBL by applying the
NOT to the result of the function. In
SIMPOL there are two equivalent op-
erators for this: !@= and <@>.

LCASE$() .lcase() In SBL to convert a string to lower-
case the programmer calls the LCASE
$() function and in SIMPOL the
.lcase() function serves the same
purpose.

LEFT$() .lstr() These two functions are essentially
identical in their function: they return
the portion of the string from the first
character until the end of the string or
until the position passed whichever is
less.

LEN() .len() Both in SBL and SIMPOL these func-
tions return the length of the argument
passed. One difference is that in SIM-
POL this is the length of the argument
in characters that are Unicode char-
acters, whereas in SBL these are sin-
gle-byte ASCII (OEM) characters.

LIKE .like1() For the most part the two versions of
LIKE work the same. There are a few
more options in the SIMPOL version,
such as optional case-sensitivity, but
otherwise they should be compatible
(other than the fact that the SBL ver-
sion is an operator and the other is a
function).

LOAD !loadmodulefile() The SBL LOAD command is used to
load program files into memory and is
most commonly used with the , NEW
option to load a set of routines into
memory for use by the program. It
is also used to load queries, updates,
text editor files, function key files,
and labels definitions. Almost all of
these latter items are better dealt with
in SIMPOL as methods of the asso-

SBL Commands and Functions
and the SIMPOL Equivalents

149

SBL SIMPOL Comments

ciated object. The function !load-
modulefile() is a SIMPOL sys-
tem function for loading a compiled
SIMPOL library so that its exported
types and functions can be used. Al-
though it is possible to directly include
a library module in the resulting pro-
gram when the program is compiled, it
may be more efficient in some cases to
load the module as needed, for exam-
ple when the module may not always
be needed.

LOCK() ppcstype1file.locked,
ppcstype1record.locked,
sbme1table.locktype,
sbme1record.locktype

In SBL the LOCK() serves to test
whether a given record is locked in
a database file. A similar capability
exists in SIMPOL except that what
is tested is the value of a property of
the file (table) or record object. One
difference in this is that this will on-
ly tell if the user has locked the record
or table, it will not tell if others have
done so (or even if another object in
the same program has done so).

LOCK ALL ppcstype1file.lock(),
sbme1file.lock()

These two items are very similar, oth-
er than from an architectural perspec-
tive: with one being a command and
the others being methods of types. In
all cases the file is locked. In the case
of the sbme1 type, it is also necessary
to hold at least a shared lock on the ta-
ble in order to create records.

MAX .max() The SIMPOL version of this function
simply takes an unlimited number of
arguments and returns the one that is
of the highest value. The SBL version
can only be used with arrays or on re-
ports under special circumstances.

MID$() .substr() These two functions are virtually iden-
tical, except that in SBL to return
everything until the end of the string,
the last parameter is left out, whereas
in SIMPOL all three parameters are al-
ways required so to return everything
the last parameter can be set to .inf.

MIN .min() The SIMPOL version of this function
simply takes an unlimited number of
arguments and returns the one that is
of the lowest value. The SBL version
can only be used with arrays or on re-
ports under special circumstances.

MINS() MINS() There is essentially no difference be-
tween these two functions, other than
that in SIMPOL the parameter passed
must be a time object. In both cases

SBL Commands and Functions
and the SIMPOL Equivalents

150

SBL SIMPOL Comments

the number of minutes in the time are
returned as an integer.

MOD mod These two operators do the same
thing, they return the fractional portion
of a division operation.

MOD() no equivalent The MOD() function in SBL is in-
tended to indicate whether the current
record in the file passed as the argu-
ment has been modified. Since there is
no such thing as a current record (cur-
rent file, etc.) in SIMPOL this function
is meaningless. At some point when
data-aware forms have been added
there may be a method to indicate if
any record on the form has been mod-
ified since it was read. That would be
the appropriate location for such func-
tionality.

NOT not These two operators are essentially
the same, other than that the SBL ver-
sion operates with 0 and non-0 and the
SIMPOL version works with .false
and .true.

NOTHING .nul The literal value NOTHING in SBL
is used exclusively together with the
IS() to test whether an object vari-
able refers to nothing. In SIMPOL this
test can be carried out using the =@=
operator and the literal value .nul.
This value is used in many different
areas and ways within SIMPOL.

QUIT no equivalent The SBL command QUIT allows
the program to suddenly exit, closing
down the Superbase environment af-
ter calling the OnUnload event proce-
dure of the Superbase object (if it was
set). SIMPOL programs are self-suffi-
cient so there is no additional environ-
ment to shut down and they will ex-
it only when the reach an error condi-
tion or they exit through the end of the
main() function assuming that all
threads have also ended.

REM, ' ', ", // The REM statement and the single
quote character can both be used to
indicate a comment in an SBL pro-
gram. The single quote character can
also immediately follow a command in
SBL. In SIMPOL both the single and
double-quote characters can be used
to indicate a comment but unlike SBL,
in SIMPOL these are only considered
to be comment characters if they are
on the left side of an equation (at the

SBL Commands and Functions
and the SIMPOL Equivalents

151

SBL SIMPOL Comments

beginning of a statement). Also, if an-
other matching quote is found inside,
then the comment is ended and must
be followed by an end-of-line char-
acter or end of statement character (:
or ;). Using this technique a comment
can be embedded in the middle of a
line of code. The only line-level com-
ment is the double forward slash (//).
This must be placed at the beginning
of a statement (either at the beginning
of a line or directly following an end
of statement character and separated
only by white space).

REPLICATE
(svar$, nvar
%%)

nvar * svar The REPLICATE() is part of the
standard BASIC repertoire and SBL
includes this function to replicate a
string a given number of times. This
function is unnecessary in SIMPOL
since it is possible to directly multi-
ply a string by an integer and thereby
replicate the string that many times.

RIGHT$() .rstr() These two functions are essentially
identical in their function: they return
the portion of the string from the last
character until the beginning of the
string or until the number of characters
backwards from the end of the string,
whichever is less.

SECS() SECS() There is essentially no difference be-
tween these two functions, other than
that in SIMPOL the parameter passed
must be a time object. In both cases
the number of seconds in the time are
returned as an integer.

SELECT FIRST
INDEX ""

db1tablevar.select(lastrecord=.false,
error=e)

One of the significant differences be-
tween SBL and SIMPOL is the fact
that in SBL, the entire Superbase prod-
uct is always present, and there is al-
ways a globally visible current data-
base table (or file), for each database
table (file) there is a current index,
and each index has a current record
that may be different for each index.
There is also a currently loaded record.
When working with multiple windows
open, this gets even messier still, since
each ViewWindow may have dif-
ferent database tables open, or even
the same ones but with a different set
of current indexes and records. This
must be carefully managed using the
SetSBLWindow() method of the
Superbase object. In SIMPOL there
are no global variables. To access a

SBL Commands and Functions
and the SIMPOL Equivalents

152

SBL SIMPOL Comments

record from a database table a method
of either the table, an index of the ta-
ble, or even a record of the table is
called. There is no current table, no
current index, and no current record.
Although the dataform1 type provides
for a current master record for a da-
ta-aware form, this does interfere else-
where in the system. A record object
is the result of calling some form of
select method. There can be as many
record objects as the programmer
wishes to create. They can be stored in
lists or arrays. The logic behind how
the select methods are designed is as
follows:

• table.select() — Tables know what
is at the beginning and the end of
the sequential order of the table.

• index.select() — Indexes know
what is at the beginning and the end
of the index order.

• index.selectkey() — Indexes know
how to find a value in the index us-
ing a key.

• record.select() — Records know
where they are in whatever method
selected them, and can get to the
previous and next items in the same
selection order, so if they were se-
lected using an index, they can find
the previous and next records in the
same index, if selected using the se-
quential order of the table, they can
find the previous and next items in
the sequential order of the table.

The return value of a record selection
in SIMPOL is a record object. If an er-
ror occurs, then the record object may
be equal to .nul. Always pass an in-
teger object to these methods to trap
any error that occurs. The integer must
be pre-initialized to 0, since the er-
ror variable will only be written to if
an error occurs. If the variable is not
set to 0, then the program may incor-
rectly assume that a pre-existing value
was returned by the call to the method.
Specific to this command, by using
the double-quote "" argument for the
INDEX parameter, Superbase is being
told to select the first record in the se-

SBL Commands and Functions
and the SIMPOL Equivalents

153

SBL SIMPOL Comments

quential order of the table. Using the
select() method of table object,
SIMPOL is doing the same thing.

SELECT LAST
INDEX ""

db1tablevar.select(lastrecord=.true,
error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIMPOL.
In this particular case, by using the
double-quote "" argument for the
INDEX parameter, Superbase is being
told to select the last record in the se-
quential order of the table. Using the
select() method of the table ob-
ject, SIMPOL is doing the same thing.

SELECT
FIRST INDEX
RecNo.TEST

db1indexvar.select(lastrecord=.false,
error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIMPOL.
Here, the RecNo index is being used
as an argument to select the first entry
in that index. In SIMPOL this can be
done using a variable that refers to the
RecNo index, or it may be done using
valid object syntax to reach the index
object. For example: db1tablevar!
RecNo.index.select(lastrecord=.false)
uses the table variable. From the
db1tablevar variable the mem-
ber operator (!) is used to retrieve the
field object for the RecNo field, and
then its index property is accessed us-
ing the dot (.) operator, and again
using the dot (.) operator, the se-
lect() method is called.

SELECT
LAST INDEX
RecNo.TEST

db1indexvar.select(lastrecord=.true,
error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIM-
POL. See the prior entry for SELECT
FIRST INDEX RecNo.TEST for de-
tails about how to select records using
an index in SIMPOL. The only differ-
ence to the SELECT FIRST version
is that the lastrecord parameter is
assigned the value .true rather than
the value .false.

SELECT KEY
123 INDEX
RecNo.TEST

db1indexvar.selectkey(123, error=e,
found=f)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIM-
POL. See the prior entry for SELECT
FIRST INDEX RecNo.TEST for de-
tails about how to select records using
an index in SIMPOL. In this particu-
lar case, the selectkey() method
is being used. The value that is being
looked up must match the data type of
the field for which the index was cre-
ated. The only variation of that is that

SBL Commands and Functions
and the SIMPOL Equivalents

154

SBL SIMPOL Comments

an integer value can be used to search
within indexes on date, time, and date-
time fields. If the record is success-
fully found, then the boolean vari-
able (which must be pre-initialized)
that was passed to the found para-
meter is set to .true and the vari-
able passed to the error parameter
will be unchanged. If the found pa-
rameter is not passed, and the record
is not found, then the return value will
be .nul and an error value will be as-
signed to the variable that was passed
to the error parameter.

SELECT NEXT db1recvar.select(previousrecord=.false,
error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIMPOL.
As stated in that entry, the return val-
ue of a selection is a record object. To
select the next record (or the previous
one) the select() method of the
record object is called, passing the ap-
propriate value to the previous-
record parameter, in this case the
value .false.

SELECT PRE-
VIOUS

db1recvar.select(previousrecord=.true,
error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIMPOL.
As stated in that entry, the return val-
ue of a selection is a record object. To
select the next record (or the previous
one) the select() method of the
record object is called, passing the ap-
propriate value to the previous-
record parameter, in this case the
value .true.

SET INDEX
Name.TEST

db1recvar.selectcurrent(db1indexvar_Name,
error=e)

This command is supplied by Su-
perbase to allow the programmer to
change the controlling index of an al-
ready selected record. In SIMPOL, it
is necessary to call the selectcur-
rent() method and to pass the de-
sired index object to switch to a differ-
ent controlling index. If no index pa-
rameter is passed, then the default is
to use the value .nul, which results
in the record being switched to having
been selected using the sequential or-
der of the table. It is important to re-
member this when reselecting a record
with a lock, since otherwise the record
may be switched away from the de-
sired index without realizing it!

SBL Commands and Functions
and the SIMPOL Equivalents

155

SBL SIMPOL Comments

SELECT FIRST
LOCK INDEX
""

db1tablevar.select(lastrecord=.false,
lock=.true, error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIMPOL.
The only significant difference here
is that in both cases the relevant lock-
ing parameter LOCK" or lock is be-
ing passed. In SBL if the locking oper-
ation fails, then an error occurs which
may result in a call to a global error
handler, or if the error has been dis-
abled, then it will simply set the value
of the ERRNO system value. In SIM-
POL this will result in a return value
of .nul, and the variable passed in
the error parameter will be set to the
error value that was the cause of the
problem.

SELECT FIRST
LOCK INDEX
RecNo.TEST

db1indexvar.select(lastrecord=.false,
lock=.true, error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIM-
POL. See the prior entry for SELECT
FIRST LOCK INDEX "" for details
about how to select records with a lock
using SIMPOL.

SELECT
KEY 123
LOCK INDEX
RecNo.TEST

db1indexvar.selectkey(123,
lock=.true, error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIMPOL.
In SBL it is a risky venture to use the
LOCK together with a SELECT KEY
statement, since if the selection fails to
find the correct record, it will still find
a record and will lock that one instead.
It is better practice to make sure the
record has been found and then use the
SELECT CURRENT LOCK com-
mand to lock the record. The same is
also true of SIMPOL, though it is pos-
sible to do this safely, simply by not
passing a found parameter.

SELECT NEXT
LOCK

db1recvar.select(previousrecord=.false,
lock=.true, error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIM-
POL. See the prior entry for SELECT
FIRST LOCK INDEX "" for details
about how to select records with a lock
using SIMPOL.

SELECT CUR-
RENT LOCK

db1recvar.selectcurrent(lock=.true,
error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIM-
POL. See the prior entry for SELECT
FIRST LOCK INDEX "" for details
about how to select records with a lock
using SIMPOL. When selecting the
current record in SIMPOL it is impor-
tant to make sure that the index pa-

SBL Commands and Functions
and the SIMPOL Equivalents

156

SBL SIMPOL Comments

rameter is assigned an appropriate val-
ue since otherwise it will default to
.nul and potentially change the cur-
rent index (though only of the record
that is returned). To retain the same in-
dex that was used in the original selec-
tion, it is easiest to just pass the index
property of the record object, such as:
db1recvar.selectcurrent(db1recvar.index,
lock=.true, error=e).

SELECT RE-
MOVE

db1recvar.delete(error=e) In SBL, once the record is deleted it is
simply gone. In SIMPOL, the record
object still exists and can be treated
like a new record object that is not
yet stored. This means that a record
could be deleted and the record object
could then be used (perhaps modified)
to create a new record, and then that
record could be saved.

SPACE$ (nvar
%%)

nvar * " " Probably related to its BASIC her-
itage, SBL includes this function to
create a string a given number of space
characters in length. This function is
unnecessary in SIMPOL since it is
possible to multiply a string by an in-
teger and thereby replicate the string
that many times.

STR$() .tostr() or STR() The STR$() function in SBL allows a
large number of different methods for
formatting the number as a string. The
equivalent function in SIMPOL sim-
ply formulates the number as a string
and also requires the base to be pro-
vided. When used for base ten num-
bers, it is roughly equivalent to the
command STR$(nvar%%, "."), ex-
cept that in the case of a zero value the
character 0 will be output whereas in
SBL the empty string is the result. For
a version that is directly compatible
with the SBL version (except for the
lack of support for scientific notation),
look for the STR.sml library. It is al-
so provided in source code. One dif-
ference between these is that the SIM-
POL library function requires the user
to provide an object that includes the
numeric settings for decimal point,
thousands separator, currency sym-
bol, and whether the currency symbol
is a prefix or suffix. This is necessary
since there are no such global settings
in SIMPOL.

THOUSECS() THOUSECS() There is essentially no difference be-
tween these two functions, other than

SBL Commands and Functions
and the SIMPOL Equivalents

157

SBL SIMPOL Comments

that in SIMPOL the parameter passed
must be a time object. In both cases
the number of thousandths of a second
in the time are returned as an integer.

TIME$() TIMESTR() The TIME$() function in SBL takes
a time value and an optional format
string and returns the time as a string
formatted using the format string
passed. The SIMPOL version requires
the format string to be passed. Sup-
ported formats are the same in both
versions. Separators can be any char-
acter, though sensible choices should
be made. The actual format string sup-
ports the following:

Table 20.4.

hh Hours

mm Minutes

ss Seconds

.s Thousandths of a second

am 12 hour clock

Some typical examples of time format
strings for a time of 1:35 pm might be:

Table 20.5.

hh:mm 13:35

hh:mm:ss 13:35:00

hh:mm am 1:35 pm

hh:mm:ss.s 13:35:00.000

TIMEVAL() string2time() In SBL the TIMEVAL() function
takes either a time or a string rep-
resentation of a time. The SIMPOL
string2time() function only ac-
cepts a string and a format string and it
returns a time object.

UCASE$() .ucase() In SBL to convert a string to upper-
case the programmer calls the UCASE
$() function and in SIMPOL the
.ucase() function serves the same
purpose.

VAL() .toval() The VAL() function in SBL is used
to convert a string to a number. It is
somewhat idiosyncratic in the way that
it works. All leading whitespace is ig-
nored, as are currency symbols and
thousands separators and the number
is returned that is found up until the
first non digit character following the

Differences Between
SIMPOL and SBL

158

SBL SIMPOL Comments

first decimal point or the end of the
string is reached. The SIMPOL ver-
sion of this in keeping with its support
for multiple bases, takes the value,
the characters to ignore, and the base
to use for interpreting the string as a
number. It might seem a bit awkward
dealing with defining the characters
to ignore in SIMPOL since it could be
all of the Unicode character set, but
in actuality it is quite easy, since it is
also possible to subtract strings from
strings in SIMPOL. To define the set
of characters to ignore, simply subtract
each of the characters that are desired
from the string being evaluated, like
this: n = .toval(s, s - "0" - "1" - "2"
- "3" - "4" - "5" - "6" - "7" - "8"
- "9" - ".", 10) , which will result in
all of the desired characters being re-
moved from the string and all of the
remaining characters being ignored.
For a more typical SBL version check
the library for the VAL.sml.

WAIT FOR nvar
%%

!wait() These both wait for a specified amount
of time. Only the duration and inter-
vals are different.

Differences Between SIMPOL and SBL
Things that you could skip in SBL are required in SIMPOL, such as declaring variables and initializing
them. Although that means a bit more work to get something going, the IDE is designed to make
using SIMPOL as easy as possible. Also, there are no global variables in SIMPOL, but it is quite
straightforward to create a type that contains all of the quasi-global information, initialize that type
during the start of the program, and then just pass that type around everywhere the program needs it.
The event objects in SIMPOL are specifically designed to allow the optional assignment of a reference
to any type of object, and that object is then passed to the event handling function as a parameter.

Tools for Converting SBL to SIMPOL
There are a number of conversion tools supplied with SIMPOL Professional to convert various aspects
of Superbase packages. Some are written in SBL and some are written in SIMPOL. Here is a list of
them:

• sbf2sbm.smp – Converts Superbase SBF files to SIMPOL sbm format (files should be unen-
crypted, reorganized, and preferably without passwords)

• sbv2xml.sbp – SBL program to convert Superbase forms to SIMPOL XML forms

• sbvr2xml.sbp – SBL program to convert Superbase graphical reports into SIMPOL XML for-
mat graphical reports (does not convert perfectly, some adjustment of the results will be needed,
primarily paper size and calculations)

• ngmengen.sbp – SBL program that converts a Superbase menu program into a SIMPOL source
code file

Tools for Convert-
ing SBL to SIMPOL

159

• dlg2sma.sbp – SBL program that converts Superbase dialogs programs (as saved from the de-
signer) into SIMPOL source code

• sbd_formula_reader.smp – Reads Superbase SBD files and creates a source code file that
contains a function for constants, calculations, and validations for each Superbase file read where
such formulae are in use. The resulting code will need to be hand-edited to be usable, since a com-
plete formula conversion tool is not included.

The best initial approach is to convert the database tables and the forms, if there is a menu program
available, convert that, grab a copy of the Address Book example and make a new project from it.
Use the first form as an initial step and get it coming up using the Address Book code, modified
as required. Once that is happening, use the appwindow.openformdirect() method to open the
next form into the same window as a response to a menu event. From there convert any formulae
using the sbd_formula_reader.smp converter and then hand adjust the resulting source code.
Remember, there is an equivalent for LOOKUP() in SBL called lookup() and it can be found in
the uisyshelp.sml library.

From this point onward, it just depends on how the application is constructed. Fill in all the functions
and the navigational structure. Use the tool bar from the Address Book sample, or leave it out, or
design your own.

To assign calculated values and do validations of field content before a record is saved, assign an event
handling function to the dataform1.onsave event. The return value should be .true if the record
should be saved, and .false if there is a problem and the record should not be saved. For further
information about working with the Application Framework, see Chapter 26, Using the SIMPOL Ap-
plication Framework.

160

Part IX. Supplied SIMPOL-
Language Libraries

This part discusses the various libraries written in SIMPOL that are supplied with the language. Many of these
are supplied as source code, thus providing the user with the ability to understand how the libraries work, as well
as providing the ability to improve and extend them should some required functionality be missing or existing
functionality be faulty.

163

Table of Contents
21. SIMPOL Language Libraries Included .. 165

Introduction ... 165
List of Supplied Libraries .. 165

164

165

Chapter 21. SIMPOL Language
Libraries Included
Introduction

One of the more powerful features of the SIMPOL programming language is the ability to produce li-
braries of reusable functions and types. Part of the underlying design philosophy in SIMPOL has been
to produce as much as possible using the language and to use the C programming language for imple-
menting core language and heavy-use components, and for improving the speed of SIMPOL-based
code when those areas are clearly identified as requiring such improvement.

In this chapter we will discuss briefly the supplied SIMPOL language libraries. Since the libraries
themselves occasionally go through revisions it is a good idea to regularly look into the source direc-
tory for those libraries supplied as source (most of them) and see what is new or has changed. It is also
recommended to look at the source code to the various libraries for options, function parameters, and
also to examine how the functions and types are written. If you are having a problem with a library
type or function that you have the source for, you can use that source to debug your program. If there
is an error in the library, please let us know.

List of Supplied Libraries
The following table contains a list of the supplied libraries, an X if they are supplied as source, and a
brief description of each one. Some of the libraries may be more fully explained in a separate section
below.

Table 21.1. Supplied SIMPOL-Language Libraries

Name Source Description

abs.sml X Implements the ABS() function for compatibility with
SBL. It can also be used in general in SIMPOL, since
there is no equivalent.

appframework.sml X Implements an application framework for working with
data-aware form style applications. This framework is
used by the samples supplied with the SIMPOL Quick-
start Guide.

boolstr.sml X Provides functions for converting from and to boolean
and datetime types to strings.

bzip2.sml X Wrapper for the BZip2 compression library.

calceval.sml X Contains the calceval() function for evaluating a
formula contained in a string and returning the result.

codepageslib.sml X Provides functions for converting from and to SIMPOL
characters for various code pages.

colorpalette.sml X Supplies types and functions for working with col-
ors and palette entries. This is primarily used by
imagelib.sml for saving images to disk.

conflib.sml X Provides functions reading from and for writing to con-
figuration files that follow the standard for INI files in
Windows. In the future other configuration file formats
may be supported in this library.

databaseforms.sml X This library implements data-aware, multi-page forms. It
contains the entire set of types from the dataform1 fam-

List of Supplied Libraries

166

Name Source Description

ily. For more information on programming with these
types, see Chapter 23, Using Data-Aware Forms in SIM-
POL.

datetimelib.sml X This library provides several date, time, and datetime
functions and includes other related libraries to provide a
single library for inclusion.

db1lib.sml X Implementation of a dummy group of classes based on
the db1 type tags. The purpose is to ensure that viable
inline help in the IDE is provided for variables declared
using the db1 type tags.

db1util.sml X Provides numerous functions for working with databas-
es. Functions for copying one record to another, deter-
mining whether a field is valid or is indexed, convert-
ing from field values to string and the reverse, and other
functions.

dbconverter.sml This is the primary data conversion library, for both im-
port and export converters. The design uses a common
record structure that is supported by import and export
converters as the medium of exchange. Any import con-
verter can be hooked up to any export converter.

errormsgs_en.sml X This error messages library provides a standard method
of returning a consistent error message for any of the
standard error values listed in errors.sma. This li-
brary implements the English language messages.

fastset.sml X This implements the fastset data type for working with
sets that allow for string-indexing of objects. This library
should be in preference to the objset library in newer
code. It is virtually identical in its API but is consider-
ably faster in execution. When working with sets of val-
ues or sets of objects that do not need to be string-in-
dexed, it is even faster to use the built-in set data type.

filesyslib.sml X Provides functions for working with files and directories.
Currently this includes a function to retrieve the correct
directory separator character and another to parse file
and path names into their component parts.

formlib.sml X This library provides the additional functionality for
loading and saving dataform1 and printform1forms. It
also provides the functionality to save dataform1 forms
as program source code and to save them as a wxform
source program with all the data aware aspects stripped
away.

gaugelib.sml X This library includes two types for providing a gauge di-
alog that can be shown and updated in order to inform
the user while your program is doing long operations.

graphicreportlib.sml This library provides the Graphic Report functionality
including saving and loading these reports.

httpclientlib.sml X Contains functions for accessing web pages on the Inter-
net. Includes functions for both the GET and POST style
access of web pages.

imagelib.sml X Provides numerous functions for working with databas-
es. Functions for copying one record to another, deter-
mining whether a field is valid or is indexed, convert-

List of Supplied Libraries

167

Name Source Description

ing from field values to string and the reverse, and other
functions.

int.sml X Implements the INT() function for compatibility with
SBL. It can also be used in general in SIMPOL, since
there is no equivalent.

jpeglib.sml X Provides types and functions for working with JPEG
files. Currently the only functionality is the function
to retrieve the size of a JPEG image and a wrapper
function to allow that function to be called via the
SMEXEC32.DLL interface.

libxml.sml Provides the full implementation of the XML Document
Object Model (DOM) Core Level 1 and Level 2 with
some additional capabilities from Level 3. It provides
as well, the ability to do XSLT transforms, document
validation, and support for HTML documents. There is
an example program in the directory projects\dom.
That directory also contains documentation about the
DOM in HTML format.

lists.sml X Various list and similar types. Includes: list, dlist, ring,
queue, and stack. The dlist implementation has gone
through extensive testing and modification. Most of
these types are meant to be embedded into other types, to
provide the ability to manage them in a list.

ltrim.sml X Implements the LTRIM() function for compatibility
with SBL. For a more flexible implementation see the
ltrim() function in the stringlib.sml library.

mathlib.sml X Contains functions for working with mathematics, such
as sin(), cos(), tan(), sqrt(), and others.

mrulib.sml X This library implements a data type for managing most
recently used lists, commonly shown as items on a
menu. To that end, it can actually manage an entire sub-
menu on its own, including showing a dialog for entries
beyond a certain number, managing the entries in a con-
figuration (INI) file, etc.

netinfolib.sml X This library is used for providing network-specific infor-
mation, such as the currently logged-in user's name.

objset.sml X The objset type and related types are created in this li-
brary. This provides a fairly powerful and robust set im-
plementation, including differencing, intersection, and
unification of sets. The sets use a string key for sorting
the entries (and for deciding if they are the same) and an
optional element that is declared as type(*) that can
contain a reference to any object.

odbc2.sml SIMPOL language support library for working with the
ODBC client support.

pad.sml X Implements the PAD() function for compatibility with
SBL. It can also be used in general in SIMPOL, since
there is no equivalent.

printformlib.sml X Contains types and functions that support printing forms
to the print architecture used in SIMPOL. Also imple-
ments a function for printing a record from a database.

List of Supplied Libraries

168

Name Source Description

quickreportlib.sml Provides an easy to use fully functional report engine
with grouping, sorting, and aggregate values at both
group and report level. Reports are limited in the way
they can look. For a more complex and flexible report
engine, see the graphicreportlib.sml.

random.sml X The pseudo-random number generation provided by this
library is quite useful. It uses a standard algorithm for
generating pseudo-random numbers. If the seed is re-
peated, then the sequence will be the same each time. If
a different sequence is desired, then the current date and
time can be passed as the seed. The numbers generated
are between 0 and 1, so any multiplier can be used to get
the values and ranges desired.

registrylib.sml X The Windows registry is commonly used for storing
configuration data on Windows. This library can be used
to access the registry. Please be aware that user programs
cannot write to the HKEY_LOCAL_MACHINE key on
Windows Vista and later, these writes will be virtual-
ized.

reorglib.sml The functionality needed to reorganize a database con-
tainer, or just individual tables within the container, in-
cluding support for the system tables provided by the
db1util.sml library, are located in this library.

replace.sml X This is a standard string replace function. It has been
fairly thoroughly tested and should be able to handle sit-
uations that many string replace functions fail on, such
as the replacement string or the search string being a
substring of the other.

reportlib.sml This library provides the core report1 type family that
can be used to create custom report types. It is also em-
bedded into the graphicreportlib.sml and the
quickreportlib.sml libraries, each of which pro-
vide a specific style of report engine.

rsalib.sml X Provides a usable library for encrypting and decrypting
as well as generating public and private keys.

sbislib.sml X This library supplies functions that are intended to ease
the conversion of systems written for the Superbase In-
ternet Server suite for the older Superbase product.

sbldatelib.sml X Implements the DATESTR(), DAY(), DAYS(),
DAYSTR(), MONTH(), MONTHSTR(), and YEAR()
functions for compatibility with SBL. Some of them can
also be used in general in SIMPOL, since in many cas-
es there is no equivalent. This library also includes a
string2date() function.

sblexten.sml X This library is a nearly 1:1 conversion of the Superbase
library of the same name and supplies a group of use-
ful functions, some implemented multiple times, one for
each supported datatype, such as Floor(), round(),
Between(), Average, and others.

sbllib.sml X This library consolidates all of the SBL-specific libraries
together with a number of the FN functions, such as:

List of Supplied Libraries

169

Name Source Description

FN_Ext(), FN_Root(), FN_Alpha(), FN_Dec(),
etc.

sbllocaledateinfo.sml X This library provides the SBLlocaledateinfo type that is
required by many of the SBL date functions. This type
holds the locale information such as the names of the
days of the week, the months, and the month abbrevia-
tions, plus the value for the century base for interpreting
2-digit years.

sbltimelib.sml X Implements the TIMESTR() and TIMEVAL() func-
tions for compatibility with SBL. Both of these can
also be used in general in SIMPOL, since in many
cases there is no equivalent, although see also the
smtpdatelib.sml. This library also includes a
string2time() function.

sbnglib.sml X Implements some commonly used types, such as data-
sourceinfo, tbinfo, and wxformoptiongroup to provide
group management of option buttons.

sendkeys.sml Contains a SENDKEYS implementation that works well
in Win32, including the ability to send keystrokes to a
window and not just commands. Win32-only.

sendmail.sml X Provides an easy-to-use sendmail() that
makes use of the smtpclientlib.sml and
smtpdatelib.sml libraries to send simple text mes-
sages.

serialize.sml X Contains the functionality to serialize even fairly com-
plex objects to a file such that the state of the object can
be retrieved later. Obviously cannot support properties
that represent data types that cannot be instantiated with
the .new() method.

shellexecute.sml X Supplies a wrapper for the Win32 ShellExecute()
API call, which not only will run programs, but can also
be used to start the registered program for a specific file
type based on its file extension, such as starting the de-
fault browser for files ending in htm.

simpolpacker.sml X Implements an archiving system that utilizes the BZip2
compression support from the bzip2.sml library,
which provides single file compression.

smtpclientlib.sml X Provides basic SMTP email sending capabilities. This is
a work in progress. The library does not currently sup-
port MIME, attachments, HTML email, etc. It works
fine for sending straight text messages to one or more
addresses.

smtpdatelib.sml X Provides an SMTP compliant function for creating a date
string from a datetime object.

sortlib.sml X Provides various sorting algorithm implementations, in-
cluding Insertion Sort, Quicksort (recursive), a combi-
nation of Quicksort and Insertion Sort (even faster than
Quicksort alone), and others.

soundlib.sml X Basic sound support that currently only supports the
Windows operating system.

List of Supplied Libraries

170

Name Source Description

sql1.sml A query engine implementation including query optimiz-
er.

str.sml X Implements the STR() function for compatibility with
SBL. It can also be used in general in SIMPOL, since
there is no equivalent. The only thing not supported is
scientific notation.

stringlib.sml X Contains various string parsing and manipulation func-
tions. This library is heavily used in the more complex
libraries. Some of the functions included are: parse-
token(), ltrim(), rtrim(), multiinstr(),
formatlinebreaks(), etc.

timer.sml X This is a very basic but usable implementation of a timer
object. Use the timer to run things that need to happen
regularly independent of the rest of program execution.
Each timer runs in a separate thread.

trim.sml X Implements the TRIM() function for compatibility
with SBL. For a more flexible implementation see the
rtrim() function in the stringlib.sml library.

uisyshelp.sml X Contains functions and types useful in working with the
user interface and the operating system, such as retriev-
ing the list of system colors, the default font, display
size, etc. More details on this can be found in: the sec-
tion called “Dialogs Using Standard Buttons”.

unittest.sml X A basic regression testing library that implements types
for running regression tests and which compare the re-
sult of each test with the expected result and report only
on failure.

urlendecode.sml X Provides functions for URL-encoding and URL-decod-
ing. This is primarily used by web applications or pro-
grams that need to speak to a web server.

urllib.sml X Implements a type and function for parsing a string into
a URL that has been divided into its component parts.

utf8lib.sml X Provides functions for converting to and from UTF-8
format.

uuencode.sml X Provides functions for uuencoding and uudecoding. It al-
so has functions for doing base64 encoding and decod-
ing. These are used by email systems for sending attach-
ments in 7-bit characters.

val.sml X Implements the VAL() function for compatibility with
SBL. It can also be used in general in SIMPOL, since
there is no direct equivalent. The only thing not support-
ed is scientific notation.

volatable.sml Provides an complete implementation of volatile data-
base tables, including table creation, record creation,
storage, deletion and modification, locking, indexes, etc.
Works in virtually exactly the same manner as the sbme1
type but does not support the member operator. Written
completely in SIMPOL. The speed is not blinding, but
pefectly adequate when working with 1000 or so records
with a few indexes per table. Performance should be test-
ed for anything outside of these parameters.

List of Supplied Libraries

171

Name Source Description

winfiledlg.sml X Library for calling the open and save file common di-
alogs from another program, such as the older Superbase
product. This will only work on a Windows NT-based
operating system when called from a Win16 program
such as classic Superbase. See the example program in
the samples\sbl directory.

xmllib.sml X Provides a few useful functions when working with
XML but not using the facilities of the Document Object
Model that the libxml.sml library provides.

172

Part X. Programming Data-
Aware Form Programs

This part discusses techniques for programming applications using the dataform1 family of types for implementing
data-aware forms. It is expected that most applications of this nature will probably use the application framework
library as their initial point of departure, but the knowledge from this chapter will work for any program that is
working with the dataform1 type family.

175

Table of Contents
22. Overview of Window and Dialog Types Provided with SIMPOL 177

wxwindow .. 177
wxdialog ... 178
wxform ... 178

Iterating Through wxform Elements .. 179
When to Use wxform .. 180

dataform1 .. 180
Using the Various dataform1 Services ... 182

printform1 ... 184
report1 .. 185
quickreport1 .. 186
graphicreport1 .. 187
application .. 189
appwindow .. 190

23. Using Data-Aware Forms in SIMPOL .. 193
The Design of dataform1 ... 193

Graphical Elements ... 193
Form Controls ... 193
Utility Types ... 194

Iterating Through dataform1 Elements ... 195
Controlling with Events ... 197
Using the Special Features ... 197

The onfill Event .. 197
The Drop List For Edit Controls ... 197
Using a Query to Fill a Detail Block ... 198

Two Approaches to Working with dataform1 .. 198
Auto-locking ... 198
Auto-locking ... 199

Making Use of formlib.sml .. 199
24. Using Data-Aware Print Forms in SIMPOL ... 201

The Design of printform1 .. 201
Working With printform1 .. 206
printform1 Summary ... 207

25. Using Reports in SIMPOL ... 209
Using the sqlq1 Type Directly .. 209

Using SQL92 in SIMPOL .. 209
Working with report1 .. 210

The Design of report1 ... 210
Working with quickreport1 .. 216

Enhanced Quick Report Output .. 222
quickreport1 Summarizing Quick Report Output .. 223
quickreport1 Summary .. 223

Working with graphicreport1 .. 223
graphicreport1 Summary .. 229

26. Using the SIMPOL Application Framework ... 231
The Design of the Application Framework ... 231
Working with appframework.sml ... 233

176

177

Chapter 22. Overview of Window and
Dialog Types Provided with SIMPOL

This chapter will look at the various types and families of types supplied with SIMPOL. It will not
go into excessive detail, but it will attempt to provide a clear view of the types, the hierarchy of
types included by other types, and how each set of types was designed to be used. Types come in
two varieties, those provided as C/C++ language components and those designed in SIMPOL itself.
This section will also concentrate mainly on the GUI elements. For other parts, it may be useful to
examine the source code to the libraries or check the Language Reference Guide. The types that will
be discussed include both those from the C/C++-language based component WXWN, and also derived
types built in the SIMPOL programming language. These include:

• wxwindow
• wxdialog
• dataform1
• printform1
• report1
• quickreport1
• graphicreport
• application
• appwindow

wxwindow
The wxwindow type is used to create the main window for an application (usually), and might contain
a menu bar, tool bar, status bar and even child windows. The wxwindow type is also used to create
child windows. Here are some of the other types that are directly associated with the wxwindow:

• wxmenubar
• wxtoolbar
• wxstatusbar

In addition to these types, there are also some functions that are important to working with top level
windows:

• wxprocess()

• wxbreak()

A minimal program that presents a window with no content can be seen in the section called “Creating
a Single Window”.

In order to respond to events, it is necessary to place the WX system into a state to respond to events.
That is what the wxprocess() function does. It takes a time out value, which is typically set to
.inf, the internal value for infinity. That means that unless it is forced to exit by some other method,
the program will sit in that statement waiting for events forever. In the example, the task of exiting this
state is fulfilled by the quit() function, which is called when the user clicks the close gadget for the
window, selects Close from the system menu, or presses Alt+F4 (in Windows). That results in a call
to the wxbreak() function, the sole purpose of which is to terminate a wxprocess() function.

Note

The program could also call the quit() function for some other reason, such as a menu
selection, a form button press, etc. that would result in the program exiting.

wxdialog

178

wxdialog
A dialog window is very similar to a main window, but with less features. It cannot have a tool bar,
menu, or status bar. Also, dialog windows are in front of their parent window. The wxdialogtype in
SIMPOL can be either modal or non-modal. Modal means that the dialog must be dealt with and
dismissed before you can continue or click on the parent window. A non-modal dialog stays in front of
the parent window, but the user can still click on the parent window. For examples of using wxdialog,
see the section called “Working with Dialogs”.

wxform
In both the wxwindow and wxdialog types, the content is provided by the wxform type. The same
form can be used in a window, a dialog, or even a toolbar (though the form should be sized and shaped
appropriately). To place a form into a window or dialog, call the setcontainer() method of the
wxform object passing the target window or dialog object. The form contains a ring of graphics and
a ring of controls. Graphical elements are added to the form using the addgraphic() method of
the wxform type. Controls are added using the addcontrol() method of the wxform type. The list
of graphical elements supported includes:

• wxgraphicline

• wxgraphicrectangle

• wxgraphictriangle

• wxgraphicarc

• wxgraphicellipse

All of the above are type tagged as wxgraphic. This allows a variable that has been declared as
type(wxgraphic) g to then contain a reference to any of the wxgraphic types. Graphical elements
are always located behind controls. There is no method that can be used to cause them to be rendered
in front of controls. The list of form controls currently provided is:

• wxformbitmap

• wxformbitmapbutton

• wxformbutton

• wxformcheckbox

• wxformcombo

• wxformedittext

• wxformgrid

• wxformlist

• wxformoption

• wxformscrollbar

• wxformsizebox

• wxformtext

Iterating Through wxform Elements

179

All of these controls are type tagged as wxformcontrol, and therefore any variable declared as
type(wxformcontrol) c can contain a reference to any of the form control types.

Note

The wxformoption type has a basic problem. It does not automatically come with any
method of treating several of these buttons as a group. To overcome this, a solution was
created and was placed in the sbnglib.sml library. This solution is based on the types:

• wxformoptiongroup

• wxformoptiongroupmember

To use it, create a wxformoptiongroup object. Then after creating each button, use the
addmember() method of the option group object to add it to the group. If you intend to
assign an onchange event to the option button, do this first, since otherwise things won't
work (when the option button is added to the group, its onchange event information is
replace with that of the group, and the old information is stored so that it can be called
later).

Iterating Through wxform Elements

Earlier it was said that the form controls and graphics are in a ring. A ring is a specific type of data
structure. The supplied SIMPOL language library called lists.sml provides implementations of
singly-linked lists and rings, and doubly-linked lists and rings, as well as a queue and a stack. It is
also supplied in source code as the lists project in the simpol\projects\libs directory. The
way this works is that a reference to the first control on the form is assigned to the wxform.firstcontrol
property. The same is true of the first graphic. A reference to it is assigned to the wxform.firstgraphic
property. Each control or graphic also has a property called next, which is a reference to the next
graphic or control. The next property of the final control or graphic on the form will refer to the first
one, thus creating the ring. If there is only one control or graphic on the form, then its next property
will refer to itself. Below is a function that takes a wform type as a parameter and then returns an
array of all the control names. It could just as easily use the same technique to change the colors of
all the controls, or resize, them, etc.

Example 22.1. Iterating Through Form Controls

function getcontrolnames(wxform f)
 type(wxformcontrol) c
 array names
 integer i

 i = 0
 names =@ array.new()
 if f !@= .nul
 c =@ f.firstcontrol
 while c !@= .nul
 i = i + 1
 names[i] = c.name
 c =@ c.next
 end while c =@= f.firstcontrol
 end if
end function names

The same approach could be used for graphical elements.

When to Use wxform

180

When to Use wxform

Generally the wxform and its associated controls are a good choice for forms that will not have data
directly associated with the controls. Utility programs are a good example, as are basic dialogs that
just retrieve some user choices and then process the results.

dataform1
The dataform1 type was created in the SIMPOL language library called databaseforms.sml in
order to provide a multi-paged, data-aware form system that works as a set of wrappers to the wxform
types. One of the other enhancements is the support for system colors, so the page background color,
plus the text and background colors of the controls also can take a system color identifier, which
is interpreted at run time to decide which color to use. The dataform1 type family consists of the
following types:

Table 22.1. dataform1

Type Description

dataform1 This represents the entire form. The form contains a dring of
dataform1page objects. Each page contains the graphics and controls that
are found on that page. The form also has drings of controls, graphics,
datasources, bitmaps, fonts, tables, links, and sibling links.

dataform1arc A basic wrapper for the wxgraphicarc type, but also includes the neces-
sary elements to be part of dataform1.

dataform1bitmap A bitmap object that is also data-aware. Can be a static bitmap or it can
have a control source that contains the path name of the bitmap, which can
be a file system resource or located on the Internet using the HTTP pro-
tocol. Must be stored using the URL format: "file:///c/mystuff/
mypic".

dataform1bitmapbutton Provides a compatible wrapper for the wxformbitmapbutton type.

dataform1bitmapsource Supplies the container for the bitmaps used in the form. Also contains
the path and file name for images loaded from disk. Allows easy reuse of
the same bitmap multiple times on one form (or potentially on multiple
pages of a form).

dataform1button Compatible wrapper for a button.

dataform1checkbox Supplies a data-aware check box control that can not only have on or off,
but which assign a value for the on state and another for the off state to
the underlying database field.

dataform1combo A very flexible data-aware combo box that can be filled with static values,
read the values from an array, or retrieve them from a database table. Can
also one set of values, but assign a different one. Finally, it also has the
option to be filled by the user program by assigning a handler to the onfill
event.

dataform1controlsource The information used to connect a database field with a control, including
the display format (used both to convert from dates, times, etc. to string
for display in the control, as well as to convert from the string value to the
target data type for storage in the field). Also contains information about
a detail block, if the control is part of one.

dataform1datagrid The purpose of the data grid is to make it easy to show data in a grid
control from a table that is dependent on the main table in a form. It has
restrictions on what can be done with it. The cells are read-only, since
this grid is meant for display only.

dataform1

181

Type Description

dataform1datagridcolumn This is a column in a data grid type. It contains the control source, which
itself may contain a link to another table. An example might be a form
with an ORDERS table, a data grid of information from the ORDERDTL
table, and a grid column that is linked to the PRODUCT table and is show-
ing the product name.

dataform1datasource This type is used to hold the information necessary to reopen a data
source, as well as a reference to the opened data source itself.

dataform1detailblock A detail block is a collection of controls that are arranged in a single row,
which is then replicated into a specified number of rows and columns
and which may or may not have a scroll bar. This is a very powerful
mechanism for displaying data. It can either be linked to the master table
of a form, or it can be unlinked and filled using a SQL query.

dataform1edittext The edit control is similar to the normal edit control, but has the control
source and also has a speical feature for displaying a drop list based on an
indexed search using a specified number of typed characters in the edit
control. Works similarly to the effect seen in web browsers that remember
previous form entries.

dataform1ellipse A basic wrapper for the wxgraphicellipse type, but also includes the nec-
essary elements to be part of dataform1.

dataform1grid This is a free form grid control with which the programmer can create
any functionality they wish. It is almost identical to the wxformgrid type
but is compatible with dataform1.

dataform1line A basic wrapper for the wxgraphicline type, but also includes the neces-
sary elements to be part of dataform1.

dataform1link This object contains the information necessary to create a join between
two database tables. It is included in the dataform1controlsource type.

dataform1list This is similar to the capabilities of the dataform1combo, allowing vari-
ous ways to populate the list. Wraps the wxformlist type, but is limited
to single selection, since the result will be assigned toa ssingle field in a
database record.

dataform1option A data-aware option button implementation. The interesting thing is that
the control source is associated with the group, not the individual controls.
A selection of an option will assign the value associated with the control
to the field in the database record.

dataform1optiongroup Provides the host for the control source for a group of option buttons.
Also implements the functionality for grouping buttons together.

dataform1page This contains the controls, graphics, and the reference to the wxform ob-
ject that contains all the wxform controls and graphics that make up one
page.

dataform1record This is a container for a type(db1record) object that also contains a
flag for indicating the record has been modified, plus methods for saving
and deletion, plus events to call back to user program code when a record
is saved and when it is deleted. These events are not typically used, how-
ever, instead the equivalent events of the dataform1 object are favored.

dataform1recordset When working with a detail block, you may wish to retrieve the record(s)
that make up a single row on the display. The dataform1detailblock
method getrowdata() will return a record set with the records repre-
senting that specific row. A record set can also be used to update a row
in a detail block, by calling the setrowdata() method.

dataform1rectangle A basic wrapper for the wxgraphicrectangle type, but also includes the
necessary elements to be part of dataform1.

Using the Various
dataform1 Services

182

Type Description

dataform1scrollbar This is a basic wrapper for the wxformscrollbar type to make it a proper
part of dataform1.

dataform1table This type contains a reference to a database table – type(db1table), it also
contains an array of field information, a reference to the data source, a
reference to the form, a reference to the current index, a dlistnode called
parentnode which is used to traverse the tables on the form, and another
dlistnode called datasourcenode that is used to traverse the tables in the
data source. See below for information on iterating through elements on
the form. There is a method called gettablename() that can be used
to retrieve the table name of the table regardless of the type of table. It also
has events for onnewrecord, onsaverecord, and ondeleterecord that can
be defined by the application programmer to take an action at that point.

dataform1text This type enhances the underlying wxformtext type by making it da-
ta-aware, so that information from a record can be shown, but not edited.

dataform1triangle A basic wrapper for the wxgraphictriangle type, but also includes the nec-
essary elements to be part of dataform1.

There are a number of design concepts that are associated with the dataform1 type. Among them are:
every form has a master table and will typically have a master record. The master table is not meant
to be changed once the form has been created and is in use. Normally only the master record (from
the master table) can be modified. There are sibling links that connect to other tables in a 1:1 or n:1
relationship, like looking up a customer number in the customer table and then displaying the name
on the form. There are also links to detail blocks and data grids, which are of the type 1:n, so if the
current form contains an order, then the lines of the order might be in a data grid or detail block. When
using the deleterecord() method, it only deletes the master record, it does not affect any linked
records. For details on working with the dataform1 types see:Chapter 23, Using Data-Aware Forms
in SIMPOL.

Using the Various dataform1 Services
The dataform1 type not only provides the capabilities of a form and its controls, but also adds data-
base functionality to that. It includes methods for selecting records (when using linked tables, it also
performs the lookups into those tables and refreshes the form automatically), changing pages, locking,
editing, and saving records, firing off calculations and validations at the time records are saved, and
provides two different approaches to managing data-entry. In this section we will discuss these various
services. The interesting methods are listed below:

Table 22.2. dataform1 Methods

Method Name Description

blank() Clears all data from the data-aware controls on the form. Does not create
a new record!

check-
dirtyrecords()

Checks all associated records with the form and returns .true if there are
any modified records.

deleterecord() Deletes the current master record and then attempts to select the next
record for display according to the current index. Must be locked first.

discardrecord() Marks the current record as not modified (dirty) and unlocks the master
record if it is locked. It will also call any programmer-defined ondiscard
event handler.

findcontrol() Given a string this function will search for a matching dataform1 control.
If found, the return value will be a reference to the form control.

findgraphic() Given a string this function will search for a matching dataform1 graphic.
If found, the return value will be a reference to the graphic.

Using the Various
dataform1 Services

183

Method Name Description

getfieldand-
table()

This is passed field name and table name and if a matching ta-
ble with a field of this name is found, it returns a reference to a
dataform1controlsource object.

lock() Call this method to lock the master record of the table. It also sets the
modified (dirty) state to .true.

nameinuse() To establish if a control name is in use (one name space is used for con-
trols and graphics), call this function passing the name of the control. If
in use it returns .true, otherwise it returns .false.

newrecord() Creates a new master record for the form, also internally calls blank()
to clear the form. It will call any previously defined onnewrecord event
handler.

refresh() This method re-reads the data from the records already selected and as-
sociated with the form and updates the data shown on the form.

saverecord() This function should be called to save the newly created or modified mas-
ter record. The record will automatically be unlocked unless the lock
parameter is set to .true. Also, if an onsave event handler is defined, it
must return .true if the save is meant to continue. Handling the onsave
event is how the program can handle validations and calculations prior to
the saving of the record. It receives the dataform1 object and an optional
reference. To modify the fields of the target record, or retrieve values,
use the dataform1.masterrecord.record!fieldname type
of approach. If a validation fails, it is the responsibility of the programmer
to either request a replacement value, or to set focus to a specific control
and return .false, so that the record is not saved.

selectcurrent() This works similarly to the standard selectcurrent() method of the
ppcstype1record, though it works with sbme1record and vola1record as
well. Also updates the form, any form links, and will call any defined
onselect event handler (for calculated form content based on the data).

selectfirst() This works similarly to the standard selectfirst() method of the
ppcstype1record, though it works with sbme1record and vola1record as
well. Also updates the form, any form links, and will call any defined
onselect event handler (for calculated form content based on the data).

selectkey() This works similarly to the standard selectkey() method of the
ppcstype1record, though it works with sbme1record and vola1record as
well. Also updates the form, any form links, and will call any defined
onselect event handler (for calculated form content based on the data).

selectlast() This works similarly to the standard selectlast() method of the
ppcstype1record, though it works with sbme1record and vola1record as
well. Also updates the form, any form links, and will call any defined
onselect event handler (for calculated form content based on the data).

selectnext() This works similarly to the standard selectnext() method of the
ppcstype1record, though it works with sbme1record and vola1record as
well. Also updates the form, any form links, and will call any defined
onselect event handler (for calculated form content based on the data).

selectprevious() This works similarly to the standard selectprevious() method of
the ppcstype1record, though it works with sbme1record and vola1record
as well. Also updates the form, any form links, and will call any defined
onselect event handler (for calculated form content based on the data).

setmasterrecord() Use this method to set a different record as the current master record of
the form. This will then use the new master record to select any dependent
records in detail blocks, data grids, and 1:1 links followed by a refresh().

printform1

184

Method Name Description

setmastertable() This will change the master table of a form. It should never be used in a
normal application program. If you choose to use it, it should be used be-
fore creating any other controls, and the setmasterrecord() method should
later be used to select a record unless the table is empty.

showpage() To change pages on a mulit-page form, use this method.

unlock() Call this method to unlock the master record of the form if it was previ-
ously locked.

There are more methods, many of which are associated with adding data sources, tables, graphics,
controls, links, and so on, but which will not be discussed here. Since these are used by the code that
loads the form, they are not as important as the ones used to actually work with the form once it has
been loaded. If you are curious about the use of these, save a form as a dataform1 program and examine
the source code, or look at the source code for the project formlib.sml.

printform1
The printform1 type was also created in the SIMPOL language library called
databaseforms.sml. It provides a set of data-aware types for creating printable forms (forms
primarily meant to be printed rather than displayed on the screen). This group of types shares
a number of types with the dataform1 type group, and is type tagged as dataform1 as well as
dataform1linkcontainer. For details about working with the printform1 family of types, visit Chap-
ter 24, Using Data-Aware Print Forms in SIMPOL.

Table 22.3. printform1

Type Description

printform1 This represents the entire printable form. The form contains a dring of
printform1page objects. Each page contains the graphics and controls that
are found on that page. The form also has drings of controls, graphics, data-
sources, bitmaps, fonts, tables, links, and sibling links.

printform1arc A basic wrapper for the wxgraphicarc type, but also includes the necessary
elements to be part of printform1.

printform1bitmap A bitmap object that is also data-aware. Can be a static bitmap or it can
have a control source that contains the path name of the bitmap, which can
be a file system resource or located on the Internet using the HTTP pro-
tocol. Must be stored using the URL format: "file:///c/mystuff/
mypic".

dataform1bitmapsource Supplies the container for the bitmaps used in the form. Also contains the
path and file name for images loaded from disk. Allows easy reuse of the
same bitmap multiple times on one form (or potentially on multiple pages
of a form).

dataform1controlsource The information used to connect a database field with a control, including
the display format (used both to convert from dates, times, etc. to string
for display in the control, as well as to convert from the string value to the
target data type for storage in the field). The detail block information is not
used when it is part of a printform1control.

dataform1datasource This type is used to hold the information necessary to reopen a data source,
as well as a reference to the opened data source itself.

printform1ellipse A basic wrapper for the wxgraphicellipse type, but also includes the neces-
sary elements to be part of dataform1.

printform1line A basic wrapper for the wxgraphicline type, but also includes the necessary
elements to be part of dataform1.

report1

185

Type Description

dataform1link This object contains the information necessary to create a join between two
database tables. It is included in the dataform1controlsource type.

printform1page This contains the controls, graphics, and the reference to the wxform object
(if the form is being displayed) that contains all the wxform controls and
graphics that make up one page.

dataform1record This is a container for a type(db1record) object. The features for man-
aging modification are not used in printform1, since it is not designed to
allow user interaction.

printform1rectangle A basic wrapper for the wxgraphicrectangle type, but also includes the nec-
essary elements to be part of dataform1.

dataform1table This type contains a reference to a database table – type(db1table), it al-
so contains an array of field information, a reference to the data source, a
reference to the form, a reference to the current index, a dlistnode called
parentnode which is used to traverse the tables on the form, and another
dlistnode called datasourcenode that is used to traverse the tables in the da-
ta source. See below for information on iterating through elements on the
form. There is a method called gettablename() that can be used to
retrieve the table name of the table regardless of the type of table. It also
has events for onnewrecord, onsaverecord, and ondeleterecord that can be
defined by the application programmer to take an action at that point.

printform1text This type enhances the underlying wxformtext type by making it da-
ta-aware, so that information from a record can be shown, but not edited.

printform1triangle A basic wrapper for the wxgraphictriangle type, but also includes the nec-
essary elements to be part of dataform1.

report1
Another SIMPOL language type is report1, which is part of the library called reportlib.sml. It
implements a set of functions and types to provide a basic reporting engine. The output of the report1
type is not specified, the output is handled by the calling program. The Quick Report and Graphic
Report packages are both implemented by using the report1 type. The primary purpose in making the
report1 type available is to allow the creation of custom report types by SIMPOL programmers. For
details about working with the report1 package, visit the section called “Working with report1”.

Table 22.4. report1 Types

Type Description

report1 The key element of the report system is this type. It is used to define and
then run the report.

report1aggregate This type is used for defining an aggregate calculation for a group or the
entire report.

report1aggregatevalue This type is passed to a function that is handling the aggregate. Unless you
are implementing your own aggregate calculation, rather than using one
of the ones supplied, you will not use this type.

report1group Provides the capability of adding one or more groups to a report. Includes
events for ongroupstart and ongroupend, to allow the event handler to
process the output at the start of the group (group name, etc.) and again
at the end (totals).

report1groupinst This is the type that is passed to the event handling functions for ongroup-
start and ongroupend.

quickreport1

186

Type Description

report1inst When a report is running, this type is created to contain the data about the
currently running instance of the report definition. It is passed to the events
of the report1 object.

The rest of the implementation is mainly the functions that have been pre-defined for handling the
various aggregate types. These consist of:

Table 22.5. report1 Functions

Function Description

report1_agg_getval_count() This is the function that retrieves the value for the COUNT aggre-
gate.

report1_agg_update_count() This function is called to update the COUNT aggregate value.

report1_agg_getval_mean() This is the function that retrieves the value for the MEAN aggregate.

report1_agg_update_mean() This function is called to update the MEAN aggregate value.

report1_agg_getval_median() This is the function that retrieves the value for the MEDIAN aggre-
gate.

report1_agg_update_median() This function is called to update the MEDIAN aggregate value.

report1_agg_getval_mode() This is the function that retrieves the value for the MODE aggregate.

report1_agg_update_mode() This function is called to update the MODE aggregate value.

report1_agg_getval_sum() This is the function that retrieves the value for the SUM aggregate.

report1_agg_update_sum() This function is called to update the SUM aggregate value.

The report1 type is quite powerful, but unless you want to implement your own special report mode,
you may find the Quick Report and Graphic Report engines to be more suitable or easily used.

quickreport1
A much easier to use reporting type in SIMPOL is the quickreport1 type, which is found in the
quickreportlib.sml library. This provides a wrapper around the report1 type that delivers out-
put to window, printer, clipboard, HTML, CSV, and database (SBME format). Specific information
about working with the quickreport1 package, can be found in the section called “Working with quick-
report1”.

Table 22.6. quickreport1 Types

Type Description

quickreport1 The key element of the quick report system is this type. It is used to define
and then run the report.

quickreport1columninfo For each column an element of this type is required to define the col-
umn characteristics, including: the starting horizontal position and the
width, both in micrometers, the alignment, and whether the column con-
tent should wrap onto the next line.

quickreport1datasource This is the return value from the call to add a data source to the Quick
Report. The return value is passed to the code that adds a table, but is
otherwise not generally used externally.

quickreport1table The wrapper for the database table containing a link to the data source and
thereby all information required to reopen the table at another time. This is
primarily used internally, though it is the return value from adding a table.

graphicreport1

187

The instance types from the report1 type are also used in the event handlers for the quickreport1. In
addition they also receive the quickreport1 object. There are a number of functions associated with
the running of a Quick Report, which are listed below:

Table 22.7. quickreport1 Functions

Function Description

report1_quickreport_output_groupfooter() This function is called at the end of a group to output
any defined group information, typically the count and/
or an aggregate value.

report1_quickreport_output_reportfooter() This function is called at the end of the report to output
any defined report information, typically the count and/
or an aggregate value.

report1_quickreport_output_reportheader() This function is called at the start of the report to output
any report specific information. In practice this function
is used to open output files or output file header infor-
mation.

report1_quickreport_outputpageheader() Outputs the defined header information, if any, at the
start of each new output page. It is only called once for
some output formats.

report1_quickreport_outputrow This function is called once for each row of output. It
also is responsible for determining if a group has ended,
or the end of the page has been reached.

loadquickreport() Loads a Quick Report from the XML storage format.

savequickreport() Saves a Quick Report in the XML storage format.

convert_dpi_mcm() Converts a measurement from pixels to micrometers at
the current dot per inch value of the display.

convert_mcm_dpi() Converts a measurement from micrometers to pixels at
the current dot per inch value of the display.

In general, no use is made of the above-named functions by user programs, since the beauty of the
Quick Report is its simplicity. Once the report has been set up, it just needs to be run. It also has various
options such as displaying a progress gauge that can be enabled or not as desired. The simplicity is
an advantage but also the only real drawback of this report. For much more freedom in the design of
a report, it is necessary to use the Graphic Report.

graphicreport1
The most powerful report type in SIMPOL is encapsulated in the graphicreport1 family of types, which
are found in the graphicreportlib.sml library. A fully banded report engine is contained in this
set of types. The resulting output can be sent to either window or printer. The Graphic Report engine
uses the printform1 functionality to create reports that can included multiple fonts, images, graphics,
nested groups, and aggregate calculations. Specific information about working with the graphicreport1
package, can be found in the section called “Working with graphicreport1”. Graphic Reports imple-
ment a banded report writer. What this means is that each section of the report is treated as a band of
information, an the various bands are put together to create pages. There are bands for page header,
page footer, report header, report footer, and for each defined group, group header and group footer,
and for the body of the report. If a band is not defined, then it will not impact the output. For each
band an area can be defined that is represented using a graphicreport1formpage, and is populated by
graphicreport1form controls and graphics.

graphicreport1

188

Table 22.8. graphicreport1 Types

Type Description

graphicreport1 The key element of the graphic report system is this type. It is used
to define and then run the report.

graphicreport1arc Represents an arc that can be placed on the band of the report.

graphicreport1ellipse Represents an ellipse that can be placed on the band of the report.

graphicreport1form The physical representation of the report output definition is con-
tained in this form.

graphicreport1formbitmap A bitmap element for a graphic report form.

graphicreport1formpage Each band of the report is represented by one of these pages, and the
controls are placed on the page.

graphicreport1formtext This is a text control that can be placed on the band of the report.

graphicreport1formline Represents a line that can be placed on the band of the report.

graphicreport1formrectangle Represents a rectangle that can be placed on the band of the report.

graphicreport1formtriangle Represents a triangle that can be placed on the band of the report.

The report1inst and report1groupinst types from the report1 type are also used in the event handlers for
the graphicreport1 package and like with the Quick Report package, a graphicreport1 object is passed
to the event handling functions. The list of exported functions can be found in the following table:

Table 22.9. graphicreport1 Functions

Function Description

report1_graphicreport_output_groupfooter()This function is called at the end of a group to output any
defined group information, typically the count and/or an
aggregate value.

report1_graphicreport_output_groupheader()This function is called at the start of a group to output
any defined group information, typically the name of the
group and current GROUP value.

report1_graphicreport_output_reportfooter()This function is called at the end of the report to output
any defined report information, typically the count and/
or an aggregate value.

report1_graphicreport_output_reportheader()This function is called at the start of the report to output
any report specific information. In practice this function
is used to open output files or output file header informa-
tion.

report1_graphicreport_outputpagefooter() Outputs the defined footer information, if any, at the bot-
tom of each new output page.

report1_graphicreport_outputpageheader() Outputs the defined header information, if any, at the start
of each new output page. It is only called once for some
output formats.

report1_graphicreport_outputrow This function is called once for each row of output. It also
is responsible for determining if a group has ended, or the
end of the page has been reached.

loadgraphicreport() Loads a Quick Report from the XML storage format.

savegraphicreport() Saves a Quick Report in the XML storage format.

As with the Quick Report system, external programs will not likely make any use of the event handling
functions, since it is designed to "just work". Instead, a user program should define the onoutput event
of the graphicreport1formpage object.

application

189

application
The basic approach to developing a program using the application framework is: initialize the program
(create the application object and the first appwindow and display it to the user with whichever form,
menu bar, status bar, and tool bar required), call the run() method of the application object and
respond to events with event handling code, and finally cleanup when asked to exit.

The application framework provided with SIMPOL in the appframework.sml library file includes
several data types and a number of functions that together with the items that are included in the
formlib.sml library, such as: the dataform1 and printform1 families of types, plus the numerous
functions included in the library for formatting types, working with databases, parsing information and
other useful tasks, make it eay to create robust database-based applications. The key to this functionalty
lies in the two main types: application and appwindow. Information that is universally required is
associated with the application type. Information that is specific to a single window is associated with
the appwindow type. Some useful information about working with the application framework can be
found in Chapter 26, Using the SIMPOL Application Framework. Let's start by having a look at the
application type:

Table 22.10. application Properties

Property Description

localeinfoold SBLlocale This contains the datelocale and the numlocale properties, that are
used in formatting dates and numbers throughout the libraries.

dring datasources This is a ring of data source objects using the datasourceinfo type.
Data sources are stored at the application level since they need to
be used by all aspects of the program. Single-user data sources like
sbme1 cannot be opened multiple times even by the same program,
so the intiial open is used by all elements within the program. Also,
even though it is possible to open the same table more than once
using PPCS, the objects would not be compatible even on the same
table if used from more than one opened instance.

tdisplayformats displayformats This contains a set of string properties. One for each of the default
data types that might need conversion to or from string. The prop-
erties are: defboolean, defdate, defdatetime, definteger, defnumber,
and deftime. They are designed to work together with the functions:
boolstr(), DATESTR(), datetimestr(), STR() (used by
both integer and number values), and TIMESTR().

string inifilename This property provides a placeholder for the name of the config-
uration file that might be associated with the program. See the
conflib.sml for functions that work with configuration files.

localeinfo locale This contains a more modern set of locale information, which can
be of use in an application, though it is currently there for potential
future expansion.

event onexitrequest This event provides a mechanism whereby the application program-
mer can be called to determine if the application should close. If
the user closes the last open window then in the closewindow()
function if this event is defined, the user program will be called and
the application will only be closed if the return value is equal to
.true. Otherwise the window being closed will be redisplayed.
The handler function takes the following parameter types: (appli-
cation, wxwindow, type(*) reference). The final refer-
ence parameter will only be passed if it is defined.

integer ostype These are currently defined in the application source file as:
OS_UNKNOWN 0, OS_WIN32 1, OS_LINUX 2. Although every

appwindow

190

Property Description

effort is made to ensure transparency between platforms, sometimes
it is necessary to detect the platform.

ppcstype1 ppcs This is the place holder for a ppcstype1 object that can be used
throughout the application for opening PPCS-based tables. The sys-
tem treats all tables coming from the same IP address and port as
being part of a single data source.

boolean running This property is set to .true when the system enters the run()
method of the application object. The exit code in various places will
set this property to .false so that it exits the run loop and exits the
run() method.

sysinfo systeminfo This type contains information about the environment and is initial-
ized during the creation of the application object. This includes the
size of the display, thickness of scroll bars, the list of system colors
and their RGB values, and the system default font.

string title This is the default caption for the windows of the application.

wxbitmap windowicon To promote efficiency, this contains the bitmap used for the window
icon in the various windows displayed by the program.

dring windows This ring contains the appwindow objects that are created in the ap-
plication. By using this ring all of the various application windows
can be examined even if no appwindow is currently available. It al-
so allows the programmer to iterate through all of the appwindow
objects if they have one.

The basic approach to working with the application type is to create another application type specific
to the user's program, such as myapplication, insert the application type into it as the first element
marking it as reference and resolve (reference because it is important to call the new()
method of the application type and resolve so that the properties of the application type appear to
be built into the myapplication type). Also type tag the myapplication type as application. There are
a number of functions that take an argument of type(application) and this is done so that a
derived application type will still work when passed to the function.

appwindow
The most used type in the application framework is the appwindow. Unlike the application type, it is
used as is, rather than having another type derived from it. This type is responsible for managing the
database tables, opening forms, enabling and disabling menu and tool bar elements by using call backs
via the onmanagemenu and onmanagetoolbar events and manages other window-specific information,
such as the last selected unique key for the master table of the form, the current table, current directory
path (for consistency when opening files and presenting file selection dialogs to the user), and provides
a property that can hold a report so that it can be opened and retained within the window. Additional
information about working with the application framework can be found in Chapter 26, Using the
SIMPOL Application Framework. The details of the appwindow type are show below:

Table 22.11. appwindow Properties

Property Description

type(application) app Holds a reference to the application object (or a derived application
object).

dlistnode appnode This is the dlistnode node that is a member of the windows dring
in the application type. It makes iteration through the appwindow
objects possible.

appwindow

191

Property Description

string currentpath The most recent path used to load or save a file (this starts at the
current directory and is the responsibility of the application pro-
grammer to update).

tableinfo currenttable The a tableinfo object containing the current table for the window.
This is typically the same as the form's master table.

boolean disablewindowresize Normally when the openformdirect() method is called, the
window is resized to exactly fit the form. Set this to .false to
disable this feature.

boolean fastselection This should be set to .true if in the loop for a fast forward or
rewind operation. Otherwise it is set to .false.

dataform1 form A reference to the form that is currently loaded into the window.

string lastinternaluniquekey This property is meant to be updated by the record selection
code and assumes that the database tables have been opened
such that the internal record ID is exposed (as is done in the
appwindow.opendatatable() method. It contains the the most
recent internal record key. This can be useful in various situations
where a table does not have a unique index.

anyvalue lastselkeyvalue This value is the most recent entry into the select key lookup dialog.
It will be used to pre-set the prompt, so that the most recent entry
reappears when searching, as long as the search index is the same.
It should be cleared when changing indexes.

wxmenubar mb This contains a reference to the menu bar for the window. It isn't
necessary, since it can be reached via the wxwindow property w,
but it is convenient.

event ondeleterecord Use this event, together with the supplied function deleterecord()
to provide any required special handling when deleting a record.

event onmanagemenu If there are one or more entries in the menu that need to be en-
abled or disabled when any of a number of things occurs, such as
adding, modifying, saving, or deleting a record, opening or clos-
ing a table or form, then by assigning a handler for this event, the
code will be called. The function prototype is: (appwindow ap-
pw, wxmenubar mb, integer eventtype, string tablename,
type(*) reference). The event types are listed below.

event onmanagetoolbar If there are one or more entries in the tool bar that need to be en-
abled or disabled when any of a number of things occurs, such as
adding, modifying, saving, or deleting a record, opening or clos-
ing a table or form, then by assigning a handler for this event, the
code will be called. The function prototype is: (appwindow ap-
pw, wxtoolbar tb, integer eventtype, string tablename,
type(*) reference). The event types are listed below.

type(*) report This property provides a place holder for a report. It could be a
Quick Report, a Graphic Report, or even one of your own deriva-
tions from report1. The advantage is that the report can be present-
ed again to the user once defined.

wxstatusbar sb Contains a reference to the status bar for the window. It isn't nec-
essary, since it can be reached via the wxwindow property w, but
it is convenient.

dring tables This is the parent for the ring of database tables stored as tableinfo
types.

appwindow

192

Property Description

wxtoolbar tb This contains a reference to the tool bar for the window. It isn't
necessary, since it can be reached via the wxwindow property w,
but it is convenient.

type(wxcontainer) w This property holds the reference to the actual wxwindow object
displayed on the screen. It is declared as type(wxcontainer) so that
it can hold a wxdialog as well as a wxwindow.

Here is the list of parameter values and the symbolic constant names used in the application framework
source code that can be passed to the handler functions for the onmanagemenu and onmanagetoolbar
events:

• (1) iEV_OPENFORM
• (2) iEV_CLOSEALL
• (3) iEV_CHANGECURRENTTABLE
• (4) iEV_NEWRECORD
• (5) iEV_SAVERECORD
• (6) iEV_CLOSETABLE
• (7) iEV_OPENTABLE
• (8) iEV_CHANGERECORD

193

Chapter 23. Using Data-Aware Forms
in SIMPOL

This chapter will describe the general design of the dataform1 family of types, as well as some tech-
niques for successful use of the set of types.

Note

This chapter will not make much sense unless you have already read and feel comfortable
with the earlier chapters covering variables and grammar.

The Design of dataform1
The goal of the design of dataform1 was to create a set of wrapper types for the wxWidgets-based form
controls in order to provide a multi-page, data-aware form system similar in scope to that provided by
Superbase. To do this required managing quite a bit more information than is need to just provide the
wxform family of types. To work effectively, the data-aware forms would need to keep track of the
data sources used, the database tables used, the current master record for the form, and for efficiency
of implementation also the bitmaps used (there is no point in loading a large logo bitmap used on
every page once for each page, it is more efficient to load it once and use it on the various pages).
Also, the data-aware form would be a container of pages, where each would contain a wxform object
to actually host the controls. Also, each control would need to be enhanced to allow it to store the
information necessary to connect it to a field in the database. To finish it off, the functions would need
to exist to carry out the required actions: selecting records, reading data from the record and updating
the various controls, reading data from the controls as they are updated by the user and writing that
back to the record, locking in both single and multi-user modes, and numerous things that might not
be obvious in the first instance.

There are several different kinds of data types used in the dataform1 family. One is the wrappers of
the controls, another the wrappers for the graphics, and finally additional internal and exported types
used for the actual implementation of the public interface. Let's have a look at them here, starting
with the graphics.

Graphical Elements
The graphical elements in the dataform1 family are fairly thin wrappers around the wxformgraphic
controls. What they add are the necessary components to link them together and additional informa-
tion, such as the support for named colors (colors that are not fixed but that are based on the operating
system settings for that user, and therefore use symbolic names such as "Button Face" or "Window
Text".

• dataform1graphicline
• dataform1graphicrectangle
• dataform1graphictriangle
• dataform1graphicarc
• dataform1graphicellipse

All of the data types named above have a common type tag, called dataform1graphic. All the
graphical elements are located in a dring property (doubly-linked ring) called graphics. Both the
dataform1 and the dataform1page have a property with this name. The form contains a ring of all
graphics from all pages. The page ring contains the graphics from that page.

Form Controls
Unlike the graphical elements, the form controls often contain quite a few more properties and methods
than the original wxformcontrol objects. This is because of the requirement to store information about

Utility Types

194

their binding to a database field and table, the required display format, whether the control is part of a
detail block (a set of controls displayed in rows where each row represents a record in a related database
table), and if so in which row it is. Some controls require even more information. The dataform1list
and dataform1combo controls allow quite a bit of flexibility in determining where the data comes from
(including showing one value in the list but assigning another to the control). The dataform1datagrid
type provides a grid that has columns associated with fields from a table, and it can be linked like a
detail block to the master table of the form. Here is the list of form controls:

• dataform1bitmap
• dataform1bitmapbutton
• dataform1button
• dataform1combo
• dataform1checkbox
• dataform1datagrid
• dataform1edittext
• dataform1grid
• dataform1option
• dataform1list
• dataform1scrollbar
• dataform1text

The form control types are all type tagged dataform1control. They are located in a dring prop-
erty (doubly-linked ring) called controls. Both the dataform1 and the dataform1page have a controls
property. The form contains a ring of all controls from all pages. The page ring contains the controls
from that page.

Utility Types
There are a number of important utility types that play various roles in making the whole package
work. Here is a list of them:

• dataform1bitmapsource
• dataform1controlsource
• dataform1datagridcolumn
• dataform1datasource
• dataform1detailblock
• dataform1link
• dataform1optiongroup
• dataform1page
• dataform1record
• dataform1table

The dataform1bitmapsource type was created to store the original location of a bitmap that is loaded
into a form. The reason for it is simple, without that information it would be impossible to save the
form later and to know what value to store in the output file for the location of the image. For each
image used on a form, a bitmap source object is created and is then associated with the resulting bitmap
so that it can be found later.

The same is true of the dataform1controlsource type. This stores the actual field reference associated
with the control, plus the dataform1table object, and optionally a display format. This information is
necessary in order to read from and write to the database field and to correctly display and interpret
the data in the control itself.

A dataform1datagridcolumn is similar in that it also stores information about its control source, it may
also store a reference to a dataform1link object if the column is not from the master table of the grid.

The dataform1datasource stores information about the data source, either its file name and path, or its
IP address and port number. It also contains a list of the database tables that are part of the data source.

Iterating Through
dataform1 Elements

195

One of the most complex objects is the dataform1detailblock, which is a special type of container that
provides a replicated group of controls, in rows and columns, that can be linked to the master table of
a form. It can work in two different ways: either as a block of rows of data (records) that are related
to the master record of the form, or else as a completely independent block of data, the content of
which is governed by a query. In both cases, the data is read only (from the user's perspective). There
are features in the design that allow for retrieving the database record for a given row, for updating
that record or even replacing it, and also for removing the row from the result set. It also contains
methods for scrolling the block up or down, a page or a row at a time. The detail block is currently
not optimized for reducing the records read, so if the link results in reading 100,000 records, then it
will do so, delaying everything until it is done. As such, it is important to choose the links and data
design wisely.

The dataform1link contains the information that links two tables together, and it also stores the record
sets that are read as a result of using the link to read records.

The dataform1optiongroup acts as the management object for a group of dataform1option controls. In
this special case, the data source is associated with the group object, and not with the controls. It also
ensures that if one option button in the group is selected, that the others are deselected.

The dataform1record contains properties that assist it in knowing if the record has been changed, but
not yet saved, and provides a place to define events such as onsaverecord or ondeleterecord.

Similarly, the dataform1table object stores information about the current state of the table, such as the
current index, an array of field information including display formats, and events like onnewrecord,
onsaverecord, and ondeleterecord.

The dataform1page is the container of all items specific to a single page of the form.

Iterating Through dataform1 Elements
The technique for iterating through dataform1 elements is slightly different to that used in the wxform.
Firstly, there are many different dring properties: controls, graphics, bitmaps, tables, datasources, de-
tailblocks, links, siblinglinks, obgroups, and pages. Iterating through these drings is fairly consistent,
but you need to know what to expect from each one, so that the varialbe used to hold the current item
is correctly defined. Below is a table showing the dring and the type that a variable must be declared
as in order to hold any given member of the dring.

Table 23.1. dataform1 dring Types

Ring Property Name Required Type

controls type(dataform1control)

graphics type(dataform1graphic)

bitmaps dataform1bitmapsource

tables dataform1table

datasources dataform1datasource

detailblocks dataform1detailblock

links dataform1link

siblinglinks dataform1link

obgroups dataform1optiongroup

pages dataform1page

In each case the approach is the same:

Example 23.1. Iterating Through dataform1 dring Properties

Iterating Through
dataform1 Elements

196

function collectdf1controlnames(dataform1 f)
 type(dataform1control) c
 string names

 names = ""
 c =@ f.controls.getfirst()
 while c !@= .nul
 names = names + c.name + "{d}{a}"
 c =@ c.formnode.getnext()
 end while c =@= f.controls.getfirst()
end function names

In each case, the code tends to look very similar. It starts by getting the first item in the ring, then if
that is not null (the ring has at least one entry), it enters the loop, processes whatever it is doing (the
purpose for going through all the entries), then retrieves the next one in the ring, finishing when it has
reached the first one again. In the prior example, since any number of different control types will be
returned by the call to c.formnode.getnext(), the variable c is declared with the method used
for defining a variable that can contain a type-tagged group of types. The type tag dataform1control
is not a type, it is a type tag associated with each dataform1control in its type definition, to enable
exactly this sort of functionality. For further information about type tags see the section called “Value
Types, Reference Types, and Type Tags”.

Most of the types have a formnode property, which contains the reference to the dlistnode that makes
the item part of the ring. Some items have a different name, and some have more than one node, so
selecting the correct one is essential. For example, the form controls have a formnode and a pagenode
(the dataform1option control also has a groupnode). To iterate through all the controls in the form,
start with the dataform1 controls dring and use the formnode of each control to get the next one. To
iterate through all the controls on a given page, use the controls property of the dataform1page and
then use the pagenode of each control to get the next one. Here is an example that iterates through all
pages on a form, and through each control on the page.

Example 23.2. Iterating Through the Controls on Each Page of a dataform1

function df1pagesandcontrols(dataform1 f)
 dataform1page p
 type(dataform1control) c
 string info

 info = ""
 p =@ f.pages.getfirst()
 while p !@= .nul
 if info > ""
 info = info + "{d}{a}"
 end if
 info = info + p.name + "{d}{a}" + "-" * .len(p.name) + "{d}{a}"
 c =@ p.controls.getfirst()
 while c !@= .nul
 info = info + " " + c.name + ": type=" + c.type + "{d}{a}"
 c =@ c.formnode.getnext()
 end while c =@= p.controls.getfirst()
 p =@ p.formnode.getnext()
 end while p =@= f.pages.getfirst()
end function info

In the preceding program the two iteration variables are p and c. The page variable is defined to be of
one specific type: dataform1page, since that is the only type that is managed by the ring. The other is

Controlling with Events

197

defined as type(dataform1control), since all of the various dataform1 control types will be in the ring
and therefore the variable needs to be able to hold a reference to any of them.

Controlling with Events
It will usually be as a result of your program code calling the dataform1 methods: selectfirst(),
selectlast(), selectnext(), selectprevious(), etc., that will result in data changing
on the form. The onselect event can be assigned a handler so that you can run some code each time
a record is selected. This can be used to implement calculated form content based on the value of the
underlying record. The onsave event can be handled to implement validations and calculations before
the record is saved, or to refuse to save if the validation fails. In the same way, the onnewrecord event
can be used to implement default values for the new record, and the ondiscard event can be used to
do cleanup if the user chooses not to save a record.

Using the Special Features
There are a number of special features that can provide more user-friendly and powerful applications
and which are included in the design of the dataform1 family. In this section we will discuss these
features.

The onfill Event
The list types, dataform1combo and dataform1list both include a special event called onfill. What
this event does is that at the point where the code would normally fill the list of the combo or list box,
if this event has a handler assigned, it will instead call that handler. This gives the programmer the
ability to fill the list themselves, potentially using content that would otherwise be difficult to define
in the normal approach.

Note

It is important to note here that the onfill event is normally only called when the form
is loaded.

The Drop List For Edit Controls
The dataform1edittext control has a special feature that may be familiar to some from the technique
in web browsers. Namely, in the edit control while typing suddenly a list will drop down containing
related content that had been typed into the box in the past. As the user types, it filters the content such
that the beginning of each list entry matches the content that has been typed into the box. The user
can then select an item from the list using the mouse, or in our case tab into the control and use the
arrow keys to go up and down the list. As they change entries in the list, the text in the edit control is
updated to match the entry. When they tab to the next control, the list vanishes.

This sort of functionality is available to every dataform1edittext control. The list content must be
retrieved from a database table. This feature cannot be stored in the form definition when it is saved,
it must be added after the form has been loaded. To use it, call the enabledroplist() method.
This method takes the following parameters:

1. boolean enable

2. type(db1index) index

3. integer activationcharcount

4. integer listheight

5. integer maxsearchentries

Using a Query to Fill a Detail Block

198

6. integer error

To turn on the functionality, the method must be called with the enable parameter set to .true
and the index parameter must be a valid index object for the index of the table on which to search.
The remaining parameters are optional and have usable default values. The error parameter should
always be supplied and tested before making use of the functionality. The names of the parameters
should make clear what they do, but here is a brief description anyway:

• activationcharcount – This setting determines how many characters must be typed into the
control before the search functionality is activated. If you have a large table, it may be worth sticking
to the default of 2 characters or even increasing it slightly.

• listheight – This value determines how tall the list box will be. It will be located directly below
the edit control and will be the same width as the edit control. The list cannot extend beyond the
form height and any value that causes this will be automatically adjusted.

• maxsearchentries – This is a very useful setting that allows the programmer to limit the num-
ber of successfully found matching entries. This should be set to some useful value in the range
20-100 probably. It prevents lag while the searching is carried out. Since the user can simply type
another character to search again with a finer filter it is no burden to keep the list size low.

Using a Query to Fill a Detail Block
The dataform1detailblock normally must be linked to the master table of the form. There is a new
mode that has been added to allow an unlinked detail block to be managed by the programmer. The
detail block can be filled using a query. This can be very useful to see the current status of a selection
of the data. For example: unfulfilled jobs, uncleared bookings, completed jobs, open orders, etc. These
could then be further filtered to show only those from today, the last hour, the past week, etc.

To use the data grid in this way, call the setparams() method and assign the usequery parameter
to .true and the whereclause to the WHERE clause that you wish to be applied to the master
table of the detail block. The call the runquery() method, passing in the error parameters (so that
you can see if your query was valid or not). Once the query has been run, the result set will be stored
and the first page of the detail block will be filled. The SQL92 syntax information can be found in the
section called “Using SQL92 in SIMPOL”.

Two Approaches to Working with dataform1
The basic approach to working with data-aware forms in systems like SIMPOL or Superbase, is to lock
a record prior to modification, allow the user to edit the record, and then save the record (unlocking
it in the process) or to unlock the record (as a result of selecting another record). Systems that do
not implement record locking (or that can not use it efficiently) such as most SQL database systems,
take a different approach. They allow the user to make changes to a record, and then only when the
time comes to commit the changes, they lock the record, check to see if it has changed since it was
originally read, and if not, they commit the changes and unlock the record. The problems begin to
arise if the record has changed in the interim.

In this section, we will stick to the former style of working, but even that has two different approaches.
One is to use the auto-locking approach (the default in dataform1), the other is to use the explicit
locking approach. Sophisticated systems (and especially multi-user systems) are likely to require the
explicit approach. Let's have a look at each one in more detail.

Auto-locking
This is the easiest approach, since it just works. If the user clicks on a control that is not read-only
or disabled, the control receives focus. If the user changes the content, when the focus leaves the
control, the dataform1 system will attempt to lock the record. When the user saves, then everything
is automatically committed. If the user goes elsewhere, the changes to the record will be discard-

Auto-locking

199

ed, it is up to the programmer to check to see if the record needs saving. This is integrated into the
appframework.sml functionality, see the later section for more information. It is important to
note, because of a curious issue with the wxWidgets library, the SIMPOL wxform.clearfocus()
method has a quirk. Even though it clears focus from the form, wxWidgets stores the control that
previously had focus. If the user then tabs away and tabs back again, the previous control to have had
focus will have it again. We are looking into this with a view to changing that behavior, but until then
it is important to consider what impact that may have on your application.

Auto-locking
An alternative approach, necessary to anyone who intends to provide user-level access control meth-
ods, is explicit locking. To use this, the dataform1 object has auto-locking turned off, and the prevent
focus functionality enabled. This means that when the user attempts to place focus on the form, it fails,
although buttons can still be pushed. The correct approach might look like this, where the variable f
contains a dataform1 object:

 // after opening the form using appwindow.openformdirect()
 f.autolocking = .false
 f.preventfocusmode = .true
 f.preventfocus = .true

Once this has been set up, the appframework.sml library and the dataform1 package will handle
the rest. When you wish to allow editing, for example via a menu or tool bar event, calling the mod-
ifyrecord() function will allow the user to change the data on the form. Once the form is saved,
the dataform1 object will once again prevent focus on the form.

Making Use of formlib.sml
The formlib.sml library contains a copy of the databaseforms.sml library, and so if you add
formlib.sml to your project, you don't need to add databaseforms.sml. There are quite a
few types and functions in the library, but only a few are of any real relevance. The two most likely to
be used functions are: opendataform1() and savedataform1(). The first opens a dataform1
from a file, and the second saves an existing dataform1 as a file. SIMPOL forms are stored in XML
format, which is a standard text file that can edited in any editor, such as notepad.exe. When
opening a dataform1 using the opendataform1() function, there are a large number of parameters
that can (and should) be supplied. These include the defaults for various display formats, a dring of
data sources that may be already open, and an array of database tables that are already open. Any
database table that is passed in will prevent a database table of the same name being opened using
the data source information stored with the form. This approach means that the form can be created
using the single-user engine but can be opened using a previously opened set of tables that are being
accessed using the multi-user engine.

The data sources are expected to be in a dring of datasourceinfo objects (these are not
dataform1datasource types, but they are similar). The array of tables is expected to begin at 1 (like all
arrays in SIMPOL) and to consist of entries of type(db1table). Both of these are easily retrieved when
using the appframework.sml library and architecture. See the next section for details.

200

201

Chapter 24. Using Data-Aware Print
Forms in SIMPOL

The printform1 family of types provides the ability to design, save, load, and print data-aware forms
with an accuracy to the nearest micrometer. This chapter discusses how to use the set of types that
implement this functionality.

Note

As is the case with other chapters, this chapter will not make much sense unless you
have already read and feel comfortable with the earlier chapters covering variables and
grammar.

The Design of printform1
The approach to printform1 was to provide a method of printing accurate forms to the print preview
window and to the printer, without needing to previously display the printed form to the user. Although
it is possible to display the printed forms, all coordinates are stored in micrometers and are then con-
verted as well as possible to pixels for display purposes. At the time of writing, no significant testing
has been done with the display of these forms. That has been reserved for the period of time when the
Print Form Designer is being developed.

The first step in working with the printform1 family of types is to learn the members of the family
and what role they play. Here is a list of the types:

• printform1

• printform1page

• printform1graphic

• printform1control

• printform1arc

• printform1ellipse

• printform1line

• printform1rectangle

• printform1triangle

• printform1text

• printform1bitmap

Understanding the list is fairly easy. The first element is the form, the second represents a page on
the form. The third is a generic type that incorporates most of the elements that the graphic controls
have in common, the same is true of the fourth item, but for controls. This was done because it turns
out that the SIMPOL IDE is able to provide context help for variables that are declared using a type
tag if that type tag name is also defined as a type. All of the graphic elements: the arc, ellipse, line,
rectangle, and triangle, are type tagged using printform1graphic, and the text and bitmap items with
printform1control, which greatly eases the development in the IDE of applications that use variables
based on the type tag.

Each of the graphic types incorporate the related wxgraphic type, for use when displayed. In addition,
they have a duplicate of the all the properties that affect the final look, prefaced in most cases with

The Design of printform1

202

the word "print". The reason for this is that the design required that each of the elements carry the
most accurate units, plus that it should be possible to have the entire form created without needing
access to the embedded wxWidgets control, since that would require the control to be created in some
displayable form. Since it was necessary to be able to draw the control directly into a wxprintout
object, all of the elements that affected that result needed to be part of the property list for the graphic
or control.

Let's go through each of the properties of the types, to see how they are constructed. The first and
most complex of these is the printform1 type. It has many similarities with the dataform1 type. So
many, in fact, that the original dataform1 type was also type tagged with dataform1, and the printform1
also carries this type tag, as well as the dataform1linkcontainer tag. Doing this allowed printform1
to reuse many of the types used in the dataform1 family of types, such as: dataform1datasource and
dataform1link. Here is the type definition:

type printform1 (printform1, dataform1, dataform1linkcontainer) \
 export
 embed
 printform1private _private
 boolean valid
 integer defpagewidth
 integer defpageheight
 integer defpagebackcolor
 boolean designmode
 boolean dirty
 boolean createdisplayform
 boolean locked

 SBLNumSettings defnumericlocale reference
 SBLlocaledateinfo defdatelocale reference
 string defnumberformat
 string defdateformat
 string deftimeformat
 string defdatetimeformat
 string defintegerformat
 string defbooleanformat
 string name
 string filename
 string printpreviewtitle

 dring datasources
 dring tables
 dring bitmaps
 dring controls
 dring graphics
 dring pages
 dring siblinglinks

 event onselect
 event onsave

 reference
 type(*) _
 type(*) __ resolve
 dataform1table mastertable
 dataform1record masterrecord
 type(wxcontainer) container
 wxfont deffont

The Design of printform1

203

 printform1page currentpage
 array fonts

 function addbitmap
 function addcontrol
 function addgraphic
 function adddatasource
 function addpage
 function addtable
 function blank
 function builddisplayform
 function clearsiblinglinks
 function findbitmapsource
 function findcontrol
 function finddatasource
 function findgraphic
 function findsiblinglink
 function findtable
 function getfieldandtable
 function getfont
 function lock
 function nameinuse
 function print
 function refresh
 function removedisplayform
 function saverecord
 function selectcurrent
 function selectfirst
 function selectkey
 function selectlast
 function selectnext
 function selectprevious
 function setcontainer
 function setdirtystate
 function setmastertable
 function showpage
 function unlock
end type

Much of the type definition of printform1 is taken from that of dataform1, so let's look only at the
differences. The createdisplayform indicates if, while creating the form, it should also create a dis-
playable form using wxform and related types. There is also a printpreviewtitle property, which is
used as the caption of the print preview window if the form is printed to that destination. Although
there is an onsave event, this type was not designed for doing data-entry, and it may be removed at
a later date. Like the dataform1 type, it contains numerous default properties and various rings of
controls, graphics, tables, data sources, and the like. The methods are also quite consistent with those
used in dataform1. One significant difference is the builddisplayform() method. This can be
called after the form has been created to produce the display version of the form, by converting the
print coordinates to display versions. The other method that is new is print(). This method takes
a boolean parameter called showprintpreview that defaults to .true. It also takes a dialog-
data parameter that can contain the printer information, so that the print dialog does not need to be
shown to the user. This can be very handy for unattended printing.

The next type we wish to look at is the page. Like with the form, the page is very similar to the
dataform1page type and it has also been type tagged as dataform1page. Here is the type definition:

type printform1page(dataform1page) export

The Design of printform1

204

 reference
 wxform wxformpage

 embed
 dring controls
 dring graphics
 integer pagenum
 string name

 integer printbackgroundrgb

 // These are the actual values for the printout in micrometers
 integer printwidth
 integer printheight

 reference
 type(*) _
 type(*) __ resolve
 dlistnode formnode
 printform1 form

 function addcontrol
 function addgraphic
 function builddisplayform
 function changename
 function print
 function resize
 function setactive
end type

The significant differences are again specific to the print capabilities. The printbackgroundrgb property
contains the background color. The printwidth and printheight properties contain the paper size that
will be passed in when producing the wxprintpagetemplate. As with the form, there are also the two
methods: builddisplayform() and print(). The first is called to create the display version
of a single page. The second is called to transfer the page to a printout, which is passed to it by the
form version of print().

Adding graphics and controls to the print form is very much the same as adding them to a dataform1
object. To add a graphic call the addgraphic() method, and to add a control call the addcon-
trol() method. The parameters to each are slightly different to those for the dataform1 versions,
and are worth a look. Here is the parameter list for the printform1.addgraphic() method:

1. type graphictype

2. point printpoint1

3. point printpoint2

4. point printpoint3

5. point printmidpoint

6. integer rgb

7. integer borderrgb

8. integer width

9. integer borderwidth

The Design of printform1

205

10.boolean visible

11.boolean bordervisible

12.string printname

13.type(printform1graphic) next

14.printform1page page

15.integer error

As we can see from the preceding description, most of the parameters have the same name, but the point
parameters differ. This was partly because in the original design it was possible to pass both the display
and the print parameters in, until it was redesigned to always calculate the display parameters from
the print ones. The same thing is true in most ways with the printform1.addcontrol() method.
Here are the parameters for that:

1. type controltype

2. integer printleft

3. integer printtop

4. integer printwidth

5. integer printheight

6. string text

7. boolean visible

8. wxbitmap bitmap

9. string scaling

10.integer backgroundrgb

11.integer textrgb

12.string printalignment

13.wxfont font

14.string printname

15.boolean backgroundvisible

16.boolean undergraphics

17.boolean underbitmaps

18.type(printform1control) next

19.printform1page page

20.type(db1field) field

21.dataform1table table

22.string displayformat

23.integer error

Again the majority of the parameters are the same as those from the dataform1.addcontrol()
method, but a few differences are clearly visible. All of the position parameters have the word
"print" as the first part of their name, as do the alignment and name parameters. For the alignment

Working With printform1

206

that is because the type of alignment control allowed on a wxprintout is more intricate than that on
a wxform. Some of the other new parameters are specific to capabilities of the wxprintbitmapitem
and wxprinttextitem types. Rather than go into each of the graphics and controls, since they are very
similar to the standard ones, it is probably better to just look at how to create and print a form. The
next section will do just that.

Working With printform1
In this section we will create a small program that demonstrates using each of the controls on a printed
form. Learning from an actual program is generally the best approach. The following sample creates
a print form, populates it with controls and graphics, and then prints it to the print preview window.
It does not use any of the data-aware features of the controls, but doing so is trivial, it merely requires
also creating and adding the data sources and tables, and then assigning fields and display formats to
the controls. That is identical to the way it works in normal data-aware forms, so for the purpose of
this demonstration, it will be left out. Here is the sample code:

function main()
 printform1 pf
 printform1page page
 type(printform1graphic) g
 type(printform1control) c
 integer e
 wxwindow w
 wxbitmap bmp
 wxfont font
 string s, url

 e = 0
 w =@ wxwindow.new(1, 1, 300, 200, \
 captiontext="Close me when done", error=e)
 if w !@= .nul
 w.onvisibilitychange.function =@ quit
 pf =@ printform1.new(error=e)
 page =@ pf.addpage(210000, 297000, 0xffffff, name="ptest", \
 error=e)
 g =@ pf.addgraphic(printform1line, point.new(30000, 30000), \
 point.new(180000, 30000), width=100, \
 rgb=0, printname="l1", page=page, error=e)
 g =@ pf.addgraphic(printform1rectangle, \
 point.new(30000, 50000), \
 point.new(100000, 70000), borderwidth=100,\
 rgb=0xff00, borderrgb=0x0, printname="r1",\
 page=page, error=e)
 g =@ pf.addgraphic(printform1triangle, \
 point.new(110000, 50000), \
 point.new(140000, 50000), \
 point.new(125000, 80000), borderwidth=100,\
 rgb=0xff, borderrgb=0x0, printname="t1",\
 page=page, error=e)
 g =@ pf.addgraphic(printform1arc, point.new(86519, 206056), \
 point.new(179917, 206321), \
 printmidpoint=point.new(133350, 154198), \
 borderwidth=100, rgb=0xff0000, \
 borderrgb=0x0, printname="arc1", page=page, \
 error=e)
 g =@ pf.addgraphic(printform1ellipse, \
 point.new(68281, 229369), \

printform1 Summary

207

 point.new(115113, 249213), \
 printmidpoint=point.new(68281, 249213), \
 borderwidth=100, rgb=0xff00ff, \
 borderrgb=0x0, printname="ellipse1", page=page,\
 error=e)
 // The image is 192x80
 url = "http://www.simpol.com/images/style1/logo.png"
 bmp =@ retrievebitmap(url, "png", error=e)
 if bmp =@= .nul
 bmp =@ createblankbmp(192, 80, missing=.true, error=e)
 end if

 if bmp !@= .nul
 c =@ pf.addcontrol(printform1bitmap, 45000, 70000, 50800, \
 21167, bitmap=bmp, \
 scaling="preserveaspect", page=page, \
 error=e)
 end if

 s = "The quick brown fox jumped over the lazy dog. \
 Peter Piper picked a peck of pickled peppers. How \
 many pickled peppers did Peter Piper pick?"
 font =@ wxfont.new("Arial", 13, "n", "n", "", error=e)
 c =@ pf.addcontrol(printform1text, 40000, 130000, 90000, \
 35000, s, backgroundrgb=0x0, \
 textrgb=0xffffff, printalignment="", \
 font=font, printname="text123", \
 page=page, error=e)
 pf.print(error=e)
 wxprocess(.inf)
 end if
end function

function quit(wxwindow me)
 wxbreak()
end function

The preceding source code creates a window (just to keep the print preview window open and the pro-
gram running) and then create the print form. It adds one of each of the graphic types to it (please note
that coming up with valid coordinates for an arc or ellipse is not trivial — these were converted from
pixel values after drawing them using the SIMPOL Form Designer in SIMPOL Personal). Following
the graphics, an image is retrieved from the Internet via the URL using the retrievebitmap()
function that is part of the databaseforms.sml library. If it fails to retrieve a bitmap, it calls
another function from the library to create a blank image with an X through it in the same size, to
act as a missing image replacement. It then adds the bitmap to the print form. Finally it adds a text
element with static text that is centered both horizontally and vertically and display as white text on
a black background. This is then sent to the print preview window. Once the small main window is
closed, the program ends.

printform1 Summary
During this chapter we have discussed the purpose and design of the printform1 family of types. We
have also learned how they are similar and how they differ from the dataform1 family of types. Using
a small sample program we have seen how to create and print a form using program code, as well as
how to retrieve a bitmap using a URL from a web server on the Internet or in an Intranet.

208

209

Chapter 25. Using Reports in SIMPOL
In this chapter the four report engines will be discussed: sql1.sml, reportlib.sml,
graphicreportlib.sml, and quickreportlib.sml. The second makes use of the first one,
and both the Quick Report and Graphic Report engines make use of the the report engine, so much of
what will be written about that engine applies to all of them.

Note

This chapter only discusses using the report engines programmatically.

Using the sqlq1 Type Directly
The sqlq1 type is where the true work for all the report engines takes place. This is the SQL92 engine.
This engine supports a subset of SQL92 that is related to retrieving data from the database. It has a
selectclause and a whereclause property. To run a query, there must be at least one column named in
the selectclause. Then, the prepare() method must be called and assuming it did not generate an
error, the results can be retrieved by calling the getrow() method until it returns .false. When
using the various report types, you do not normally call the getrow() method, instead you would
call the run() method. This will carry out the report, which will call the various event handling
functions to produce the desired result.

The sqlq1 type is not normally used directly, though it can be quite handy. The drilldown() func-
tion from the drilldown.sml as well as the filter functionality for unlinked dataform1detailblock
types both use this type.

Using SQL92 in SIMPOL
The SQL92 syntax supported in the sqlq1 type is:

• [TABLE_NAME.]COLUMN_NAME, [TABLE_NAME.]COLUMN_NAME AS

• AND OR

• = > < >= <= <>

• [NOT] LIKE '' ESCAPE

• unary +, unary -, +, -, *, /, || (string concatenation)

• POSITION(<string> IN <string>)

• EXTRACT(YEAR | MONTH | DAY | HOUR | MINUTE | SECOND FROM <date-time-or-date-
time>)

• CHAR[ACTER]_LENGTH(<string>)

• UPPER(<string>)

• LOWER(<string>)

• SUBSTRING(<string> FROM <start-position> [FOR <length>])

• TRIM([[LEADING | TRAILING | BOTH] [<trim-char>] FROM] <string-to-trim>)

• CAST(<value-expression> AS <data-type>)

• ABS(<numeric-expression>)

• CURRENT_DATE

Working with report1

210

• CURRENT_TIME

• CURRENT_TIMESTAMP

The COLUMN_NAME can be surrounded by double quote characters ("). This can be useful if the
field name in the table contains one or more spaces (not recommended).

Here are some additional notes about working with dates, times, and datetimes:

• Dates must be supplied in the format yyyy-mm-dd when expecting to evaluate them

• Times must be supplied in the format hh:mm:ss[.ssssss] not all decimal places required

• Datetimes must be supplied in the format yyyy-mm-dd hh:mm:ss[.ssssss]

To evaluate a date, time, or datetime, it needs to be prefaced by the appropriate operator:

• DATE('2010-01-26')

• TIME('23:21:55')

• TIMESTAMP('2010-01-26 23:21:55')

The following key words are supported: AND, AS, BOTH,
CHAR_LENGTH, CHARACTER_LENGTH, CURRENT_DATE, CURRENT_TIME,
CURRENT_TIMESTAMP, DATE, DAY, ESCAPE, EXTRACT, FOR, FROM, HOUR,
IN, LEADING, LIKE, LOWER, MINUTE, MONTH, NOT, OR, POSITION, SECOND,
SUBSTRING, TIME, TIMESTAMP, TRIM, TRAILING, UPPER, YEAR.

For more information regarding the syntax of SQL92, see the numerous resources on the In-
ternet. The following document is the most complete resource I have found to date: http://
www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt.

Working with report1
The report1 type is used as the basis for all three engines. In essence, the other two are variations
and enhancements to the core report engine. The quickreport1 and graphicreport1 types each contain
a report1 type, but their implementation is primarily about different ways of dealing with the output
of the report. It is entirely possible to create other report engine wrappers that handle output in other
ways, though it is probably easiest to extend the quickreport1 type to deal with them, since it is already
prepared for output to CSV and HTML format as well as sending the output to the clipboard, in addition
to print and print preview.

This section will go into some detail regarding the design and usage of the report1 core engine.

The Design of report1
The suite of data types that make up the core report engine consists of:

• report1

• report1aggregate

• report1aggregatevalue

• report1group

• report1groupinst

• report1inst

In practice, these represent three pairs of types: report1 and report1inst, report1aggregate and
report1aggregatevalue, and report1group and report1groupinst.

The Design of report1

211

In each case, the first of the pair is used to define the starting information, and the second is used
during execution of the report to preserve current state information as it is updated and changes. More
on this after we have examined each of the types.

The report1 Type

The type definition is probably the most compact way to look at these types. Here is the type definition
of report1:

type report1(sqlq1, report1aggregatecontainer) export
 reference
 sqlq1 query resolve readonly

 embed
 string orderclause readonly
 boolean distinct readonly

 event onreportstart
 event onreportend
 event onoutputrow

 dring groups
 dring aggregates

 reference
 type(*) _
 type(*) __ resolve
 type(reportoutputtarget) outputtarget
 SBLNumSettings numlocale
 SBLlocaledateinfo datelocale

 function addgroup readonly
 function removegroup readonly
 function addaggregate readonly
 function removeaggragate readonly
 function run readonly
 function setorderclause readonly
end type

Let's start at the beginning. The first thing we see is two type tags: sqlq1, and
report1aggregatecontainer. This allows a report1 object to be assigned to any variable that has been
declared as able to contain one of these two types. Following that, we see as the first thing, a sqlq1
type parameter called query, which is marked as resolve. Since it is marked that way, all of the
properties and methods of the sqlq1 type will appear as part of the report1 type.

Note

Column names are case-sensitive, so when using them in various parts of the report,
such as the where or order clause, make sure to use the exact name as specified in the
select clause.

The next two items are the orderclause and the distinct properties. The sqlq1 carries out the query, but
does not handle the ordering of the output. This is handled by the report1 engine. The name used in
the orderclause must match the names used in the columns passed to the select clause. If a field name
has its name changed using the AS operator, then the name following the AS operator must be used
in the order clause. Sorting is done in ascending order by default. To reverse it, add the DESC key
word preceded by a space following the column name. Sorting of text currently does not support any

The Design of report1

212

other collation order except native Unicode number, which means that lowercase letters will sort out
of sequence with uppercase characters. The second property, distinct, if set ensures that if an entire
output line is duplicated, that duplicates do not appear in the output. This can happen under certain
circumstances with various filters and joins between tables.

Following on from there, three events are listed: onreportstart, onreportend, and onoutputrow. If de-
fined, these events will be called at the appropriate times, as can be inferred from their names. When
implementing some code that makes use of the report engine, at the very least you would want to
create a handler for the onoutputrow event. This will get called each time a row is read. The function
is passed the following parameters:

1. report1

2. report1inst

3. array of column information

4. array containing the current column values

5. * optional reference if defined for the event

The first two are the report itself and the current running instance. The details about the instance will
be found below. The third parameter is a 2-dimensional array that starts at 1, and in the n,0 position
is the data type, and in the n,1 position is the display format for that column. The columns are in the
same order as when they are passed in to the select clause of the query (these are not necessarily 1:1
with fields, since the select clause allows the use of SQL92 functions to create calculated columns).
The number of columns can be retrieved using the report1.getcolumncount() method. The fourth
parameter is a 1-dimensional array starting at 1 that contains the values for the current row for each
of the columns. The values will be of the same data type (or a compatible one) as that of the column.

For completeness, the parameter lists of the other two events are:

1. report1

2. report1inst

3. * optional reference if defined for the event

1. report1

2. report1inst

3. * optional reference if defined for the event

The next parameter is a dring called groups. This contains the ring of report1group objects that will
be processed by the report. Groups are processed in the order they are added, so the outermost group
will be the first one added, and the innermost group will be the last one added. For example, if you
are reporting on name and address data, and grouping on city and then by surname, the city group
should be added first, and then the surname group. Also, the sort order should be "city,surname" in
order to get the results that are expected.

The aggregates property is also a dring that contains the report-level aggregate values to be computed,
each of which is of type report1aggregate. All aggregates only work with numeric columns, except
for the count aggregate which is not associated with a column at all (the column number should be set
to 0). The supported aggregates currently are: sum, mean, median, mode, and count.

The outputtarget property is not used by the report1 type, since it is not actually concerned with the
output at all. It is there to be used by types that deal with output.

The numlocale and datelocale properties should be passed in so as to ensure that the output is formatted
correctly. If the application is using the appframework.sml library, then the application object
will make these available using the exact same types, so that consistency can be assured across the
application.

The Design of report1

213

The usage of the methods should be pretty clear from their names. They provide a method for adding
and removing groups and aggregates, setting the order clause, and running the report. There will be a
large number of additional methods exposed that are part of the sqlq1 type. These include:

• adddb1table() – Use this to add database tables to the report

• setselectclause() – Call this to set the string representing the select clause

• setwhereclause() – This establishes the filter and joins for the report

• setdefaultformats() – It is important to add the default formats for the various data types

• prepare() – Prepares the report to be run and checks the select and where clauses

The other methods are used while the report is running but are used by the report engine itself, so
you shouldn't need to use them unless you are trying to use the sqlq1 type on its own, which is an
advanced topic.

The report1aggregate Type
Aggregate values can be calculated at the report or group level. In each case they make use of the same
types: report1aggregate and report1aggregateinst. The creation of an aggregate for a qualified column
is quite simple, and is done the same for both report-level and group-level aggregates. The key is the
first parameter to the new() method of the type. Here are the parameters to the method:

1. type(report1aggregatecontainer) container

2. function getvalue

3. integer colno

4. type datatype

5. integer typeid

6. integer error

The first two parameters must be passed, or the creation of the object will fail. In the case of the count
aggregate, the colno parameter is not required (but in the quick report and graphic report versions is
set to 0). In all other cases the colno parameter will also be needed, as will the datatype parameter.
The typeid parameter is used by both the quick report and graphic report libraries, but is not used by
this one. The final parameter is as usual, the error parameter, and should be a pre-initialized integer
in order to get the value back should the object fail to be created.

The only other thing that needs to be done to use the aggregate in the report is to assign the onupdate
event handler. Each time a row is read, the aggregate values need to be updated. The function assigned
to this event for the specific aggregate handles doing the appropriate type of update.

The report library contains ten functions that are used together with the aggregates, five of them for
providing the getval functionality and five for providing the update functionality. These are:

• report1_agg_getval_count()

• report1_agg_update_count()

• report1_agg_getval_mean()

• report1_agg_update_mean()

• report1_agg_getval_median()

• report1_agg_update_median()

• report1_agg_getval_mode()

• report1_agg_update_mode()

The Design of report1

214

• report1_agg_getval_sum()

• report1_agg_update_sum()

The report1aggregatevalue Type

The only place that you might encounter this type, is if you decide to implement your own aggregate
value type and handler. This type is one of the parameters passed to the getval and update functions
of an aggregate implementation. Unless you need to do that, you don't really need to worry about this
type. Doing this is an advanced topic.

The report1group Type

In order to provide a grouping functionality within the report, we implemented the report1group type.
This type contains the static definition of a group that is used in a report. This includes the two events:
ongroupstart and ongroupend, the column number (colno), the name of the group (typically the column
name), its data type, and if defined, any aggregate values. Aggregates work exactly the same way as
with the report, and use the same type. When adding a group to a report, the addgroup() method of
the report is called. To add an aggregate to a group, call the addaggregate() method of the group.

The report1groupinst Type

This type is only used by event handlers that are dealing with the ongroupstart and ongroupend events.
The report1groupinst type contains the current information about this instance of the group, including
its value and in the ongroupend event also the various aggregates that may have been defined for the
group.

Creating a Report in Source Code

Creating a report is not particularly complicated. Using the address.sbm from the Address Book ex-
ample (see the SIMPOL Quick Start Guide), a sample report can be seen in the code below. This
report outputs a tab-delimited carriage-return and linefeed delimited file of the data from the selected
columns.

function main()
 report1 report
 sbme1 sbmfile
 sbme1table address
 integer e, erridx
 string s, errmsg
 fsfileoutputstream fpo

 e = 0
 sbmfile =@ sbme1.new("address.sbm", error=e)
 if sbmfile =@= .nul
 s = "Error number " + .tostr(e, 10) + \
 " opening ""address.sbm""{d}{a}"
 else
 address =@ sbmfile.opentable("Address", \
 recordidfieldname="recid_ro_internal", error=e)
 if address =@= .nul
 s = "Error number " + .tostr(e, 10) + " opening the \
 ""Address"" table{d}{a}"
 else
 errmsg = ""
 erridx = 0
 report =@ report1.new()
 report.setselectclause("AddressID, FirstNames, Surname, \

The Design of report1

215

 City, CountryCode", errmsg, erridx)
 report.setwhereclause("", errmsg, erridx)
 report.adddb1table(address)
 report.setorderclause("Surname")
 fpo =@ fsfileoutputstream.new("addresslist.txt", error=e)
 if fpo =@= .nul
 s = "Error number " + .tostr(e, 10) + " opening output \
 file 'addresslist.txt'{d}{a}"
 else
 report.onreportstart.function =@ \
 report1_tabbed_output_reportheader
 report.onreportstart.reference =@ fpo
 report.onoutputrow.function =@ report1_tabbed_output_row
 report.onoutputrow.reference =@ fpo

 report.run(errmsg, erridx, error=e)
 if not (errmsg > "" or e != 0)
 s = "Success!{d}{a}"
 else
 if errmsg > ""
 s = errmsg + "{d}{a}"
 else
 s = "Error number " + .tostr(e, 10) + " running \
 report{d}{a}"
 end if
 end if
 end if
 end if
 end if
end function s

function report1_tabbed_output_reportheader(report1 report, \
 report1inst reportinst, fsfileoutputstream fpo)

 integer cnt, i
 string title, outline, emsg

 emsg = ""
 outline = ""
 cnt = report.getcolumncount()
 i = 1
 while i <= cnt
 title = report.getcolumntitle(i, emsg)
 if title > ""
 outline = outline + .if(i > 1, '{9}', '') + title
 else
 outline = outline + .if(i > 1, '{9}', '') + ""
 end if
 i = i + 1
 end while

 outline = outline + "{d}{a}"
 fpo.putstring(outline, 1)
end function

function report1_tabbed_output_row(report1 report, report1inst \

Working with quickreport1

216

 reportinst, array columns, array currcolvals, \
 fsfileoutputstream fpo)

 integer cnt, i
 anyvalue value
 string svalue
 string outline
 string displayformat
 type datatype

 outline = ""
 value =@ anyvalue.new()
 cnt = report.getcolumncount()
 i = 1
 while i <= cnt
 value = currcolvals[i]
 datatype =@ columns[i,0]
 displayformat = columns[i,1]
 svalue = val2string(datatype, value, report.datelocale, \
 report.numlocale, displayformat, .false)
 if svalue > ""
 outline = outline + .if(i > 1, '{9}', '') + svalue
 else
 outline = outline + .if(i > 1, '{9}', '') + ""
 end if
 i = i + 1
 end while

 outline = outline + "{d}{a}"
 fpo.putstring(outline, 1)
end function

The previous sample program demonstrates the use of two events to handle the initial output of the
header, and then to output the data for each row. It also sorts the results according to the Surname
column. As can be seen from the source code, there isn't much required to create a report using code,
especially once the event handlers have been written. The two event handlers here are not specific to
the data, so they can be used to output any result in tab-delimited format.

report1 Summary

In this section we have learned about the design of and how to work with the report1 type. We have
also discovered that although it doesn't take much code to create a report this way, that it doesn't actual
produce output unless we write it ourselves. In the next two sections, we will have no more effort, but
we can get output to a window or the printer.

Working with quickreport1
Working with the quickreport1 type is similar to working with the report1 discussed in the previous
section. One of the main differences is that this report handles output to various targets, and therefore
needs to know more about the content. It also has the concept of a title, page numbering, and showing
the current date at the top of each page (all optional), plus displaying column headings and coping with
columns where the data is too long. It is limited to one font that it uses for the entire report and has
the advantage that it is quite simple to define. The Quick Report also supports grouping, sorting, and
output of group and report aggregate values, such as the count of rows plus the sum, mean, medium,
or mode for a column in the report and groups. To begin, let's have a look at the definition of the
quickreport1 type:

Working with quickreport1

217

type quickreport1 export
 embed
 boolean dirty

 integer outputtarget
 boolean valid
 string filename
 event onpagechange
 event onoutputheader
 event onoutputfooter
 event onbeforerow
 event onafterrow
 event onbeforegroup
 event onaftergroup
 event onoutputreportheader
 event onoutputreportfooter

 // flag indicating if the report header has been output yet,
 // so people can suppress the page header output
 boolean reportheaderoutput
 // allows people to suppress row output and just output
 // totals of groups or the whole report
 boolean suppressrowoutput

 // Properties for output to window or printer
 integer paperwidth
 integer paperheight
 integer marginleft
 integer margintop
 integer marginright
 integer marginbottom
 integer dpix
 integer dpiy
 boolean showpagenumber
 boolean showdate
 boolean showtitle
 string title
 string dialogdata
 number wrapcharcountkludgevalue
 integer currpagenumber
 integer currrownumber
 integer currtopofpage
 integer rowheight
 number rowheightadjustment readonly
 integer lastreportedpagenumber
 // used to reserve an area for a footer,
 // to throw an early end of page
 integer footerlinecount

 string defnumberformat
 string defdateformat
 string deftimeformat
 string defdatetimeformat
 string defintegerformat
 string defbooleanformat

 dring columninfo

Working with quickreport1

218

 dring datasources
 dring tables

 boolean usegauge
 gaugedialog gauge reference

 reference
 wxfont italicfont
 wxfont underlinefont
 wxfont bolditalicfont
 wxfont boldunderlinefont
 wxfont italicunderlinefont
 wxfont bolditalicunderlinefont
 wxfont headerfont
 wxfont pagefont
 wxfont origfont
 report1 report resolve

 // The following are for output types 1 and 2 (window and printer)
 wxprintout printout
 wxprintpagetemplate currtemplate
 wxprintpage currpage
 GDI gdi
 WINSPOOL winspool

 embed
 number fontwidthratio
 number fontheightratio
 boolean usewrapheight2

 // This is only for output type 1
 boolean centeroverdisplay
 boolean startat100percent

 // For clipboard output
 boolean suppressoutputmessages

 reference
 // This is for the clipboard target (tab separated and crlf separated)
 array clipoutput

 // This one is for the HTML output
 fsfileoutputstream fpo
 string outputfilename embed
 string stylefilename embed
 boolean tbodyoutput embed
 boolean outputrowodd embed

 // This is for the CSV output
 dbQRImport qrimportconverter
 dbCSVExport csvexportconverter
 boolean headeroutput embed

 // And this is for the SBME output
 dbSBMEExport sbmeexportconverter
 string targettablename embed

 array columns; // This is assigned after a callback has happened from

Working with quickreport1

219

 // the report engine, it contains the column information

 function addaggregate readonly
 function addcolumninfo readonly
 function adddatasource readonly
 function addtable readonly
 function finddatasource readonly
 function findtable readonly
 function getwrapheight readonly
 function getwrapheight2 readonly
 function getprinttextextent readonly
 function run readonly
 function outputextraline readonly
 function setrowheightadjustment readonly

 function addgroup readonly

 function getcolumninfobycolno readonly
end type

As we can see, this type definition is considerably more complex than the one for the report1 type.
In fact, if you look closely you will find that it actually contains the report1 type in addition to all
of its extensions. The good news is, you don't need to worry about most of it, since it just works.
The important bits to be aware of are the paperwidth, paperheight, and margin properties. Virtually
everything is handled in the call to the quickreport1.new() method. Below is some sample code that
demonstrates how to create a Quick Report:

include "quickreporthdr.sma"

function main()
 integer e, erridx
 string s, errmsg
 sbme1 sbmfile
 sbme1table address
 quickreport1 qr
 wxfont font
 report1group group
 quickreport1datasource ds1

 e = 0
 sbmfile =@ sbme1.new("address.sbm", error=e)
 if sbmfile =@= .nul
 s = "Error number " + .tostr(e, 10) + " opening \
 ""address.sbm""{d}{a}"
 else
 address =@ sbmfile.opentable("Address", \
 recordidfieldname="recid_ro_internal", error=e)

 if address =@= .nul
 s = "Error number " + .tostr(e, 10) + " opening the \
 ""Address"" table{d}{a}"
 else
 errmsg = ""
 erridx = 0
 font =@ wxfont.new("Arial Narrow", 10, "n", "n", "", \
 error=e)
 qr =@ quickreport1.new(outputtarget=QR_OUTPUTWINDOW, \

Working with quickreport1

220

 title="Address List", pagefont=font, error=e)
 qr.setselectclause("AddressID, FirstNames, Surname, \
 City, CountryCode", errmsg, erridx)
 qr.setwhereclause("", errmsg, erridx)
 ds1 =@ qr.adddatasource(sbmfile.type, "address.sbm", \
 sbmfile, error=e)
 qr.addtable(address, ds1, error=e)
 qr.setorderclause("City, Surname")
 group =@ qr.addgroup("City", 4, string, error=e)
 if group !@= .nul
 qr.addaggregate(group, QR_AGG_COUNT, .nul, integer, \
 error=e)
 end if

 qr.addcolumninfo(20000, 12000, "right,top", error=e)
 qr.addcolumninfo(34000, 30000, error=e)
 qr.addcolumninfo(66000, 40000, error=e)
 qr.addcolumninfo(108000, 65000, error=e)
 qr.addcolumninfo(175000, 6000, error=e)
 qr.showdate = .true
 qr.showpagenumber = .true
 qr.showtitle = .true
 qr.usewrapheight2 = .true
 qr.addaggregate(.nul, QR_AGG_COUNT, .nul, integer, error=e)

 // The following commented out lines show how to save
 // and load a Quick Report using the XML format
 //savequickreport(qr, "addresslist.sxq", error=e)
 //qr =@ loadquickreport("addresslist.sxq", error=e, \
 // errortext=errmsg)

 qr.startat100percent = .true
 qr.centeroverdisplay = .true

 qr.run(errmsg, erridx, error=e)

 if not (errmsg > "" or e != 0)
 wxprocess(20000000)
 s = "Success!{d}{a}
 else
 if errmsg > ""
 s = errmsg + "{d}{a}"
 else
 s = "Error number " + .tostr(e, 10) + \
 " running report{d}{a}"
 end if
 end if
 end if
 end if
end function s

The preceding program code should be fairly self-explanatory, but we will go through it briefly touch-
ing on the interesting points. In this program we decided to use Arial Narrow 10 points for
our report. The font is created first and passed to the new() method. This is important! For various
reasons, the Quick Report code makes variants of the font, so it is necessary to pass in the font when
the object is created. There is no provision for changing it later. The outputtarget should be one of the
valid output targets. There are six different valid target types, including: window, printer, CSV file,

Working with quickreport1

221

HTML file, clipboard, and database (SBME). The HTML target is similar to the window and printer
targets, in that it produces a formatted report, albeit in one long page. The other three targets are well-
suited to exporting data in their respective formats (clipboard produces a tab separated, newline sep-
arated output that can be directly pasted into programs like MS Excel). In the case of the data export
targets, the aggregates, grouping, and other formatting information is ignored. The various constants
for output and aggregate types can be found in the quickreporthdr.sma.

Once the quickreport1 object has been created, the select clause, where clause, and order clause are
defined, and the data source and tables are added (just as in report1). Then we add a group, and an
aggregate for the group. Finally we define the column information. This is required to be defined in
the same order as the list of columns in the select clause. The addcolumninfo() method takes
the following parameters:

1. integer columnstart

2. integer columnwidth

3. string alignment

4. boolean wrap

5. integer error

The first two parameters are the horizontal starting position (from the left edge of the paper – the left
and right margin values are ignored currently) and the width of the column. These are measured in
micrometers (millionths of a meter). The next is the alignment. This can be one of:

• "left,top" (the default)

• "top" (centered horizontally)

• "right,top"

• "left" (centered vertically)

• "" (centered vertically and horizontally)

• "right" (centered vertically)

• "left,bottom"

• "bottom" (centered horizontally)

• "right,bottom"

The fourth parameter is wrap. This will attempt to ensure that the content is wrapped around within
the confines of the column and extends the line down the page until the content has been output. If the
content is too large to fit on the page, it will be moved to the next page. If it is too large to fit on a page, it
will be truncated. Using this feature will slow down the report, since for every row the content of each
column with this feature will need to be tested to see if it fits and if not, how much space it requires.
Also, there are two algorithms, one is much faster than the other, but is less precise. To use the faster
algorithm, as shown in the preceding sample, the usewrapheight2 property must be set to .true.

Once the column information has been added, the program sets the switches to .true to enable the
page title to be output, the date, and the page count. It then adds an aggregate for the overall count
of rows in the report. Following that are two commented out program statements, that demonstrate
how to save the report to disk, and how to load the report from disk. The default file extension for
SIMPOL Quick Reports is .sxq. Finally, there are two options, one called startat100percent and
centeroverdisplay, both of which currently only work on Windows (they are implemented by calling
functions in the Windows API that do not have equivalents elsewhere). Once everything is prepared,
the run() method is called. Since this program is just a sample, it then enters a wxprocess() call
for 20 seconds, so that there is time to look at the output in the window. Without this call, the program

Enhanced Quick Report Output

222

would simply exit and the output window would immediately close. In a normal application that has
a window open and which is sitting in a wxprocess() loop anyway, this would not be an issue.

Enhanced Quick Report Output
With the 1.8 release of SIMPOL Professional, a number of new capabilities were added. There are
now the following events for formatting output to the print preview window or the printer:

• onoutputheader – Called after the title, date, and page number line is output (if it is output) and before
the column titles are output. The prototype for a function that handles this event is: funcname
(quickreport1 quickreport, report1 report, report1inst reportinst, type(*) reference
).

• onoutputfooter – Called just before calling the function
report1_quickreport_outputpageheader(). There is no standard footer output by the
Quick Report. The prototype for a function that handles this event is: funcname (quickreport1
quickreport, report1 report, report1inst reportinst, type(*) reference).

• onbeforerow – Called just before calling the code that outputs the row data. This call is not sup-
pressed even if the property supressrowoutput is set to .true. The prototype for a function that
handles this event is: funcname (quickreport1 quickreport, report1 report, report1inst
reportinst, type(*) reference).

• onafterrow – Called just after calling the code that outputs the row data. This call is not suppressed
even if the property supressrowoutput is set to .true. The prototype for a function that handles this
event is: funcname (quickreport1 quickreport, report1 report, report1inst reportinst,
array columns, array currcolvals, type(*) reference).

• onbeforegroup – Called as the group changes. No group header is output by the Quick Report,
so the user can use this as they wish. The prototype for a function that handles this event is:
funcname (quickreport1 quickreport, report1group group, report1groupinst groupinst,
type(*) reference).

• onaftergroup – Called just after calling the code that outputs the the aggregate values and the count
(if any are defined). The prototype for a function that handles this event is: funcname (quickre-
port1 quickreport, report1group group, report1groupinst groupinst, type(*) reference
).

• onoutputreportheader – Called just after calling the code that outputs the page header, including
the columns headings. This may be modified in a later version, or as an alternative, a method of
suppressing the column headings at the start of the report may be added. The prototype for a function
that handles this event is: funcname (quickreport1 quickreport, report1 report, report1inst
reportinst, type(*) reference).

• onoutputreportfooter – Called just after calling the code that outputs the the aggregate values and
the count (if any are defined). No page footer is currently output on the final page. This may be
corrected in a future release. If it is, it will be made optional. The prototype for a function that
handles this event is: funcname (quickreport1 quickreport, report1 report, report1inst
reportinst, type(*) reference).

In all of these events, to output anything to the window or printer, it is necessary to create an instance
of a quickreportextraoutputinfo type. This contains all of the information required to print this content,
including the position, alignment, name (this is the name given to the template item and must be
different from the printname), printname (this is the name given to the string data and if not supplied
it will be derived from the name), and the text (the actual string data that should be output).

This is passed to the outputextraline method of the quickreport1 object. The prototype for this
function is: quickreport1.outputextraline (quickreport1 me, quickreportextraoutputinfo out-
putinfo, string fontcharacteristics="", boolean incrementtopofpage=.true, in-
teger error). The fontcharacteristics should contain either nothing, or any of: biu, bi,
bu, iu, i, u, or b, where b is bold, i is underline, and i is italic.

quickreport1 Summariz-
ing Quick Report Output

223

By setting the value of the incrementtopofpage parameter to .false it is possible to output
multiple values on the same line. It is important that in the final call to this function (if making multiple
calls) that this parameter is set to .true.

quickreport1 Summarizing Quick Report Output
Another new feature added in the 1.8 release of SIMPOL Professional was the suppressrowoutput of
the quickreport1 type. If this is set to .true, then only the report and group aggregate values will be
output. This feature is only available to the window and printer output targets.

quickreport1 Summary
As we have discovered in this section, creating a Quick Report in code is not very difficult. It is similar
to the code used for a report1 report, but with the extra requirement of selecting a font and defining
the column information. It is quick and easy, but it has the down side that everything on the report is
in one font, and there is little flexibility over the layout and none regarding group headers and footers.
This latest version does support some additional enhancements, such as summarizing the output by
suppressing the row output, and offers the new events and the new method outputextraline()
which can be used to output additional content. For more complex reports, where all of the items
in headers and footers can be defined, and images can be incorporated, we need to use the Graphic
Report, which is the subject of the next section.

Working with graphicreport1
The Graphic Report is extremely flexible in its design. The actual report is separate from the physical
representation of its output. The graphicreport1 type contains a graphicreport1form type, which in
turn contains a dring of graphicreport1formpage objects. The graphicreport1 type also incorporates
the report1 type and is therefore similar to working with report1 as discussed previously. Unlike the
quickreport1 type, however, this type is considerably more powerful and therefore also considerably
more complex. It uses the printform1 type to provide templates for each area of the report. Each band
of the report is defined as a page in the graphicreport1form. See Chapter 24, Using Data-Aware Print
Forms in SIMPOL for more information about printform1.

The Graphic Report is a banded report system. That means that the components are broken up into
bands, each the width of the page. The bands that are provided include:

• Page header

• Page footer

• Body

• Report header

• Report footer

• Group header

• Group footer

None, some or all of these bands may be used (the group bands are for each group defined). When
the report is run, it assembles the page from these bands. At the start of the report it will output the
report header if it has been defined and at the beginning of each page it outputs the page header if that
has been defined. Since it may be messy to have both on the same page, there is an option to suppress
output of the page header on the first page. Following that, if there are any groups defined and there is
a group header for the group, that will be output, then the body section of the report will be output until
a group change, or the bottom of the page, (allowing for the page footer if it has been defined). Each
page is then assembled as required until the end of the report is reached, at which point the report footer
will be output followed by the page footer (this can also be suppressed on the last page). Each band is
defined as a graphicreport1formpage that contains a printform1page object. Each of these pages has a

Working with graphicreport1

224

specific naming format so that the engine will recognize them. These are also stored as constants in an
includable SIMPOL source code file called graphicreporthdr.sma, but the list is as follows:

• "pageheader"

• "pagefooter"

• "body"

• "reportheader"

• "reportfooter"

• "groupheader"

• "groupfooter"

In turn, each page can contain any of the following content elements:

• graphicreport1arc

• graphicreport1ellipse

• graphicreport1line

• graphicreport1rectangle

• graphicreport1triangle

• graphicreport1formtext

• graphicreport1formbitmap

Each of these contains a printform1 graphic or control of equivalent type. In the case of the graphics,
there is little difference between them. The bitmap and text objects are different however, since they
can be associated with a column value in the body page. In addition, the text objects can also be
associated with an aggregate value in the group and report footers, or defined as a calculation using a
system variable in the group header (for the GROUP items below), otherwise any of them can be used
anywhere, though page headers and footers would be the most logical choice for most. The supported
system variables include:

• PAGE – (returns the page number in the report formatted using the minimum characters (pure
.tostr() call

• TODAY – (returns the current date formatted using the default date format and date locale infor-
mation as provided to the report

• NOW – (returns the current time formatted using the default time format information as provided
to the report

• TIMESTAMP – (returns the current date and time formatted using the default datetime format and
date locale information as provided to the report

• COUNT – (returns either the count of rows in the report or the group, depending on the page)

• GROUP – (returns the value of the current group)

• GROUPNAME – (returns the name of the column for the current group)

• GROUPINFO – (returns the name of the current group, followed by a colon and a space, and then
the group's current value

Each item is placed on the page using print coordinates (to the nearest micrometer). Positioning is
absolute, so if something is too close to an edge to be printed without being cropped, then it will be
cropped.

Working with graphicreport1

225

When creating any of these controls, one of the arguments to each is an appropriate printform1control
or printform1graphic object. In the case of the two form objects, they can each take a column number
(which is based on the order of the select clause), in the colno parameter. Furthermore, the text
control can also be assigned an aggregate type, or instead of a column number it can have a calculation
assigned. Both of the form controls can also be assigned static values, a fixed bitmap or text value.
All of this is handled in the graphicreport1form.addcontrol() method.

The easiest way to understand how to use the report is to make one:

 include "graphicreporthdr.sma"

function main()
 integer e, erridx, stdtexthgt
 string s, errmsg
 sbme1 sbmfile
 sbme1table address
 graphicreport1 gr
 wxfont font, font2, font3, font4
 report1group group
 dataform1datasource ds1
 graphicreport1formpage page
 graphicreport1formtext ptxt
 SBLlocaledateinfo datelocale
 SBLNumSettings numlocale

 e = 0
 sbmfile =@ sbme1.new("address.sbm", error=e)
 if sbmfile =@= .nul
 s = "Error number " + .tostr(e, 10) + " opening \
 ""address.sbm""{d}{a}"
 else
 address =@ sbmfile.opentable("Address", \
 recordidfieldname="recid_ro_internal", error=e)

 if address =@= .nul
 s = "Error number " + .tostr(e, 10) + " opening the \
 ""Address"" table{d}{a}"
 else
 datelocale =@ SBLlocaledateinfo.new(format="dd/mm/yy")
 numlocale =@ SBLNumSettings.new("£", ",", ".", .false)
 stdtexthgt = 4900
 errmsg = ""
 erridx = 0
 font =@ wxfont.new("Arial Narrow", 10, "n", "n", "", error=e)
 font2 =@ wxfont.new("Arial Narrow", 10, "n", "b", "",error=e)
 font4 =@ wxfont.new("Arial Narrow", 13, "n", "b", "",error=e)
 font3 =@ wxfont.new("Arial", 14, "n", "b", "", error=e)
 gr =@ graphicreport1.new(paperwidth=210000, \
 paperheight=297000, outputtarget=GR_OUTPUTWINDOW, \
 title="Address List", datelocale=datelocale, \
 numlocale=numlocale, error=e)
 gr.reportform.wrapkludgevalue = .toval("1.15", .nul, 10)
 gr.reportform.fontresizekludgevalue = .toval("0.7", .nul, 10)
 gr.reportform.wrapcharcountkludgevalue = .toval("1", .nul,10)
 gr.usewrapheight2 = .true

 gr.setselectclause("AddressID, FirstNames, Surname, City, \

Working with graphicreport1

226

 CountryCode", errmsg, erridx)
 gr.setwhereclause("", errmsg, erridx)
 gr.setorderclause("City, Surname")
 ds1 =@ gr.adddatasource(sbmfile, "address.sbm", error=e)
 gr.addtable(address, ds1, error=e)

 // Body Page
 page =@ gr.addpage(210000, 600 + stdtexthgt, 0xffffff, \
 name=sGR_BODY, error=e)
 gr.addcontrol(graphicreport1formtext, printleft=20000, \
 printtop=300, printwidth=12000, \
 printheight=stdtexthgt, printalignment="right,top", \
 font=font, printname="tbAddressID", page=page, \
 colno=1, error=e)
 gr.addcontrol(graphicreport1formtext, printleft=34000, \
 printtop=300, printwidth=50000, \
 printheight=stdtexthgt, font=font, \
 printname="tbFirstNames", page=page, colno=2, error=e)
 gr.addcontrol(graphicreport1formtext, printleft=86000, \
 printtop=300, printwidth=50000, \
 printheight=stdtexthgt, font=font, \
 printname="tbSurname", page=page, colno=3, error=e)
 gr.addcontrol(graphicreport1formtext, printleft=138000, \
 printtop=300, printwidth=50000, \
 printheight=stdtexthgt, font=font, \
 printname="tbCity", page=page, colno=4, error=e)
 gr.addcontrol(graphicreport1formtext, printleft=190000, \
 printtop=300, printwidth=12000, \
 printheight=stdtexthgt, font=font, \
 printname="tbCountryCode", page=page, colno=5, error=e)

 // Page Header
 page =@ gr.addpage(210000, 16320 + stdtexthgt, 0xffffff, \
 name=sGR_PAGEHEADER, error=e)
 gr.addcontrol(graphicreport1formtext, printleft=50000, \
 printtop=6000, printwidth=110000, printheight=8200, \
 printalignment="", text="Address List", font=font3, \
 printname="lPageTitle", page=page, error=e)
 gr.addcontrol(graphicreport1formtext, printleft=20000, \
 printtop=16000, printwidth=12000, \
 printheight=stdtexthgt, printalignment="right,top", \
 text="Addr ID", font=font2, printname="lAddressID", \
 page=page, error=e)
 gr.addcontrol(graphicreport1formtext, printleft=34000, \
 printtop=16000, printwidth=50000, \
 printheight=stdtexthgt, text="First Names", \
 font=font2, printname="lFirstNames", page=page, \
 error=e)
 gr.addcontrol(graphicreport1formtext, printleft=86000, \
 printtop=16000, printwidth=50000, \
 printheight=stdtexthgt, text="Surname", font=font2, \
 printname="lSurname", page=page, error=e)
 gr.addcontrol(graphicreport1formtext, printleft=138000, \
 printtop=16000, printwidth=50000, \
 printheight=stdtexthgt, text="City", font=font2, \
 printname="lCity", page=page, error=e)
 gr.addcontrol(graphicreport1formtext, printleft=190000, \
 printtop=16000, printwidth=12000, \

Working with graphicreport1

227

 printheight=stdtexthgt, text="Ctry", font=font2, \
 printname="lCountryCode", page=page, error=e)
 gr.addgraphic(graphicreport1line, point.new(20000, \
 16300 + stdtexthgt), point.new(202000, 16300 + \
 stdtexthgt), width=100, printname="lBorder", page=page, \
 error=e)

 // Page Footer
 page =@ gr.addpage(210000, 9000 + STDTEXTHGT, 0xffffff, \
 name=sGR_PAGEFOOTER, error=e)
 gr.addgraphic(graphicreport1line, point.new(20000, 1000), \
 point.new(190000, 1000), width=100, \
 printname="lBorderFooter", page=page, error=e)
 ptxt =@ gr.addcontrol(graphicreport1formtext, \
 printleft=98000, printtop=3000, printwidth=14000, \
 printheight=stdtexthgt, printalignment="", text="", \
 font=font2, printname="lPageNo", page=page, error=e)
 if ptxt !@= .nul
 ptxt.calculation = "PAGE"
 end if

 group =@ gr.addgroup("City", 4, string, error=e)
 if group !@= .nul
 gr.addaggregate(group, GR_AGG_COUNT, .nul, integer,error=e)
 end if

 // Group Header
 page =@ gr.addpage(210000, 12000, 0xffffff, \
 name=sGR_GROUPHEADER, group=group, error=e)
 if page !@= .nul
 ptxt =@ gr.addcontrol(graphicreport1formtext, \
 printleft=20000, printtop=5000, printwidth=30000, \
 printheight=integer.new(stdtexthgt * (135/100)), \
 printalignment="left,top", text="", font=font4, \
 printname="lGroupname", page=page, error=e)
 if ptxt !@= .nul
 ptxt.calculation = "GROUPINFO"
 end if
 end if

 // Group Footer
 page =@ gr.addpage(210000, 8500, 0xffffff, \
 name=sGR_GROUPFOOTER, group=group, error=e)
 if page !@= .nul
 ptxt =@ gr.addcontrol(graphicreport1formtext, \
 printleft=20000, printtop=2000, printwidth=30000, \
 printheight=integer.new(stdtexthgt * (135/100)), \
 printalignment="left,top", text="", font=font4, \
 printname="lGroupcount", page=page, error=e)
 if ptxt !@= .nul
 ptxt.calculation = "COUNT entries"
 end if
 end if

 gr.addaggregate(.nul, GR_AGG_COUNT, .nul, integer, error=e)

// savegraphicreport(gr, "addresslist.sxr", error=e)
// gr =@ loadgraphicreport("addresslist.sxr", error=e, \\

Working with graphicreport1

228

// errortext=errmsg)

 gr.startat100percent = .true
 gr.centeroverdisplay = .true

 e = 0
 gr.run(errmsg, erridx, error=e)
 if not (errmsg > "" or e != 0)
 wxprocess(20000000)
 s = "Success!{d}{a}"
 else
 if errmsg > ""
 s = errmsg + "{d}{a}"
 else
 s = "Error number " + .tostr(e, 10) + \
 " running report{d}{a}"
 end if
 end if
 end if
 end if
end function s

As can be seen from the preceding code, there is a lot more involved in creating a Graphic Report than
there is for a Quick Report, but the difference is in the amount of control over the resulting look of the
report. Just as with the Quick Report, the initial stages of creating a Graphic Report consists of opening
the data source(s) and table(s), creating the graphicreport1 object, and setting the select, where, and
order clauses. In addition, the fonts that will be used are created, and there is a set of properties that
are related to the "wrap" functionality that can be set. These occasionally need tweaking to get the
best results. Like with the Quick Report, only add the "wrap" capability if it is required, since it adds
considerable processing overhead to each time a control that uses it is output. Two of the arguments
passed to the new() method of the graphicreport1 are the pagewidth and the pageheight para-
meters. The ones used in the example are for A4 paper. The US Letter paper size is: 215900 x 279400.

Once the standard tasks have been dealt with, the various page bands are added, each with the controls
that are required. Interestingly, just because a column is in the select statement does not mean that it
will appear in the report. Unless it is associated with a control in the body page, there will no output
for that column. This is useful when it is necessary to retrieve extra column information for use in
report or group footers. Also, to do a summarization, it is only necessary to not define the body page.

If the level of control that is available in the basic design is still not enough, at the point of out-
putting a page chunk onto the final output page, there is an onoutput event for each page that can be
used to call the programmer's code. A different function should be assigned for each unique band or
graphicreport1formpage object. The various function prototypes for the types of pages are as follows.

Table 25.1. onoutput Function Prototypes

Band Type Function Prototype

Body band onoutput_handler(page, pagechunk, report, reportinst,
columns, currcolvalues, reference);

graphicreport1formpage page;
printform1page pagechunk;
report1 report;
report1inst reportinst;
array columns;
array currcolvalues;
type(*) reference;

graphicreport1 Summary

229

Band Type Function Prototype

Page header and
footer, report head-
er and footer

onoutput_handler(page, pagechunk, report, reportinst,
reference);

graphicreport1formpage page;
printform1page pagechunk;
report1 report;
report1inst reportinst;
type(*) reference;

Group header and
footer

onoutput_handler(page, pagechunk, group, groupinst,
reference);

graphicreport1formpage page;
printform1page pagechunk;
report1group group;
report1groupinst groupinst;
type(*) reference;

At the point where this is called, all of the data and calculations have been done, and the resulting
output can still be manipulated by the programmer. For example, in the body, if the total of a row is
negative, the foreground color could be changed to red. This change only affects the current output
chunk, not the template, so it needn't be reversed for rows that are positive. The names of the controls
on the pagechunk will be the same as on the template, making it easy to address thae various controls.
As was the case with the Quick Report example, there are two commented lines of code that save and
then load the Graphic Report. The default file extension for SIMPOL Graphic Reports is .sxr.

graphicreport1 Summary
In this section we have learned about the use of the graphicreport1 type. As we have discovered, these
are much more powerful than any of the other methods of reporting we have previously explored,
but the price is that they are more complex to create. When choosing which method to use, it is best
to remember that each has its strengths and weaknesses. The basic report1 is meant for specialized
purposes such as implementing a custom report style that may not even generate output to the screen.
The quickreport1 type is useful for creating reports to window or printer (and eventually other targets),
with few more requirements than those of the basic report1 aside from defining column information
and which also allows grouping and aggregate calculations. Finally, if the report requires a great deal
of control in the final result or needs to incorporate images (or a company letterhead), then the graphi-
creport1 type is the best report for the job.

230

231

Chapter 26. Using the SIMPOL
Application Framework

This chapter will describe the general design of the SIMPOL Application Framework.
The appframework.sml library provides a complete application framework that uses
databaseforms.sml, formlib.sml, db1util.sml, uisyshelp.sml, and other libraries
to allow the quick and easy creation of powerful database-oriented applications. It implements an ap-
plication and appwindow data type, which together with various functions and helper types, assists
the programmer to produce a reliable database-oriented application with very little effort. Typically
a program based on the framework will create its own application object type that includes the appli-
cation object from the framework, and which is type-tagged as application. To see the code for
this in detail, look at the chapters in the Quickstart Guide that cover the Address Book and Ordering
System samples. These samples are also included as part of the distribution, so all the source code
is there to exploit.

The Design of the Application Framework
The basic premise behind the application framework is that most applications that work with a database
will have numerous aspects in common. These include:

• Displaying forms
• Switching forms
• Managing data sources
• Managing tables
• Creating, locking, unlocking, modifying, and deleting of records
• Placing the cursor in the first viable control on a form when entering data-entry
• Testing to see if a record has been modified, and prompting the user to save or discard it
• Browsing through records

To that end, the application framework provided with SIMPOL does an excellent job. It contains a
basic application type, that can be used as is, or which can be embedded into a more sophisticated ap-
plication type. The appwindow type provides the necessary management for the one or more windows
used by the application, provides a container for the database tables used by the window, and various
services for setting the current table, record, index, etc. for the window.

This library includes the formlib.sml, and therefore has all of the features of that library including
all of the lower level included libraries. This includes all of the dataform1, printform1, and DOM type
families, plus most of the important functions for lists, formatting types as strings, and the support
libraries for the UI and the file system. In this section we will specifically discuss the features specific
to the appframework.sml.

Table 26.1. The Functions in the Application Framework

Function name Description

checkneedsave() Checks to see if the record has been modified. If it has, it prompts the user
to save or discard and handles the result. After calling this function, the
programmer must check the return value. If it is .true, they can continue
whatever they are doing that would lose the current unsaved changes, oth-
erwise they should abort the operation.

clearstatusbar() This clears the status bar after a specified delay (has a default value).

closewindow() This function is intended to be attached to the onvisibilitychange event of
the embedded wxwindow object in an appwindow type. To handle the clos-
ing of the final window the programmer creates an event handler for the
onexitrequest event of the application. If defined, it will be called from

The Design of the Ap-
plication Framework

232

Function name Description

this function if the user is attempting to close the last visible window. Re-
turn .false to prevent the window closing.

defer() This function is typically called from any menu item or tool bar item event
handler, in order to ensure that any changed data in the current control
with focus has been written to the underlying field. The defer mechanism
is necessary since menu and tool bar events take place before the onlostfo-
cus event of a form control. Without the defer mechanism, the call to save
changes to a record would fail to record any changes to the control that cur-
rently has focus. By using defer, the focus is cleared and the onlostfocus
event is called to write the data while the defer() function in a separate
thread waits a very short period and then re-calls the original function.

deleterecord() This function is designed to be assigned to both menu items and tool bar
items as the onselect event handler. It expects the application object to be
passed (or the derived application object as long as it is tagged application).
It can also be called directly passing the appwindow object as the first ar-
gument. It will handle locking and deletion of the current record on the
form, and will call the ondelete event handler if it has been assigned. This
function is particularly tuned to cope with both auto-locking and explicit
locking systems. It will use the status bar, if available, when telling the user
if a record is unable to be locked, which is very important since in an au-
to-locking environment, when the dialog window vanishes it automatically
attempts to place focus back on the form, which then tries to lock the record,
leading to an uninterruptible cycle that will only frustrate the users.

duplicaterecord() This function is designed to be assigned to both menu items and tool bar
items as the onselect event handler. It expects the application object to be
passed (or the derived application object as long as it is tagged application).
It can also be called directly passing the appwindow object as the first ar-
gument. It creates a new record and copies the current record into it. To
make changes for unique indexes, assign a handler function to the onchan-
gerecord event and test the record to see if it has been stored. If not, then it
is a new record that has been duplicated.

findfirstfocusablecon-
trol()

This function does exactly what it says. It retrieves the first focusable con-
trol on a form. This would be used in conjunction with placing the user in
data-entry, in order to set focus to the first appropriate control in the tab
order.

getappwin-
dowfromwindow()

Use this function to return the appwindow object from a wxwindow object.
This situation occurs when a menu event takes place, since the object passed
to the function is of type wxmenuitem, and not appwindow. This function
needs to be paired with the next one.

getmenuitemwindow() With this function it is possible to retrieve the wxwindow object from a
wxmenuitem object. When a menu event occurs, the object that causes the
event is an item in the menu, so that is the type passed as the initial parameter
to the function. Together with the previous function you can retrieve both
the wxwindow and the appwindow objects.

gettableformatstrings() Use this function to retrieve an array of the field display format strings for
a table that is part of the appwindow ring of tables. The array is in the order
of the fields in the database table.

gettablesarray() Retrieves an array of tbinfo objects, one for each table opened in the
appwindow's ring of tables. These objects are not specific to a parent ob-
ject and can be used for transferring a set of tables from one component
to another, so that both sections use the exact same set of objects. That is
important so that any record objects selected are compatible to each other.

Working with
appframework.sml

233

Function name Description

lookup() Call this function to look up a value in a database table against a specific
index and if found, to return the record. If no matching record is found, then
the return value is .nul.

modifyrecord() This function is designed to be assigned to both menu items and tool bar
items as the onselect event handler. It expects the application object to be
passed (or the derived application object as long as it is tagged application).
It can also be called directly passing the appwindow object as the first ar-
gument. It will lock and modify the record that is currently displayed in the
form. It will also place the user into data-entry in the first focusable control
on the form.

newrecord() This function is designed to be assigned to both menu items and tool bar
items as the onselect event handler. It expects the application object to be
passed (or the derived application object as long as it is tagged application).
It can also be called directly passing the appwindow object as the first ar-
gument. It will create a new record for the master table of the currently dis-
played form. It will also place the user into data-entry in the first focusable
control on the form.

saverecord() This function is designed to be assigned to both menu items and tool bar
items as the onselect event handler. It expects the application object to be
passed (or the derived application object as long as it is tagged application).
It can also be called directly passing the appwindow object as the first ar-
gument. It will save the record correctly and reset various state flags. It is
important that this function be used for saving the record if the program is
calling either the newrecord() or modifyrecord() functions..

Working with appframework.sml
The framework includes all the basic features that are required to produce a working, distributable,
database-oriented program that just needs a menu, a tool bar (both of which are available in the sam-
ples), plus the code that is specific to that program's functionality (switching forms, calculating field
values, running reports, etc.). It also includes support for both approaches to the user-interface, au-
to-locking and explicit locking. The functions for selecting records are not currently included in the
framework, but are available in the sample programs and work with the framework. All the code for
creating new records, modifying, saving, and deleting them, plus numerous utility functions and the
implementation of the appwindow data type are also part of the library. The appwindow type is also
suitable for building programs that have either only one main window, or applications with multiple
top-level windows.

Some of the more useful utility functions, examples of which can be seen in the Address Book sample
program, are:

• checkneedsave()

• getappwindowfromwindow()

• getmenuitemwindow()

• defer()

• findfirstfocusablecontrol()

• lookup()

• gettableformatstrings()

This next list contains the functions that are used specifically as part of the data-entry process and
which are meant to be directly associated with menu and tool bar items:

Working with
appframework.sml

234

• newrecord()

• duplicaterecord()

• modifyrecord()

• saverecord()

• deleterecord()

The two main data types that are provided by the application framework are the appwindow and
the application. The application type is meant to provide a container for all of the things that might
be needed throughout the application. This includes locale information, default format strings for
data type conversion, the operating system type, a ring of data sources, information about the system
(display size, named system color values, etc.), a placeholder for the window icon bitmap, and the title
of the application. This type is meant to be incorporated in a user program's application type, if the
needs of the user program exceed what is provided in the standard type.

The appwindow type is meant to contain information specific to the window. That includes the tables
that are opened as part of it. It also contains a reference to the application object (or your own applica-
tion object). It stores some state information, such as the current table, the last selected value accord-
ing to the current index, the last value of the internal unique key for identifying records, whether the
window is currently in fast selection mode (either fast forward or rewind), a reference to the physical
window that it wraps, as well as references to the menu bar, tool bar, and status bar objects, for fast
access. It also includes a number of very useful methods, such as findtable(), closeall(),
opendatatable(), and openformdirect().

For full implementation details of these two types, as well as the others that are included, examine the
source code to the application framework library, which is provided as part of the distribution and see
the section called “application” and the section called “appwindow”.

Warning

Do not change the source code to the appframework or the other libraries unless ab-
solutely necessary! They have been carefully designed to work correctly and to permit
extensions to be added using the event mechanism. If you need to make a change to a
library to fix a bug, it is best to report it to Superbase Software Limited via email or on
the forum and have us assess the problem. If you just want use a different function, then
add it to the application or create a library of your own.

In summary, a typical application framework program will initialize the application object, create an
initial appwindow object, and as part of that produce a menu, tool bar, and status bar. At that point,
the program will call the application.run() method and it will remain there until the application is
closed down. While in the run() method, it will respond to events, such as menu and tool bar events,
or form button events. These events may result in new forms being loaded into one standard window,
or it may result in multiple windows being opened, each potentially with its own menu and tool bar.
The design is up to you.

	Superbase NG Programmer's Guide
	Table of Contents
	Chapter 1. Introduction
	Copyright Information
	Disclaimer
	New Versions of this Document
	Software Used

	Part I. Quick Start With SIMPOL
	Chapter 2. Introduction
	Local Variables, Objects, and Values
	Constants
	Function Parameters
	Statements
	Intrinsic Functions
	Operators
	Complex Object Types
	Flow Control
	File Types
	Source Files
	Compiled Files
	Debug Information

	Part II. SIMPOL Language Basics
	Chapter 3. Basic SIMPOL Grammatical Stucture
	End of Statement Characters
	Line Continuation Character
	Line Breaks and White Space
	Comments
	Literals
	Case-sensitivity
	Identifiers
	Reserved Words

	Chapter 4. Data Types, Values, and Ranges
	Blobs
	Booleans
	Integers
	Numbers
	Strings
	Pre-Defined Values
	Functions
	Supplied Types
	A Word About Arrays
	User-Defined Types

	Chapter 5. Operators and Expressions
	Operator Overview
	Assignment Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Object Operators
	Expressions and Statements

	Chapter 6. Statements and Flow Control
	function
	if
	while

	Chapter 7. Variables
	Variable Typing
	Declaring Variables
	Variable and Type Scope and Visibility
	Value Types, Reference Types, and Type Tags
	Variable and Object Persistence

	Chapter 8. Intrinsic Functions
	The Nature of Intrinsic Functions
	Compression Functions
	Conversion Functions
	Numeric Functions
	Selection Functions
	Blob Functions
	String Functions

	Chapter 9. System Functions
	The Nature of System Functions
	The !beginthread() Function
	The !loadmodule() Function
	The !wait() Function

	Chapter 10. User-Defined Functions
	Defining and Calling Functions
	Function Scope
	Function References (Pointers)

	Part III. Web Server Applications — CGI, ISAPI, and FastCGI for Dynamic Web Content
	Chapter 11. SIMPOL Web Server Applications
	Introduction
	How it Works
	Other Features
	Web Server Application Tutorial
	CGI Samples

	Part IV. Using Databases
	Chapter 12. Using Databases in SIMPOL
	Terminology
	Traditional File-Oriented Databases
	Introduction
	SBL Database Commands
	Common Database Programming Problems

	Object-Oriented Database Access in SIMPOL
	Introduction
	Database Type Tags for Generic Database Functionality
	A Comparison of SBL Commands and SIMPOL Methods
	Summary

	Chapter 13. Using PPCS in SIMPOL
	What is PPCS?
	Setting Up a PPCS Server Using Superbase
	Object-Oriented Database Access

	Chapter 14. Using SBME Databases in SIMPOL
	Introduction
	Difference Between SBME and SBF's
	Programming with SBME Databases

	Part V. Calling SIMPOL Functions as DLL Calls
	Chapter 15. Calling SIMPOL Functions as DLL Calls
	Introduction
	Using SMEXEC
	SMEXEC Example Using SBL
	SMEXEC-Compatible Function In SIMPOL

	Part VI. Working with Sockets
	Chapter 16. Client Applications Using TCP/IP
	Introduction
	The tcpsocket Type
	To Block, or not to Block …
	Practical Example — URLDump
	In the Beginning …
	The Main Event

	Chapter 17. Server Applications Using TCP/IP
	Introduction
	The tcpsocketserver Type
	When a Connection Occurs
	Exiting the listen() Method

	Part VII. User-Interface Components
	Chapter 18. Using the wxWidgets Component in SIMPOL
	Windows and Dialogs
	Introduction to Windows and Dialogs
	Creating a Single Window
	Creating Multiple Windows
	Working with Dialogs
	Modal Dialogs
	Non-Modal Dialogs
	Dialogs Using Standard Buttons

	Menu Bars, Menus, and Menu Items
	Forms and Form Controls
	Introduction to Forms
	Creating Simple Forms
	Working with Form Controls
	The Grid Control
	Summary

	Common Dialogs
	Parting Notes

	Chapter 19. Common Dialogs and Other UI Utilities in SIMPOL
	Common Dialogs in SIMPOL
	Message Boxes in SIMPOL

	Part VIII. Converting From SBL
	Chapter 20. Moving from SBL to SIMPOL
	The Basics
	Comparison Between Language Primitives in SIMPOL and SBL
	SBL Commands and Functions and the SIMPOL Equivalents
	Differences Between SIMPOL and SBL
	Tools for Converting SBL to SIMPOL

	Part IX. Supplied SIMPOL-Language Libraries
	Chapter 21. SIMPOL Language Libraries Included
	Introduction
	List of Supplied Libraries

	Part X. Programming Data-Aware Form Programs
	Chapter 22. Overview of Window and Dialog Types Provided with SIMPOL
	wxwindow
	wxdialog
	wxform
	Iterating Through wxform Elements
	When to Use wxform

	dataform1
	Using the Various dataform1 Services

	printform1
	report1
	quickreport1
	graphicreport1
	application
	appwindow

	Chapter 23. Using Data-Aware Forms in SIMPOL
	The Design of dataform1
	Graphical Elements
	Form Controls
	Utility Types

	Iterating Through dataform1 Elements
	Controlling with Events
	Using the Special Features
	The onfill Event
	The Drop List For Edit Controls
	Using a Query to Fill a Detail Block

	Two Approaches to Working with dataform1
	Auto-locking
	Auto-locking

	Making Use of formlib.sml

	Chapter 24. Using Data-Aware Print Forms in SIMPOL
	The Design of printform1
	Working With printform1
	printform1 Summary

	Chapter 25. Using Reports in SIMPOL
	Using the sqlq1 Type Directly
	Using SQL92 in SIMPOL

	Working with report1
	The Design of report1
	The report1 Type
	The report1aggregate Type
	The report1aggregatevalue Type
	The report1group Type
	The report1groupinst Type
	Creating a Report in Source Code
	report1 Summary

	Working with quickreport1
	Enhanced Quick Report Output
	quickreport1 Summarizing Quick Report Output
	quickreport1 Summary

	Working with graphicreport1
	graphicreport1 Summary

	Chapter 26. Using the SIMPOL Application Framework
	The Design of the Application Framework
	Working with appframework.sml

