Superbase NG Programmer's Guide

Getting to Grips with the SIMPOL Language

Neil Robinson

Superbase NG Programmer's Guide: Getting to Grips with the SIM-

POL Language

by Neil Robinson
Copyright © 2001-2017 Superbase Software Limited

All rights reserved. The programs and documentation in this book are not guaranteed to be without defect, nor are they declared to be fit for
any specific purpose other than instruction in the use of the programming language SIMPOL. It is entirely possible (though not probable)
that use of any sample program code in this book could reformat your hard disk, disable your computer forever, fry your dog in a microwave
oven, and even cause a computer virus to infect you by touching the keyboard, though none of these thingsisterribly likely (after all, aimost
anything is possible). It isjust that most things are extremely improbable.

Table of Contents

O g 11 oo 1 o o 1
Copyright TNFOIMELTONcieiie e e e e e e eeees 1
TS = 02T PP 1
New Versions of thisS DOCUMENTciieiiiiiiiii e eees 1
SOFtWAIE USEO ..ot e e et e e e e 1

[. QUICK Start With SIMPOLcoouuiiiiiiiei e et e e e 3
22 111 oo 8o i o o P PP 7

Local Variables, Objects, and ValUeSoviiuiiiiiiiii e 7
L0010 1= 10| £ TP PTP 7
FUNCLION ParaMELErS ...t et e et e e e eens 8
S 2 < 0112 0] PSPPSR 8
INEANSIC FUNCLIONS ...t e e e 9
LO07C 1= 0] £ S P T P R PPTUPT 9
Complex ODJECE TYPES ...vuieeiitie ettt ettt e e era s 9
FIOW CONLIOL ...t e et e e e e e e eees 10
Bl Ty DS ettt e 11

SOUICE FIIES ..t et e e 11

CompPiled FlES ..o 11

Debug INFOrMELIONceeeeee e 12

[1. SIMPOL Language BaSiCSuuuieiiiiiieiiii ettt e et 13

3. Basic SIMPOL GrammatiCal SIUCTUIEcccuuuiiiiiiiieiiiii e 17
End of Statement CharaClersSuuieiiiiiiieeiiii e 17
Line Continuation Chalr@CLErc.uuieiiiiiiee e 17
Line Breaks and White SPaceuveiiiiiiiiiiiii e 17
1001011011 01K J PPN 17
(1 = = | PP PRPTRN 18
CaSE-SENSIIVITY 1oveieieiii et 19
LAENETIEIS e e e 19
RESENVE WOIAS ... et e e e e e 19
4. Data Types, Values, and RENGESuuiiiiiiiieiiiiie ettt 21
BIODS ..t 21
BOOIEANS ... ettt aa e 21
Fp11=o = £ TP 21
N[00 = £ PP 21
SEFTIIGS ettt ettt 22
Pre-Defined VaIUBSoieiieii et 22
[0 Tox 0] PPN 22
SUPPHEA TYPES ettt ettt ettt e s 23
A WO ADOUL ATTAYS ..ttt et e et e e eaa e eees 25
USEr-DEfiNEd TYPES .oovteeiiii ettt e e e eees 26
5. Operators and EXPrESSIONScccuuuieiiiiieeiiiir ettt e et e e e 31
OPEFALON OVEIVIEW ...ttt e ettt e et e et eeeena s 31
ASSIGNMENT OPEFEEOTS ..ceeetieeeeiii ettt ettt ettt e e et e e e eaa e eenans 31
ATITNMELIC OPEIEIOIS ...eeveiieieiii ettt 32
COMPAriSON OPEIBLOISeeeeteeeeeti e et e ettt e et et e e et e e e e e e erea s 32
LOGIiCal OPEIEIOISvueeeeiti ettt e ettt ettt ettt ettt ettt e e e e an e e enaans 33
BitWiSE OPEIEIOISvvueeeeiti ettt ettt ettt ettt ettt ettt e e et e aean e eeaans 33
ODJECE OPEIBLOIS ...t eeeeetie ettt ettt et e et e et e et e e e e e enaa s 34
EXPressions and StaEMENTScouuuiiiiiiie ettt 35
6. Statements and FIOW CONLIOIoouuuiiiiiiiiei e 37
{01 o 1o 1 o PP 37
L TSP PPP PP TPPPPTTSPPPRN 37
W | e 37
T VATADIES . e 39
Variahle TYPING ..o 39

Superbase NG Programmer's Guide

Declaring Variablesoiiiiiiiie e 39
Variable and Type Scope and Visibilitycoooeviiiiiiiii e, 40
Vaue Types, Reference Types, and TYPE TagS ...uuvvvvveiiieiiiieiiieeee e 41
Variable and ObjeCt PErSISIENCEuuiiviiciii e e e e e 42

8. INLINSIC FUNCLIONS ...t e e et e eeaa e e eaanns 45
The Nature of INtrinSIC FUNCHIONSiiiiiiiccii e 45
ComPressioN FUNCLIONSiiiiicii e e e e e e e e e e eaen 45
CONVErSION FUNCHIONS ...iiiiii e e e e et e e et e e e eaae e eeens 45

[N U T o 0 T 1o g PP 46
SElECHION FUNCLIONSuiiiiiiiii e a e e eaees 46

BIOD FUNCLIONS ...t 46

S T g Tox (o o PPN 47

9. SYSLEM FUNCLIONSoitiiiiiecii e e e e e e e e et e et e e e aanas 49
The Nature of System FUNCLONSccvviiiiiiciie e 49
The! begi nthread() FUNCHONc.couiiiiiii e 49
The !l oadnodul () FUNCONooiiiiiii e, 49

The ! wai t () FUNCLON ..o e e 50

10. User-Defined FUNCLIONSiiiiiiiieeiii et e e a e 51
Defining and Calling FUNCLIONSoiiiiiiiiiciie e 51
0T Tor 0 I oo o Y 51
Function References (POINTEIS)uuiiunieiiiieeii e e e e e e e e e e e e e eaen 51

I11. Web Server Applications — CGlI, ISAPI, and FastCGlI for Dynamic Web Content 53
11. SIMPOL Web Server ApPpliCaioNScvvuiiiiiciie e 57
F g1 18 o [o PSPPSRI 57

HOW TE WOTKS . 57

L@ 11 g = 11 (=SSP 58

Web Server Application TULOM@luuieiiiiiiiiicci e e e 59

L0 C IS 11170 =P 65

IV, USING DAIADASES ... iiiieiiii et e e e e e e e e e e e e et e e et e e ean s 67
12. Using Datahases iN SIMPOLcooouiiiiiiiiiieccis e e e 71
1= 0011700 | 71
Traditional File-Oriented DatabaSescoeevvnieiiiiiiieiiiie e 71

F g1 oo (8o [o PSPPSR 71

SBL Database COMMAENASoeevuriieeeiiii e et e et seeeeei e e e et e eeeein e eeenes 71

Common Database Programming Problemsc.cccccooviiiiiiiiiiincceee, 72
Object-Oriented Database AcCess in SIMPOLoooiiiiiiii e 72

F g1 oo (8o [o PSPPSR 72

Database Type Tags for Generic Database Functionalitycc.ccceeeeunnnins 73

A Comparison of SBL Commands and SIMPOL Methodscceeeennnee. 73

ST 0010 0= YT 74

13. USING PPCS N SIMPOL ..ottt et 75
WAL IS PPCS? ..ottt e et e e e 75
Setting Up a PPCS Server Using SUPErbaseoovvvviiiiiiiiiiin e 75
Object-Oriented Database ACCESScvvvuiiiiieeii e e e e 76

14. Using SBME DatabaseS in SIMPOLcc.uiiiiiiiiiiiiiiii e eeni e 81
g1 (8o [T o PSPPSRI 81
Difference Between SBME and SBF'Scoovvviiiiiiiiiiiccin e 81
Programming with SBME Databasescovvuiiiiiiiiiiieciii e e 82

V. Caling SIMPOL Functions as DLL CallSociuiiiiiiiiiiii e, 85
15. Calling SIMPOL Functions as DLL CallScocvviiiiiiiiiieiee e, 89
g1 (8o [T o PSPPSRI 89
USING SMEXEC ...iiioiiiiiii ettt e et e e e e 89
SMEXEC Example USING SBLcccuuiiiiieiiieee e 89
SMEXEC-Compatible Function In SIMPOLccoooiiiiiiiiiii e, 93

V1. WOrKing With SOCKELSc.uuiiiiiiiiie e e e e e e e e 95
16. Client Applications USINg TCP/IPciviiiii e 99
g1 (8o [T o PSPPSRI 99

The tCPSOCKEL TYPE ovrniiii e e e e e e e aan s 99

Superbase NG Programmer's Guide

To BIOcK, Or NOt t0 BIOCK ... voeeeiiiiiiiii e 99
Practical Example — URLDUMPovvniiiiiciec e e e e e 99
INthe BEGINNING ... coovniiii e 100

The Main BVENL ...cooovniieiii e 100

17. Server Applications USING TCP/IPouiiii e 107
[F g1 1070 [0 ot [o o SR SUPPT RPN 107

The tCPSOCKELSEIVEL TYPE .. iviieii et e e e eaes 107
When @ ConNECEION OCCUIScovevtieeiiiiieeeeitir e e e et s e e e eet e e e eete e e e eete e eaeetnnaeaees 107
Exitingthel i sten() Methodcoiiiiii i, 107

VII. User-Interface COMPONENLScvuiieiiieeiie e eee e e e e e e e e e e e e e e e eaaeanaaannas 109
18. Using the wxWidgets Component in SIMPOLcccooeviiiiiiiiiiiieci e, 113
WiINdOWS and DialOgSuoviinieiiieeii e 113
Introduction to Windows and Dialogsccuveiiiieiiiiieiiieee e, 113

Creating a Single WINAOWoovvvniiiiiiciiii e 114

Creating Multiple WIndowsc.ooeiiiiiiiiiiiiec e 114

Working With Dialogs ... ccuueiiniiiiii e e 116

Menu Bars, Menus, and Menu ItemMScc.iviiiiiiiieiiiiii e e 121
FOrms and FOrmM CONIOISuuuieiiiiiieeeei e e e e 123
INtrOdUCEION t0 FOMS ..vuieicii e 123

Creating SIMPIe FOrMSiiiic e e 123

Working with FOrm Controlscccccuiiiiiiiiiiii e 125

The Grid CONntrolcoeeeiei e 129

RSl 00110 Y 131

COMMON DIAIOGS ...uiiiiieiieei e e e e 131
Parting NOESiiiiiiiii e e e e e e e e e e e e 131

19. Common Dialogs and Other Ul Utilitiesin SIMPOLccoooeviiiiiiieciniceeeeenn, 133
Common Dialogs in SIMPOLccuiiiiiiciie e e 133
Message BOXES iN SIMPOLuiiiiiiiii e e e 134
VIHI. Converting From SBLccuuiiiiiciie e e e e e e e 135
20. Moving from SBL t0 SIMPOLuiiiiiiiiii e e 139
THE BASICS .evtieiiiiie ettt 139
Comparison Between Language Primitivesin SIMPOL and SBL 141

SBL Commands and Functions and the SIMPOL Equivalents...............cc.ccovneee. 144
Differences Between SIMPOL and SBLc.coiviiiiiiiiiiiiiieecceec e 158
Tools for Converting SBL t0 SIMPOLccouviiiiiiiiiecie e 158

IX. Supplied SIMPOL-Language Librariesccocvuiiiiiiiiiii i e e 161
21. SIMPOL Language Libraries Includedc.coooieiiiiiiiii e 165
[F g1 [0 ot [o o SR SPPPT PPN 165

List of Supplied Librariescooeuuiiiiiiiciie e e 165

X. Programming Data-Aware FOrm Programsccoeeuueeiiiieiiiieeiiieeise e e e e e e eeaens 173
22. Overview of Window and Dialog Types Provided with SIMPOLccou..ee. 177
WXWINTOW L.ttt e e e et e e e et e e e et n e e e e et e e e e et e e e e et e e e e erenaeeas 177
1T2Co L o 178
WXTOIII ettt e e e e e e e ean s 178
Iterating Through wxform Elementsccooveiiiiiiiiiin e, 179

When t0 USE WXFOIMN ..oovviieiii e e 180

(0= = {0 o PSPPI 180
Using the Various dataform1 SErVICESvevvvieeiiiiiiii e, 182

0T 180 1 0 11 P 184

L1 00 1 o PSPPI 185

(o U0 (= oo f P 186

[0 ="0] 0T Tex = oo g o 187

F=To] o] 1Yo (0] o P 189

=T 0] 0111710 1 N 190

23. Using DatarAware FOrms in SIMPOLcc.ccoiiiiiiiiic e 193
The Design of dataformLiiiiiiiii e e e s 193
Graphical EIementsooiiiiiiiiii e 193

FOM CONEIOIS ... e 193

Superbase NG Programmer's Guide

LT 1A 1Y 1= 194

Iterating Through dataforml Elementscccooviiiiiiiiii e, 195
Controlling With EVENEScoviiiii e 197
Using the Special FEatUIEScoouiiiiii i 197

The onf il 1 BEVENL ..o 197

The Drop List For Edit Controlscccccoiviiiiieiiicii e, 197

Using a Query to Fill aDetail BIOCKcccoviiiiiiiiiiiiein e 198

Two Approaches to Working with dataformlcccoeeiiiiiiiiiiinicce e, 198

F T (o o (] o 198

F T (o o (] o 199
MakingUseof formib.sm ..., 199

24, Using Data-Aware Print FOrmsin SIMPOLcooiiiiiiiiiici e 201
The Design of printformMLcoooiiiiii e 201
Working With printformL ... e 206
PrintfOrML SUMIMEIY ...ccvuiiiiici e e e e e e e e e ean s 207

25. UsiNg REPOIS iN SIMPOLuiiiiiiciii e e e e e 209
Using the sgigql Type DIreCtlyccevniiiiiiie e 209
Using SQLO2 iN SIMPOL ...uuuiiiiiiiiiiiiie e e e e e e e aaenes 209

WOrking With TEPOMLcoveiiii e e e e e e eaaes 210

The Design Of rePOMLccovuiiii e e e e 210

Working With qUICKIEROILuiiiieiii e e 216
Enhanced Quick RepOrt OQULPULoevviieiiiei e, 222
quickreportl Summarizing Quick Report OULPULcocevvvevinieiiieeeie, 223
QUICKIEPOIL SUMMAIY ...vuiiiieiiieeeitieeeeeeee e e et e e et e e et a e e et e e st e eaeneeeaaaees 223

Working With graphiCreportlcouveiiiii e e 223
graphiCreportl SUMMBIYceuueirieeei e e eei e et e e e e et e e e e e et e e et e eaneeaneeaenns 229

26. Using the SIMPOL Application Frameworkcccccuiieiiineiiiieeiineeiineeieeeieeeaen 231
The Design of the Application Frameworkccoveviiiiiiiniiiiie e, 231
Working with appframewor K. Sm ... 233

Vi

List of Tables

12.1. Comparison of SBL file access commands to SIMPOL methodscvveveviieeiinnnnnen. 74
20.1. Comparison of SBL key words to SIMPOL equivalentsoeeeevriiieiiiiiieeeiiiieeeens 141
20.2. Comparison of SBL commands and functions to SIMPOL equivalents..............c............. 144
0 PP PPPPPINN 145
204, et r e e enaas 157
0 PP PPTTRPPPPPINN 157
21.1. Supplied SIMPOL-Language Librariesooooiiiiiiiiiiicc e 165
221, AABFOIMIL ..o e 180
22.2. dataformL MENOOSuneiiiii et 182
G A o 1111 ol 1 0 PSPPSR PPPPTTRN 184
224, TEPOML TYPES ettt ettt ettt ettt 185
22.5. 1€POML FUNCHIONS ...eitteeeeti ettt et e et e et e e e et e e e e et e e e eeba e eeenes 186
22.6. QUICKIEPOIL TYPES . .evueeeiiti ettt ettt ettt ettt ettt et et et e et e e e e e e nae e eenees 186
22.7. qUICKIEPOITL FUNCLIONSeeutieeiiiti ettt ettt et e ettt e e et e e e e et e eeeeta e eeens 187
22.8. graphiCrePOITL TYPES ...uueeeiii ettt ettt e e ettt e e ettt e e et e e e et e e e erb e e e enaaeeees 188
22.9. graphicreportl FUNCLIONSuiiiiiie ettt e et e e 188
22.10. appPliCation PrOPEItiEScieeiii ettt 189
22.11. apPWINCOW PrOPEItIEScceiei et 190
23.1. dataformML driNG TYPES .evuueeeii ettt ettt e 195
25.1. onoutput FUNCEION ProtOLYPESceeeei ettt ettt et eeens 228
26.1. The Functions in the Application Frameworkccoiieiiiiiiieiiiiinec e 231

vii

viii

List of Examples

15.1.
16.1.
16.2.
16.3.
16.4.
16.5.
16.6.
16.7.
16.8.
16.9.
18.1.
18.2.
18.3.
18.4.
18.5.
18.6.
18.7.
18.8.
22.1.
23.1.
23.2.

SBL program calling SIMPOL fUNCHIONcoouuiiiiiiiieeeii e 0
Constants portion of the urlget Programov v 100
Beginning of the mai n() function of the urlget programcccoovvviiiiiiiiiiinneeeennnn. 100
Creating the socket connection in the urlget programccceveveeviieiieinieeeei e, 101
Beginning the TCP/IP conversation in the urlget programccoovvveevineeiiiineeennnnn. 101
Retrieving the header from the web server in the urlget programccccoeviiiiiinnines 102
Checking the response code in the web page header in the urlget program 103
Parsing the web page header in the urlget programccoveveiiiieiiiiin e 103
Retrieving the web page content in the urlget programcccoeveveeiiiieeiiiinneeeeineeeees 104
Returning the results to the user in the urlget programccoviiiiiiiineciiin e, 105
Creating 8 SiNGle WXWINGOWccouuuuiiiiiieteii ettt e e 114
Example of Creating Multiple Top-Level WXWINAOWScc.viieiiiiiiiiiiiiiiecciiieeees 114
A Minimal Modal wxdialog EXampPlec.uuiiiiiiiiii e 116
A MOal WXATBIOG ..ttt 116
A NON-MOdal WXATBIO ... eevvneeeiiii et 117
A Moda wxdialog with Standard BUITONSooeiiiiiiieiiii e 118
A Modal wxdialog with Standard Buttons Using ui syshel p. smlccccooiiiiiinnnnnn. 120
A WXMENU EXAMPIE ...t ettt e e e e eenes 121
Iterating Through FOrm CONtrolSoiiiiiiiiiii e 179
Iterating Through dataform1 dring Propertiescceeveuioieiiiiieiiiiiieeeei e 195
Iterating Through the Controls on Each Page of adataformlccooeviiiiiiiiiinnennnn. 196

Chapter 1. Introduction

Copyright Information

This document is copyrighted (c) 2001-2016 Superbase Software Limited and is not permitted to be
distributed by anyone other than Superbase Software Limited and its licencees.

All trandlations, derivative works, or aggregate works incorporating any of the information in this
document must be cleared with the copyright holder except as provided for under normal copyright
law.

If you have any questions, please contact <i nf o@i npol . conp

Disclaimer

New

No liability for the contents of this document can be accepted. Use the concepts, examples and other
content at your own risk.

All copyrights are held by their by their respective owners, unless specifically noted otherwise. Use
of aterm in this document should not be regarded as affecting the validity of any trademark or service
mark.

Naming of particular products or brands should not be seen as endorsements.

You are strongly recommended to take a backup of your system before a major installation and to
make backups at regular intervals.

Versions of this Document

Newer versions of this document will undoubtedly be released from time to time. It is recommended
that you always ensure that you have the latest version of the documentation. Normally the latest
version will be included with any update of the main product.

Software Used

This book was written using DocBook 5. It wasinitially written and edited in the Superbase NG IDE
and eventually very late in production was switched to the <oXygen/> editor. A single sourcein XML
is used to produce the book in HTML, HTML Help, and in PDF formats.

Part |. Quick Start With SIMPOL

This part of the book isintended to provide the reader with a quick introduction to the SIMPOL |anguage without
getting too bogged down in detail. It should, however, provide a useful and rapid introduction to the language for
anyone who has experience in any other BASIC-oriented or C-oriented programming language.

Table of Contents

P2 g 11 oo 1 Tox o o SR 7
Local Variables, Objects, and ValUESc.viiiiiiiiieii e 7
(000] 01 = | £ T PSP 7
FUNCLION ParamMELErS . .viivii i et e e e e e et e e aees 8
= (= 11| C PP 8
INEFINSIC FUNCHIONS .. vttt et e e e aeeans 9
1007 - 0] £SO PPN 9
ComMPIEX ODJECE TYPES ...veieiitt ettt ettt ettt e e et e ettt e e et e e ee it e e e eereaeeees 9
FIOW CONLIOL ..ot e e e e e e ee e e 10
Bl Ty DS et 11

SOUICE FIlES vt e 11
ComPIled FlES ... 11
Debug INFOMMELIONcceeieeeee e 12

Chapter 2. Introduction

This book provides an introduction and reference guide to programming in SIMPOL, the new Super-
base NG programming language for cross-platform development.

A program in SIMPOL is made up of functions. The normal entry point to a program is the function
caled mai n() . The most basic possible SIMPOL programis:

function nain()
end function

Local Variables, Objects, and Values

Within a program there are local variables, objects and values. Local variables have to be defined
as being of a particular type and can only be used for that type. Every object has a type, which is
determined when the object is created. Values can be of any type that is permitted for aliteral value,
or may be null or infinite.

Consider the following program:

function main()
string s
s = "Hello world"
end function s

The first statement, string s, defines a local variable called s. The second statement, s = " Hello
world", assignsthevalue" Hel | o wor | d" to thelocal variable s. However there is more to the
assignment than it might at first appear. Local variables do not hold values, they refer to objects, and
it isobjectsthat contain values. In the above program the assignment to s of the string literal " Hel | o
wor | d" causes a hew string object to be created, the string literal value is put in the new object and
thelocal variable s is set to refer to that object.

Constants

There are three kinds of constant values in a SIMPOL program, string literals, numeric literals and
intrinsic constants. String literals can be delimited by either single or double quotes, but the ending
delimiter must match the starting delimiter. This allows single and double quotes to be used in strings
without any specia escape sequences, e.g.: "Can' t" or' Fred said "no"'. Numeric literas
can be specified in one of several bases by starting them with aleading zero and then a base indicator
letter, e.g.: 0d100 (decimal), Oxf f (hexadecimal), 00377 (octal) or 0b11001101 (binary). If no
leading zero and base indi cator are found then the number is assumed to be decimal. Intrinsic constants
areidentifiersthat have asingle fixed value. The permitted constantsare. nul (thenull value), . i nf
(infinity), . t r ue (the boolean true value) and . f al se (the boolean false value).

A function can return avalue by specifying that value after the end function that terminates the func-
tion, for example:

function nain()
end function "The end of the progrant

or

function main()

Function Parameters

string s
s = "Hello worl d"
end function s

If no return valueis specified then thereturn value isthe null constant, . nul . A function can be called
from within an expression, and may take parameters in the normal way, for example the following
program will have afinal return value of 15:

function nmain()

i nteger i

i =5

i =i + double(i)
end function i

function doubl e(integer i)
end function i+i

Function Parameters

Function parameters can be named and take a default value. Actua parameters supplied when the
function is called can be specified by name, and if not specified at al will take the default value. When
passing parameters to a function named parameters are resolved and passed first, and then unnamed
actual parameters are passed to the unused function parametersfrom I eft to right. Finally any unpassed
parameters are set to their default values, or if noneis specified unused parameters are set to . nul .

For example, the following program produces aresult valueof: x = abc, y = <y not spec-
ified>

function main()
end function x_and_y(x = 'abc')

function x_and _y(string x = '<x not specified>, stringy =\
"<y not specified>")
end function "x =" + x + ", y=" +y

Also, the next program produces aresult value of: x = xyz, y = <y not specified>,
Z = uvw

function main()
end function x_and_y_and_z(z = 'uvw ,'xyz')

function x_and_y and_z(string x '<x not specified>, string y =\
'<y not specified>, string z '<z not specified>")
end function "x =" + x + ", y=" +y +", z=" + 2

Functions, types and local variables all have names, and parameters can be named. In order to be valid
aname must start with aletter and all other charactersin it must be aletter, adigit or an underscore.

Statements

Within afunction SIMPOL is made up of statements. Typically a statement will occupy asingle line
within the source code, but more than one statement can be placed on one line by separating them
with semi-colons (;) or colons (:). Also it is possible to break a statement into more than one line;
the backslash (\) character is used to indicate that the following line is a continuation of the current
one, but isonly valid if it isthe last non-white-space character on the line.

Intrinsic Functions

Intrinsic Functions

In order to manipulate values SIMPOL provides intrinsic functions. These are functions whose pa-
rameters are unnamed and must all be supplied. The return from an intrinsic function is some other
value, which depends on, and only on, the parameter values. For example the .len() function takes
a single string parameter and returns the number of characters it contains. As another example, the
tostr() function takes two numeric values, the first being a value to be represented as a string and
the second being the base to use, e.g.: .tostr(13,2) returns '1101", or .tostr(123456,10) returns the
string '123456'.

Operators

In addition to intrinsic functions there are operators which work on one or more parameters. Common
examples of these are the addition operator +, the unary negation operator - which converts a value
to its opposite, in some sense depending on the value type, and the comparison operators, ==, < etc,,
which return a boolean value that depends on a comparison between the left and right operands. It
should be noted that operators operate on values, not objects. For example the code:

i nteger i
i nteger |
i =3
o=

does not change the value in the object referred to by i from 3, it takes the value from that object,
negates the value only, and assignsthe result toj .

Complex Object Types

The object types that are also value types, such as string or boolean, exist primarily to hold values of
that type. More complicated types exist either to provide information to the program, or to alow the
program to do something. For example the f sfi | ei nput st r eamtype is used to read data from
afilein afile system (such as on disk or over a network). With the simple value types an object is
created for alocal variable to refer to when an assignment is made to that local variable, asin the
string s;s="Helloworld' example earlier. With non-value typesthisis not the case — it is necessary
to explicitly create these objects, normally using anew() function. The following example creates
an input stream to read from thefilec: \ aut oexec. bat :

function main()
fsfileinputstream f

f =@fsfileinputstream new"c:\autoexec. bat")
end function

The =@operator in thisexampleis an important one which caused thelocal variablef to besetto refer
to the object on the right hand side of the operator. This should be contrasted with the = operator which
instructs the value on the right hand side to be assigned to the object referred to by thelocal variable on
theleft. Asarather pedantic yet instructive exampl e, the following program has aresulting value of 1:

function main()
i nteger i
i nteger |

1
i

i
j

Flow Control

i =3
end function j

whereas the following program produces a result of 3:

function main()
i nteger i
i nt eger j

1
@i

3
unction j

The differenceisthat j =i assignsto the integer object referred to by j the value of the integer object
referred to by i , whereasj =@ i causes bothi and|j to refer to the same integer object, so when a
valueisassigned toi it issetting the value of the object to whichj refers.

The input stream is destroyed (closing the file) when the local variable f is destroyed, at the end of
the function. In the case of an input stream, the parameters that have to be passed to a new function
depend on the type of object being created, in this case only the filename is required.

Object types also have properties, which are either embedded objects of other types or references to
other objects. For example the f sfi | ei nput st r eamtype has a property caled f i | enanme of
type string, which contains the name of the file being read. Extending the previous example slightly
gives aprogram the result of whichisthevalue'c: \ aut oexec. bat "

function main()
fsfileinputstream f

f =@fsfileinputstream new"c:\autoexec. bat")
end function f.filename

Object types can aso have member functions, or methods, which are functions that do something
with or to the object. For example the f sfi | ei nput st r eamtype has a member function called
get st ri ng, whichcanbeusedtoread astring fromtheinput file. Thefollowing program hasareturn
value that is the first line of the ¢c: \ aut oexec. bat file. The exact syntax for member functions
such asget st ri ng istype and function dependent, and can be found in the language reference.

function main()
fsfileinputstream f

f =@fsfileinputstream new "c:\autoexec. bat")
end function f.getstring(.inf,1,.true,.char(13)+. char(10))

Flow Control

There are flow control constructsin SIMPOL that are similar to many other languages. Theif ... else
if ... else... endif construct is straightforward:

if (i == 3)
j =5
else if (i == 4)
j =6
el se

10

File Types

=7
end if

In some cases the .if() intrinsic function provides a better alternative to the if construct. The while ...
end while can have conditional expressions at the beginning or the end, or both. The contained block
will be entered if the initial expression is absent or is considered to have passed. At the end of the
block control will return to thefirst test if the final condition is absent or is considered to have failed.
The end while condition should therefore be thought of as an end while if type of expression. For
exampl e the following kind of loop could be used to processthelinesin an aut oexec. bat file

fsfileinputstream f
string |line
bool ean error

f =@fsfileinputstream new"c:\autoexec. bat")
error = .fal se
whil e (f.endofdata == .fal se)
line = f.getstring(.inf,1,.true,.char(13)+. char(10))
/1
/1 process the line maybe setting error to true
/[l if an error is encountered
/1
end while (error == .true)

File Types

Asis the case with many programming language products, SIMPOL uses a number of different file
types in the course of creating a program. This consists of source files, compiled modules, runnable
programs, debug information and so on. In this section we will look at each of these areas in more
detail.

Source Files

A SIMPOL program starts with one or more source files that are either in some ANSI 8-bit character
encoding or else in Unicode (specifically in the pure 2-bytes per character form, not yet supporting
windowing using aggregates). Unicode files should begin with a byte-order mark (BOM) in the form
of Unicode character FEFF. If the data in the source fileisin big endian (most significant byte first)
order (typica for the Macintosh, Amiga, Atari ST, and other operating systems that are running or
began on computers based on the Motorola CPU's starting with the MC68000) then the BOM must
also be written in the big endian style, as FEFF. If the data is stored in little endian order, then the
BOM must be written as FFFE. If the dataisin Unicode and there is no BOM then the compiler will
try to guess by analyzing the input. Files saved using the SIMPOL IDE will always have the correct
BOM for Unicode files. Non-Unicode files do not have this issue, but have the problem that the 8-
bit encoding of the source may not be interpreted in the same way on another computer or operating
system if any characters above character value 127 are used.

Source files stored in ANSI format are typically stored with the extension sma. Those stored in Uni-
code format are stored with the extension smu. These extensions are not mandatory, but are recom-
mended for interoperability with others and with any tools that may be created that may depend on
the file name extensions. Source files stored by SIMPOL IDE's will always be stored in little-endian
order even on big-endian operating systems.

Compiled Files

A compiled program in SIMPOL typically ends with the extension snp. Another type of compiled
SIMPOL programisamodule. Unlikeaprogram, amoduledoesnot haveamai n() function. Itispre-

11

Debug Information

compiled and can either beloaded at runtime using the system function! | oadnodul ef i | e() orit
can be concatenated onto the end of a compiled SIMPOL program in atype of static linking. Module
filesare normally given the extension sm . The SIMPOL IDE isdesigned to allow for both static and
dynamic linking (whereby the dynamic onking is done by the SIMPOL program when it needsto |oad
amodule, not by someloader). Thisallowsthe greatest amount of flexibility when designing complex
programs using SIMPOL since modules can be written to be reused by other programs and therefore
do not have to be compiled into every single program that uses them. It also allows components to
be compiled only when their source files have changed and means that not every component must be
compiled into one monolithic program. Thiswill result in faster compile times.

Oneimportant issuethat isrelated to storing reusable functionality in separate modulesisthat of scope
and visibility. Unless expressly exported in the source code, user-defined types and functions are not
visible outside of the module. To make them visible, add the expor t keyword to the end of the
function or type declaration as shown below:

type nmytypel(nytype) enbed export
string | D enbed
type(mytype) next

end type

type mytype2(nytype) enbed export
string | D enbed
type(mytype) next
i nt eger index enbed

end type

function getid(type(mtype) t) export
end function t.ID

Debug Information

Debugging information comes in various flavors. In SIMPOL we have reserved the extension snd
for files that store debugging information as part of the compilation process. These files are not yet
in use at the time of writing, but will be used in the future. Another extension that isin use currently
issl g. Thisis afile that is created when an error occurs while running a SIMPOL program using
one of the debug versions of the loader, either the standard |oader file or the CGI version. When an
error occurs, the debug versions of these programs will output afile of the same name as the program
that is executing, but with the file name extension sl g. This file will contain the error message and
error number together with the reconstructed source code of the function with an indicator asto which
line contained the problem.

12

Part Il. SIMPOL Language Basics

In this part of the book the basic language syntax of the SIMPOL language is covered in depth. Thisis not a
book for teaching programming, however, so some experience in another language will be helpful in getting up
to speed with this material quickly. This part is fairly dry and dusty but provides a well-rounded grounding in
the essentials of the language itself. It does not cover the mechanics of compiling and running a program, that

can be found elsewhere.

Table of Contents

3. Basic SIMPOL GrammatiCal SIUCIUIEc.uuuiiiiiiieiiii et 17
End of Statement CharaClersieiiiiiiieiiii e 17
Line Continuation Char@CLEruiiiiiiiie ettt 17
Line Breaks and WHIte SPaCEuuiiiiiiiiiei e 17
10701001001 01 J PP PP 17
LITEIaIS ..ttt 18
CaSE-SENSIIVITY vttt 19
Lo = 0L E L= £ T PP PPPPTPR 19
RESEIVED WOIGS ...ttt eaens 19
4. Data Types, Values, and RANGESuuiiiiiiieeiii et et e e e 21
BlOBS .. 21
BOOIBANS ...ttt 21
Fg11=o = £ PP TPPTPPTTP 21
NUMDENS <.ttt ettt e et e e e e s 21
SEFTIIGS ettt ettt ettt et 22
Pre-DefiNed VAIUES ...ttt 22
FUNCEIONS ...t e e et e et r e e e na s 22
SUPPHEA TYPES ..ttt ettt e et 23
A WO ADOUL ATTAYS ...ttt ettt e et e e et ettt e e e ebe e e eena e eeeens 25
USEr-DEfINED TYPES ..oevnieieiii ettt ettt e et e e et e e et e eeeees 26
5. Operators and EXPrESSIONScccuuuiieiiiiee ittt ettt e e 31
OPEFALON OVEIVIEW ...ttt ettt ettt e e e e et e e e et b e e e e ab e e e eab s 31
ASSIGNMENT OPEIEEOTS ... eeeeieeeeii ettt ettt et ettt et e e ea e e e ena e e ennans 31
ATITNMELIC OPEIEIOIS ..ottt ettt ettt e e et e e et 32
COMPATSON OPEIBLOISeeeeti et ettt e ettt e et e et e et et e e et e e e era s 32
(oo o= @ o= = (o] PRSP PPTTPPPPTR 33
BitWiSE OPEIEIONSvtueiieit ettt ettt ettt ettt ettt et e e e enaans 33
ODJECE OPEIBLOIS ... eeeeeti etttk e ettt ettt e ettt e et e e et e e e e et e e e e et e e e e eba s 34
EXPressions and StALEMENTScouuuueiiiiiee ettt e e et e e et e e et e eee 35
6. Statements and FIOW CONLIOLoouuuiiiiiii e 37
FUNCT T ON ot e et e e 37
L TSP 37
1L - PSSP PUTT TP UUPPPPPPPTI 37
T NVATBDIES .o 39
Variahle TYPING ...ttt 39
Declaring VariablESccoouuiieiei e 39
Variable and Type Scope and VisiDilityoiiiiiiiiiiiiice e 40
Vaue Types, Reference Types, and TYPE TGS . ..ccvvvurieiiiriiieiiii e 41
Variable and ODJECt PErSISIENCEuuiiiiiii ettt 42
8. INLINSIC FUNCHIONS ...ttt ettt eeaan s 45
The Nature of INtriNSIC FUNCLIONSocevtiiiiii e e 45
ComPressioN FUNCHIONScouutiiiiii e 45
CONVEISION FUNCLIONS ...ttt et e et e e e e re e eees 45
NUMENTC FUNCHIONS ...ttt ettt e e e et e e 46
SEECHION FUNCLIONS ...t ettt e eeeans 46
BIOD FUNCLIONS ...t 46
SUNG FUNCLIONS ...ttt et e et e e e 47
9. SYSIEM FUNCLIONSceeeti ettt e et e et eeere s 49
The Nature of SysStem FUNCLIONSuiiiiiie e 49
The ! begi nthread() FUNCHONcoouiiiiii e 49
The !l oadnmodul () FUNCHIONoiiiiii e 49
The TWai t () FUNCHON ..o e 50
10. User-Defined FUNCLIONScooeiiieiiiiie ettt 51
Defining and Calling FUNCLIONSiiiiiieiiii e e 51
FUNCEION SCOPE ...ttt et e e e e e e e 51

15

Function References (Pointers)

16

Chapter 3. Basic SIMPOL
Grammatical Stucture

Every programming language has various characteristics about the way that it is expected to be pre-
sented that can reasonably be termed its grammar. In this chapter we will discuss the points that will
assist you inwriting programsin SIMPOL . Although SIMPOL derivesfrom BASIC in some respects,
like any good language there are a number of elements that differentiate it from other languages that
exist.

BASIC isaline-oriented language, whereas C and Pascal are statement-oriented. SIMPOL is mainly
a statement-oriented language, but similarly to BASIC, it is not necessary to close a string at the end
of aline, it will be done for you if you forget. More significant is that in SIMPOL every program
begins at the mai n() function and ends when it returns from that function. There are no labels nor
isthere any equivaent of the BASIC keywords GOTO and GOSUB. For some programmers a more
significant departure will be the total absence of global variables. In spite of, or perhaps because of
these differences program design in SIMPOL is fast and effective and resultsin very fast and easily
followed and maintained code.

End of Statement Characters

Line

Line

There are several ways to indicate the end of a statement in SIMPOL, using a semi-colon ; , acolon
., and by starting anew line. These can also be mixed in a program, there is no requirement that they
be used consistently.

Continuation Character

One common problem that occursin languages like BASIC and SIMPOL that consider the end of line
to also be the end of statement, isthat it resultsin very long lines in the source programs. One method
of combatting this problem is by use of a line continuation character. A line continuation character
tells the parser or interpreter to continue reading the statement on the next line without ending the
statement. In SIMPOL this character is the backslash (\) character. The line continuation character
even applies within a string literal, aslong as the backslash is the last character on the line other than
white space before the end of lineisreached. The only exception to thisruleisin the case of the double
slash comment, which means the entire line following is a comment.

Breaks and White Space

Line breaks are normally interpreted as end of statement characters unless they are suppressed by the
programmer through the use of a line continuation character. White space characters (spaces, tabs,
and end of line characters) are considered to be token separators similar to other punctuation such as
parentheses and are otherwise ignored except when found within string literals.

Comments

Any string literal that is an L-value (found on the left side or beginning of a statement) is considered
to be a comment. Such comments can even include the backslash character at the end of the line to
allow them to extend across multiple lines. These comments are not considered to be line comments,
but rather statement comments. If the string literal is closed then whatever follows it on the same line
will not be considered a comment.

Another way of commenting isto usethedoubleslash/ / to comment out an entireline. Thiscomment
typeisline based and will also ignore the backslash line continuation character if it is at the end of the
line. There is no method in the language for making block comments.

17

Literals

Literals

Therearevarioustypesof literasin SIMPOL. Boolean literalsareeither. t rue or. f al se. Numeric
literals must be a contiguous sequence of digits or digits and letters in the case of hexadecimal values.
If only digits are encountered then the value is considered to be decimal. There is also support for
other numeric bases. If it starts with:

Ob then the number will be evaluated as binary

0o then the number will be evaluated as octal

0d then the number will be evaluated as decimal

0x then the number will be evaluated as hexadecimal

String literals can be delimited either by a single (') or double (") quote character. Any character
can aso be inserted into a string literal by placing the hexadecimal character value inside of curly
braces. For example, to insert acarriage return and linefeed pair into astring literal it would look like
this: " { OD} { OA} " . To escape the starting curly brace in the string simply include a second one. It is
not always necessary to escape the starting curly brace, only if there is any chance that the following
character could be interpreted as a hexadecimal value.

Toinclude a double quote character in astring the easiest method is to use single quotes to delimit the
string literal. Another method is simply to escape the double quote character with itself. An example
of thisis:

function main()

string foo

foo = '"Don''t you know?'
end function foo

which will return the string: Don' t you know?.

Number literals are currently not supported, nor is scientific notation. To enter a value that has a
fractional component into a number variable, it is necessary to place the value in a string and use the
.toval () intrinsic function to convert it to a value. To enter a value that is normally a repeating
decimal into a number, the special notation for repeating decimals can be used. Thisis also the way
that repeating decimals are converted using the . t ost r () intrinsic function. For example, to enter
the value 1/3 into a number variable, try the following:

function main()

nunber n
n = _.toval ("0.3[3]", .nul, 10)
n=n*3

end function n
The return value of the functionis 1.

The specia values . i nf and . nul are essentially typeless, and can apply to any value type. The
specia value. nul can also mean the absence of an object.

@ Gotcha
These special values may cause some confusion when you begin using them. Any nu-
meric expression, regardless of whether that is string concatenation or multiplication of
integers, that includes the value . nul isequal to . nul . If you are adding strings to-
gether and one of themisequal to. nul , thenthe entireresulting stringisequal to . nul

18

Case-sensitivity

and if that is being output, then nothing will be output. The sameistrueof . i nf unless
the expression also includes .. nul .

O Warning
Constantsin SIMPOL can currently only be of typeinteger, string, or boolean and addi-
tionally integer constants cannot be negative (since thisis considered to be an operation
and at the time that constants are evaluated operations are not supported).

Case-sensitivity

All identifiers: type names, variable names, function names, and the names of symbolic constants are
case-sensitive. All keywords, intrinsic, and system function names are al so case-sensitive. This means
that the variable names: foo, FOO, fOO, Foo, ... are al considered to be different variables.

ldentifiers

Identifiersin SIMPOL are currently composed of the characters a-z, A-Z, the digits 0-9, and the un-
derscore. They arerequired to begin with an alphabetic character. Therestriction to the character range
may be modified in the future although we do not currently foresee supporting right-to-left identifier
names or identifiers written using kanji characters.

Reserved Words

There has been a significant attempt made to keep the number of reserved words in SIMPOL to a
minimum. The following words should be considered to be the current list of reserved words:

* and

« AND

* boolean
* constant
* ese

* embed
* export
* end

* function
o if

* include
¢ information
* integer
* mod

* not

e number

19

Reserved Words

Thislist should not yet be considered complete. Possible additions to the list could include:

or

OR
reference
resolve
string
type
while

XOR

break
case
dim

par

select

switch

where

20

Chapter 4. Data Types, Values, and
Ranges

In this chapter we will discuss the various simple and complex datatypesthat are present in SIMPOL .
We will also discuss the valid value ranges, the special values. nul and. i nf , functions, supplied
complex types, and user-defined types.

To start with, it isimportant to point out that in SIMPOL, everything is an object. Types are objects,
functions are objects, events are objects, and a variable always refers either to an object or to . nul .
The scalar data types are also objects, but they are relatively simple objects. In this chapter we will
cover the SIMPOL scalar data types. blob, boolean, integer, number, and string. We will also cover
some standard included object types: array, date, datetime, and time. Other types will be discussed in
depth in their own chapters, such as file streams, sockets, and databases.

Blobs

Blabs provide the SIMPOL programmer with a very powerful data type and mechanism for dealing
with raw binary data. Blobs are also value types but they have a number of additional methods related
to the waysin which they are most likely to be used.

It is probably easiest to think of blobs as being like a traditional array of bytes and at the same time
to be very similar in the way they work to strings. Blobs can be concatenated using the + operator
and then assigned to a variable of type blob. The new blob will be the combined length of the two
original blobs. It is also possible to create a blob with a pre-determined size. This can be a significant
performance improvement over strings, since it is possible to index into the blob using the square
brackets operators [] and to then modify the value, whereas with a string concatenation would be
used. When done once there is no significant difference but in aloop, concatenation would result in a
large number of less efficient memory allocations that wouldn't have been necessary in a blob.

Booleans

Unlike many programming languages, SIMPOL includes a true Boolean data type and in what is
becoming typically classic SIMPOL style, it can have four distinct values, . t rue, . f al se, . nul ,
and . i nf. An important point to remember when using expressions in statements such as whi | e
andi f isthat unlessthe result of the expression isthe boolean value. t r ue, then it may very likely
be considered to be false.

Integers

The SIMPOL integer data type is capable of containing the whole number values, both positive and
negative plus zero, in an extremely large range. The maximum size of an integer is essentially unlimit-
ed, but isstill somewhat operating system dependent. On virtually all operating systemsit will support
values up to 10 to the 150,000, and on 32-bit or greater operating systems will support valuesto 10
to the 4 billion or so. As can be seen, thereis very little likelyhood that an integer will ever be larger
than can be stored in SIMPOL. What is possible, however, is that an integer might be too large to be
stored on asmall device that has very little memory.

Numbers

The number data type in SIMPOL does not make use of floating point and is therefore not affected
by the typical rounding errors that are found in floating point. The values stored in objects of type
number are compl etely precise. Repeating decimal valuesare stored internally with complete accuracy.
They can also be output in such away as to indicate that they are repeating values and they can be

21

Strings

converted back from strings to numbers with no loss of accuracy. An important point to remember
when working with numbers in SIMPOL is that if you don't want values to have hundreds or even
thousands of significant digits after the decimal point, then it isimperative that you make use of the
. fix() intrinsic function to reduce the value to the precision and scale desired.

@ Note

Currently it is not possible to assign a decima value to a number in the source
code. To assign a decimal value, use a string and the . t oval () function. Al-
so, when a number is output to a string, if it contains a repeating decimal
then that will be output in the following format: <val ue>. <non-repeati ng
portion><portion that repeats>[<portion that repeats>] .For
example, 3. 3333333333333<r epeat i ng>wouldbeoutputas3. 3[3] . Thesame
value can be assigned from a string to anumber using . t oval ().

Strings

Strings in SIMPOL are fairly straightforward except for two significant issues. they are in Unicode
format and they are essentially unlimited in size (limited only by memory). There are numerous in-
trinsic functions and types that are meant to work with strings and other than when leaving or entering
SIMPOL those all work based on the character, not the byte. There are, however, methods that allow
the user to specify one or two bytes per character when both reading and writing.

Pre-Defined Values

There are four pre-defined valuesin SIMPOL, two of which can be applied to to every type, and two
that are specific to the boolean type. Thesevaluesare: . true, . f al se,. nul ,and. i nf. Thefirst
two have been discussed in the section on the boolean type. The latter two can be applied to all value
typesand . nul can be applied to al types, both value and object types. The value . i nf stands for
infinity. It has many similarities to the . nul value and in some cases it is converted to that value
if there is no available value to represent infinity, such asin SQL. The infinity that is represented in
SIMPOL is both positive and negative infinity, but there is no value that represents infinitesimal (1
divided by infinity). In fact, in SIMPOL 1/ .inf isequal to. nul .

It is important to understand how the two specia values, . nul and. i nf are used within SIMPOL
and how their very existence in the language playsarolein how programswritten init may or may not
work as expected. Thefirst of thetwo values, . nul isusedin many placesasareturn valueand also it
isthe default value of avariable that has been created but not yet been initialized with avalue. Having
the concept of a null value in the programming language is quite useful, especially when interacting
with databases where the desire to retain the characteristic of an empty field within a calculation may
be desirable. The null value in SIMPOL follows some fairly clear rules. The value. nul combined
with any other value or valuesresultsin thevalue. nul . If in your program you are suddenly finding
an unexpected null result, then chances are that somewhere a value was uninitialized (or a database
field is empty).

Functions

In SIMPOL functionsare also adatatype. It isperfectly reasonableto create avariable of typefunction
that can then be used as a reference to a function. In fact, in some of the functionality provided with
SIMPOL, such as tcpsocketserver it is necessary to provide a function reference so that the server
knows which function to call when a socket connection is made.

Although that may seem to present considerable complexity, using function referencesistypically not
necessary for programming with SIMPOL, other than when working with events, but the existence
of this capability is one of the facilities that allows advanced programmers to create highly sophisti-
cated programs. By using function references, it is possible to assign a display function to a function

22

Supplied Types

reference based on the type of the data that is to be displayed, and then just call the display function
using the function reference. This makes for very clear and easy to read program code and moves the
functionality of how to display a given data type out of the main program and into a function where
it can also be reused.

Supplied Types

This section will be a continual work in progress, since the supplied typeswill be continually growing
with time. There aretwo kinds of types: value types and object types. Vauetypes are those previously
listed and which are typically also known as scalar typesin other languages. The following value types
are included:

* blob

 boolean

* integer

* number

e string

These types have been discussed in earlier sections, so they won't be covered again here.

There are a number of different classes of object types. The list below isin no way exhaustive. See
the SIMPOL Language Reference Manual for afull list of the available types.

» anyvaue

 array

» cgical

» date

 datetime

o event

« fsfileinputstream

« fsfileoutputstream

+ lockl

* ppcstypel

* ppcstypelfield

* ppcstypelfile

* ppcstypelindex

* ppcstypelrecord

* ppcstypelserver

* ppcstypelserverfield
* ppcstypelserversbme

e ppcstypelservertable

23

Supplied Types

* ppcstypelserverudpport

* rgb

* sbmel

+ sbmelfield

» sbmelfile

» sbmelindex

» sbmelnewfield

» sbmelnewfile

* sbmelnewindex

 sbmelrecord

* tcpsocket

* tcpsocketserver

+ time

» UTOSdirectory

» UTOSdirectoryentry

o wxform

+ wxformbutton

» wxformcheckbox

» wxformcombo

+ wxformedittext

o wxformlist

» wxformoption

» wxformtext

* wxwindow

Object types are more complex than value types and normally must be initalized with the new()
function and the return value must be assigned using the =@operator. The reason for thisis efficiency.
It would be terribly inefficient to completely initialize a large complex object every time a variable
is created if the programmer only intends to use the variable to refer to an existing object. Think of a
variable representing awindow. That is quite alot of processing and resource overhead if the window
must be created as soon as the variable is created and then the window would be thrown away as soon
as the variable is assigned to a different pre-existing window object. Also, some objects are created
only by virtue of the existence of another object, so they cannot be created using anew() method.
Such an object is the ppcstypelfield, which can't exist without a ppcstypelfile.

The @ operator and the =@operator are the equivalent of the SET command in SBL and the Set
command in Visual Basic. It isalso important to be able to test for the existence of an object. In SBL
thel S() function combined with the NOTHI NGkeyword isthe method used: IF 1S (w, NOTHING)

24

A Word About Arrays

THEN. In SIMPOL the same test would look like this: if w =@= .nul. Each of the object types listed
above isdescribed in detail in the "SIMPOL Language Reference”.

A Word About Arrays

Arraysaretypically found in most programming languages, but the version that is present in SIMPOL
can be considered to be a superset of the functionality provided in most implementations. The first
significant differenceisthat array isatype of itsown. Also, most languages require that arrays be pre-
specified to be of a specific size and type. Many automatically start at index 0, others allow a base
index to be specified. In SIMPOL the array typeis very flexible, although this also comes at a price.

Firstly, arrays are not required to be made up of only one type. It is perfectly acceptable to assign
different data typesto different elements of the array. This may not be aclever thingto doin all cases,
but it is possible. Another interesting feature of the array typeis that at each level of the array it is
possible to have elements present. That means that it is possible to create a multidimensional array
that looks like this:

array a, b
datetinme dt

dt =@datetine. new)
dt. set now()

a =@array. newm)
b =@array. new()

a[] = "Week Info"

a[1] = 10

a[1, 0] = "Monday"
a[1,1] =@dt

a[2] = 20

a[2,0] = "Tuesday"
a[2,1] =@dt

b["array a"] =@a
a =@ . nul

In the preceding example the majority of the capabilities of the array can be observed. Arrays can be
indexed numerically or viastrings or both. They can have values at every level of amultidimensional
array, not just at the lowest level. Even the null element a[] can have a value or an object assigned
toit. Any element can contain avalue or areference to an object. In the example above, thearray b in
elementb["array a"] still contains areference to the array object that was originally referenced
by the variable a even after that variable has been set to . nul . Aslong as a reference to the object
exists, the object itself still exists, and all elements that are associated with it.

As can be seen from the preceding example, it is possible to build quite complex arrays. Arrays can
also be used in some cases in place of user-defined types. It is, of course, possible to create an array
of user-defined type. The approach taken is left to the programmer, but it is strongly recommended
that a consistent use is made of the array, since if they are used with varying data typesit is entirely
possible that an incorrect assignment may occur causing a type mismatch runtime error.

@ Note
It isimportant to realize that to detect if an array element is empty (asin not assigned),
it isonly necessary to test the value of the element in question. Itisnot an error to assign
from an unassigned element. The value of any unassigned element is. nul . To get rid
of an array element, it is necessary to set the element to . nul .

25

User-Defined Types

User-Defined Types

User-defined types are a significant advantage for any serious programmer, and can even be useful to
less experienced programmers. At their simplest, user-defined types may consist of little more than a
combination of value types that can be used together as a single unit. A perfect example of this might
be a structure containing locale information. This type of structure would need to be passed to any
function that is going to format a number, a date, or a time for presentation to the user and also to
convert such data from the string representation provided by the user to an appropriate value or object
type in the program. Here is what such a structure might look like:

type tLocal el nfo
string sDeci mal Sep enbed
string sThousandsSep enbed
string sListSep enbed

As can be seen from this example, it would be quite a bit more convenient passing around a single
piece of information that contains all of the things that are important with respect to the locale than
to have to pass each of these pieces of information around separately and to address them and store
them separately as well. The example shown isavery simplistic implementation and does not include
information about formatting dates or times, since these are also considerably more complicated than
mere numeric formatting.

Type definitions must be located outside of any function, but they do not need to precede the function.
Thetype definitions could be located in an include file and just be added on to the end of the program.
Below is a gradual introduction to using user-defined types. Follow it through step-by-step and it
should be failry clear at the end. The examples that include functions can even be tried out.

type nytype
string ml
end type

In the type mytype, the string parameter contains a reference to a string object, it does not contain
an actual string object.

type nytypel
string mlL enbed
end type
The mytypel type contains an actual string object, not a reference.

To use the two types above see the following code:

function main()

mytype m
string s

m =@ nytype. new)

s = "hell 0"
mml =@ s
s = "foo"

end function m ml

Thiswill return foo, sincem il contains areferenceto s.

26

User-Defined Types

function main()
mytypel m

m =@ nyt ypel. new()
mnl = "hel |l o"
end function mnml

Thiswill return hello, since m ml is an embedded string.

functi on main()
mytype m

m =@ nyt ype. new()
mnl = "hel | o"
end function mnl

Thiswill result in an error, since hel | o is not an object, it is avalue and this type can only hold a
reference to an object.

type mytype2
nytype mml enbed
nmytype mmeg

end type

function main()

nmytype2 m
string s

m =@ nyt ype2. new()
s = "hell o"
m mil =@ nmyt ype. new()
mmil. m =@s
end function m nml. mL

Thiswill result in an error 52, since the type mytype has not been defined as embeddable. The error
not embeddable will be generated.

type nmytype enbed
string ml
end type

type mytype2
nytype mml enbed
nmytype mmeg

end type

function main()

mytype2 m
string s

m =@ nyt ype2. new()
s = "hel |l 0"

mmil. M =@ s
end function m mml. mL

The above should now work as expected.

27

User-Defined Types

type nytype enbed
string mL enbed
end type

type mytype2
enbed
mytype mi
mytype mmg
end type

function main()
mytype2 m

m =@ nyt ype2. new()

m mil. ml "hel | 0"

m m?2. ml m nil. ml

m mm2. ml dstr(mmR2. m, 2)
end function m mml. n2

This should also work and produce an output of he.

type nytype
string ml
nytype next
end type

function main()
string s
nytype m nfirst

s = "hell 0"

m =@ nyt ype. new()
nfirst =@m

next =@ nytype. new()
=@ m next

next =@ nytype. new()
=@ m next

next =@ nytype. new()
=@ m next

next =@ nytype. new()
=@ m next

m =@s

=@nfirst

nfirst =@ . nul

=333 33333 =2

end functi on m next. next.next.next. ml

Thisis an example of asingly-linked list which should return hello. The ability to include references
to the same type as that being defined makes it possible to create complex data structuresin memory,
such aslists and trees.

A final note about embedded objects. Some objects cannot be embedded, such as fsfileinputstream
or fsfileoutputstream or any of the ppcstypel objects, mainly because they cannot be initialized by
calling their new function. However, references to any object type can be part of atype definition.

The previous types consisted only of values and references to values but did not include methods.
A more powerful kind of user-defined type is one that includes methods. Any user-defined type can

28

User-Defined Types

also have auser-defined new() method that allows the programmer to do initialization of the newly
created object when it is created. To create the methods, the functions must be defined in the same
modul e (compilation object) asthat where the typeis defined and they must follow the type definition
in the code file. It is defined by using the type name followed by the dot operator followed by the
function name. Thefirst argument to the function must be the typeitself and in the case of thenew()
method it must return the object of the type that was passed in, otherwise the assignment to the variable
will fail. See the example that follows:

type tCustlnfo export
string sCustlD enbed
string sFirstname enbed
string sLastnane enbed
dateti ne dt Created enbed
string sCreatedBy enbed
function copy

end type

function tCustlnfo.new(tCustinfo ne, string sCreatedBy)
nme. dt Cr eat ed. set now()
ne. sCreat edBy = sCreat edBy

end function me

function tCustlnfo.copy(tCustlnfo ne)
t Cust | nfo copy

copy =@t Cust | nfo. new ne. sCr eat edBy)
copy.sCustID = nme.sCust| D
copy. sFi rstnanme = ne. sFi r st nane
copy. sLast nane nme. sLast nane
copy. dt Creat ed nme. dt Cr eat ed

end function copy

The preceding example shows a user-defined type that implements anew() method and acopy()
method. The copy() method is implemented so that it produces an exact copy rather than a copy
with apotentially new creator 1D and new creation datetime. Typically such typeswill be defined and
implemented in a single code file and then compiled as a SIMPOL pre-compiled module file that can
be added to a project either at compilation or at runtime. That is the purpose of the export keyword in
the type definition, to ensure that the type is visible outside the module. The functions do not require
the export keyword since they are made available within the type.

If the new() method is listed inside the type definition then it can be called again to reinitialize the
type. It isnot necessary to list it, however, unlessit should be possible to call at some point other than
during the initial call to create the object.

Another important issue is the proper use of the keywords enbed, r ef er ence, and r esol ve.
By default, properties added to a type definition are references to items of a specified type (or any
typeusingt ype(*), any value type by using t ype(=) , or any matching tagged type when using
t ype(<t agnane>)). To make a property embedded, the enbed keyword can be added to the end
of the statement. To switch the default from by reference to embedded, the embed keyword can be
placed inside the type definition on aline of its own. To switch back, placether ef er ence keyword
on alineby itself. These switches only apply within atype definition. The change of the default resets
to "by reference" after exiting a type definition. The r esol ve keyword is used for a very special
situation. Normally propertiesthat are not embedded are not examined when trying to resolve the name
of a property or method, but if ther esol ve keyword is added to the end of the property definition,
then at runtime that property will be included when searching for a property or method that is not
listed at the first level of the type definition. Let's look at a small example of this:

29

User-Defined Types

type nmyform
forml f

string sFormane enbed
end type

type nmyapplication
nyform nf resol ve
enbed
string sUsernane
datetine dtStart
end type

function main()
nyappl i cati on app

app =@ nyappl i cation. new()
#
app. addcontrol (..
#
end function

Normally it would not be possible to call a method of the form1 object without directly referencing
the f, but the use of the r esol ve keyword alows this. However, if the forml object has not yet
been initialized thiswill result in aruntime error number 21, "Object not found". Using ther esol ve
keyword can help in creating powerful and easy-to-use types, but it is important that the types are
designed in such away as to minimize the likelyhood that those portions marked withr esol ve will
cause an error because they are uninitialized. That might mean that the type's new() method takes

parameters that allow the correct initialization.

30

Chapter 5. Operators and
Expressions

Operator Overview

Most of the operators used in SIMPOL should look familiar to anyone who may have programmed
in BASIC, C, C++, Java, or any of a number of programming languages. Some of the operators are
specific to SIMPOL and need to be looked at more closdly, in part because the very existence of
these operators is a guide to effectively using and also to understanding the language itself. Just as
it is essentialy impossible to learn a human language without |earning something of the culture that
both formed and is formed by the language, a programming language embodies a specific approach
to solving problems that may suit some people but not necessarily everyone, or it may embody an
approach to a certain class of problem that is not as well addressed by other tools. The approach that
is used in the language will then dictate the types of semantic devices that are necessary to support
the creation of effective programs using the language.

The operators (and operations) in alanguage can be divided into a number of categories: assignment,
arithmetic, comparison, logical, and object operators. Each of these will be discussed in detail in the
sections that follow.

Assignment Operators

The standard assignment operator in SIMPOL isthe equals symbol (=). This operator isused to assign
avalue to an object that is a value type. In other words, to assign a value to an integer, a number, a
string, or a boolean object. Thisis equivalent to the use of the equals symbol in C and C++ and the
assignment operator in Pascal and Delphi (: =). Unlike in most BASIC-derived languages, including
the existing Superbase Basic Language (SBL) and Microsoft's Visual Basic, the equals symbol is not
allowed to be used for both assignment and comparison. It is strictly used for assignment. See the
section on comparison operators for more information.

Aswasdiscussed earlier in the chapter on datatypes, SIMPOL hastwo primary datatypes, valuetypes
and object types. For the value types the equals operator is used, since it is merely assigning a value
to avariable. In the case of the object types, there is lot more going on, and it isimportant to realize
that instead of a value being assigned to a variable, areference to an object is being assigned to that
variable. In SBL and Visual Basic, thisistypically done using the SET keyword, asin:

DIMf AS Form

DI M c AS For mContr ol

SET f For ns. Add(" MyFor ni")

SET ¢ f.Control s. Add("tb1", "TextBox")

Rather than using akeyword, in SIMPOL there are two operators that can be used to make the assign-
ment, either @ or =@ The example above converted into SIMPOL might look like this:

wxf orm f

t ype(wxfornctontrol) c

f =@wxformnew...)

c =@f.addcontrol (wxfornmedittext, ...)

Thisexampleisloosely based upon the current wxWidgets components and their data types. It would
not actually work in SIMPOL asiit is written unless the method calls were filled out with all of the
relevant parameters.

31

Arithmetic Operators

Arithmetic Operators

The usual set of arithmetic operators are also included in SIMPOL, such as: addition +, subtraction
-, multiplication *, division / , modulus nod, and negation (unary minus) - . They are used in the
usual way, but have a few interesting points when applied to the string data type. For details see the
appendix. Just to provide a few examples, however, if a string is multiplied by an integer then the
result is the integer's value copies of the string. Subtracting a string from another string results in a
string that has had all of the substrings removed that match the argument that was being subtracted.

Comparison Operators

The list of comparison operators consists of symbols that should be familiar to most programmers,
regardless of whether they are C or BASIC oriented. The operators currently supported are:

» Equal to (==

« Greater than or equal to (>=)
« Lessthan or equal (<=)

« Not equal to (! = and <>)

¢ Greater than (>)

¢ Lessthan (<)

The == symbol, although familiar to Java, C, and C++ programmersis a bit of a new experience for
BASIC programmers. Consider this symbol to be merely an unambiguous method of separating as-
signment from comparison. There are also two different symbolsfor not equal to, one used commonly
in Java, C, and C++ and one found commonly in BASIC-oriented languages.

The set of operators in the previous paragraph are meant to be used with value types. For comparing
object types, thereis adifferent, more limited set of operators. Thisis mainly because object types are
more complicated and must be compared in different ways and also because object types can have a
value associated with them. Asan exampl e, date types where the value of the object isan integer equal
to the total number of days in the date since Jauary 1, 0001. This feature of the language required a
different set of operatorsto be established for the comparison of object types, again to be unambiguous.
These operators are listed below:

» Refersto the same object (=@)
» Doesnot refer to the same object (! @ and <@)

In some languages, such asin SBL, there is afunction to perform the comparison of two object vari-
ables. In SBL thisis done with the | S() function. In keeping with the decision to try and limit the
number of keywords in the language, it was decided to use operators for this purpose rather than add
keywords. It isimportant to understand the difference between these operators and the ones used for
comparing values. Look at the following example:

function main()
string sl1, s2, sResult

sl = "foo"
s2 = "foo"
if sl == s2
sResult = "They are equal in value"
el se
sResult = "They are not equal in val ue"

32

Logical Operators

end if
if sl =@ s2

SResult = sResult + " and they refer to the same object.™
el se

SResult = sResult + " and they refer to different objects.”
end if

end function sResult

When this program isrun it will output asitsresult, They are equal in value and they
refer to different objects. Itisaso possibleto haveastring variable refer to the same
object as another string variable. In that case, any change to the value of the first variable will also
changethevaluefor the second sincethey both refer to the same object. See the example shown below:

function main()
string s1, s2, sResult

sl = "foo"
s2 =@s1
sl = "foobar"
if s1 == s2
sResult = "They are equal in value"
el se
sResult = "They are not equal in val ue"
end if
if s1 =@ s2
SResult = sResult + " and they refer to the sane object."
el se
SResult = sResult + " and they refer to different objects."
end if

end function sResult

When this program is run it will result in the output, They are equal in val ue and they
refer to the sane object.

Logical Operators

The set of logical operators comprises the and, or, and not operators and in this case, they are
all keywords rather than symboals. It is important to understand that these operators are only logical
operators, they are not bit-field operators! The return value of any logical operation will be one of
either . true,.fal se,.nul,or.inf.

Bitwise Operators

The set of bitwise operators comprises the AND, OR, and XOR operators and in this case, they are all
keywordsrather than symbols. It isimportant to understand that these operators are bit-field operators,
they are not logical operators! For details of the operators and their values see the "Bitwise Operators”
section in the "SIMPOL Language Reference”.

O Warning
The bitwise operators and the logical operators should not be mistaken for each other!
They can have very different results from what is expected if used in the wrong way.
Remember, SIMPOL is a case-sensitive language.

33

Object Operators

Object Operators

Object operators are represented by the property operator also known as the dot operator (.) and the
member operator also known as the shriek, bang, or exclamation point operator (!). The property
operator is used to access the properties and methods of an object. Thisissimilar to theway it is used
in numerous other languages. The member operator is used to access member information in arelated
member of the object in away that is specific to the datatype in use, athough it is similar to accessing
amember of acollection in other languages. The best way to illustrate the use of the member operator
iswith afew examples:

function main()
i nteger i Errnum
ppcstypel ppcs
ppcstypelfile f
ppcstypelfiel d sfl dLast nane
ppcst ypelrecord r
bool ean bFound
string sResult

/[l Initialize iErrnumso that it refers to an object rather than
/1 to .nul
i Errnum= 0
/1 Initialize ppcs to use a port and act as a user called test
ppcs =@ ppcst ypel. new(udpport=1289, error=i Errnum \
user nane="test")
/1 If the initialization succeeded ...
if ppcs '@ .nul
/1l Open the file CUSTS at www. super base. co. uk on port 1280
f =@ ppcs. openudpfil e(" ww. super base. co. uk: 1280", "CUSTS", \
error =i Errnun

/1 1If the file opened successfully ...

if f '@ .nul
/!l Retrieve a reference to the field in the CUSTS file whose
/1 nanme is Lastnane. Please note that if there is no field
/1 called Lastnane this will result in an untrappable error.
/1 1If there is any concern that a field may not be present,
/1 it would be better to use the function getfield() from
/1 the dblutil.sm library file since that will return .nul
/1 rather than causing an error. This reference in both
/! cases is case-sensitive. If the field contains any
/] characters that are not valid in an identifier then it
/1 should be placed in doubl e-quotes. Variabl e references
/1 are not permtted as the argunent follow ng the nenber
/1 operator.
sfl dLast nane =@ f! Last name

/1 Initialize the bFound variable to refer to an object
/1 instead of . nul
bFound = .fal se

/1 Assign the results of the | ookup of the value Smth in

/1 the Lastnane index to the r variable. Since we passed the
/1 error and found objects in the function will return the
/1 nearest record even in the case of an inexact match.

r =@ sfl dLast nane. i ndex. sel ectkey("Smth", error=i Errnum \

34

Expressions and Statements

f ound=bFound)

[/l Test that the r variable points to an object (if the file
/1 were enpty it would return a .nul object
if r '@ .nul
/1 Assign the value contained in the ppcstypelrecord
/1 object referred to by r that is referenced by the
/1 Lastname field of the file object. This can al so be
/1 done by using the get() nethod of the record object.
[/l Again, if there is no field called Lastnane (case-
/1 sensitive) in the file then this assignnent will result
/1 in an untrappable runtine error.
SResult = r!"Lastnane"
end if
end if
end if
end function sResult

As can be seen from the exampl e above, there are different operations taking place when the member
operator is used depending upon the type with which it is used. In the first case, the argument to
the member operator is used to lookup a field name in the ring of fields and to return a reference
to a field object which must be assigned using the @- operator. In the second case, a much more
complex operation is taking place. The argument to the member operator is being used to lookup a
field reference in the file object reference that is part of the record object and that is then used as an
argument to the get () method of the record object.

In every case, the member object isused to provide atype of shorthand that resultsin alogical assign-
ment of what otherwise might be a number of programmatic steps. As was stated in the remarks in
the example, any error will result in an untrappable runtime error that will halt the program. Also, the
overhead for using this approach is normally higher than using the more mundane approach and in
some cases may need optimization using the alternative method if the section of codeistoo slow. That
is because this requires a lookup each time rather than doing the lookup once and storing the result,
so in aloop the cost of doing the lookup over and over again can make itself felt.

Expressions and Statements

Expressions are the building blocks of a program. Variables and operators are combined together to
produce aresult. An expression can be extremely simple or exceedingly complex. Simple expressions
consist of two variables, a variable and a constant, or two constants that are added, subtracted, etc.
that produce avalue. Below are some examples of expressions.

* +

X +y
3 X
s + "hello"

(3-2)/((x +y) *9)

A statement is made up of one or more expressions and accomplishes something. It is considered
to be a complete unit of grammar within a programming language and must be ended with an end-
of-statement character. In SIMPOL the end-of-statement character can be the end of the line, the
semi-colon (;), or the colon (:). As can be seen from the expressions in the example above, there is
no result that occurs, regardless of how complex the expression is, since in no case is the expression
being assigned to something or the result of the expression being used in some way.

Statements comein anumber of varieties: assignment statements, if statements, while statements, and
function calls. The number and variety of statementsin a programming language is directly related to
the number of keywords to be found in that language. In SBL thereis very large number of keywords
and athusaproportionally large number of different statements. MENU-, ADD FORM, ADD DI ALCG,

35

Expressions and Statements

and SET-statements and numerous others, often with cryptic parametersin varying combinations. The
level of complexity in learning alanguage is directly proportional to this. In SIMPOL thereisavery
small set of keywords and therefore asimilarly small set of statements. Complexity isadded by adding
objects, but even there, agreat deal of attention has been paid to ensuring that the objects are extremely
consistent in their design and have methods and propertiesin common wherever it would make sense
to do so. Below are some examples of statements:

Z =X +Yy

f.amunt = 3 * x

if s + "hello" == "othello"
while (3 - 2)/((x +y) *9) >0
foo(z2)

In each of the statements in the example above, the expression is being either assigned, evaluated, or
isacall to another function.

36

Chapter 6. Statements and Flow
Control

At the end of the previous section, we discussed expressions and statements. In this section we will
go into how statements are used to build functions and how functions make up a program.

functi on

whi |

The function is the basis for every program in SIMPOL. The simplest program consists of a single
function called mai n. When the mai n function is exited, the program also ends. A function begins
with afunction statement. The function statement consists of the function keyword, followed by the
name of the function which must be avalid identifier, followed by the I eft parethesis, followed by zero
or more parametersintheformatt ype i denti fi er white spacepar anet er namne optionally
followed by an equals sign and a default value for the parameter. Multiple parameters are separated
by commas. The parameters are then followed by a closing right parenthesis. If the function is part
of alibrary and should be exported, then the expor t keyword follows the closing parenthesis. The
complete syntax diagram can be seen below:

function functionname ([t ypename parameter [=val ue]] [, typename parameter
[=value]] [, .]) [export]

@ Tip
One point worth noting isthat in thefunction declaration thereisno indication of whether
or not there is areturn value, nor if there is one any information about its type. That is
mainly because the return value follows the end function statement and the type may
not be known when the function is written or even when it is compiled.

Thei f statement in SIMPOL is similar to that in most languages. There are some differences with
the | F statement from SBL, specifically that there is no THEN component and also no concept of a
one-line | F statement that does not require an END | F statement. In SIMPOL every i f statement
requiresamatching end i f statement. Otherwisethei f statement is equivalent to that in SBL and
in other BASIC-derived languages. Thereisasoanel se i f statement and an el se statement as
optional partsof thei f statement. The syntax diagram follows:

i f <expression> ;|:jnewline <statement> ;|:|newline [el se i f <expression> ;|:|newline <state-
ment> ;|:|newling] [el se <expression> ;|:|newline <statement> ;|:[newline] end i f

Only oneel se statement can exist and it must be last, but multipleel se i f statementsare allowed.

e

Thewhi | e statement isavery useful construction and isthe primary tool for creating loops. It isvery
flexible since it can have a start condition, an end condition, or both start and end conditions. There
is no method of breaking out of awhi | e loop. In keeping with the basic design of SIMPOL, there
is one entrance and one exit to the whi | e loop.

@ Tip
SIMPOL doesn't have af or ... next loop nor doesit havearepeat ... until
loop. Instead thewhi | e ...end whi | e loopisused for these cases. Thef or loopisa

37

whil e

subset of awhi | e loop in that it automatically increments the loop variable a specified
amount. Sincethisisjust aspecial caseof awhi | e loop, it was not added. In acompiled
language thereisno advantage, evenif af or loop wereto have been provided, it would
have compiled to the same code asawhi | e loop. Asfor ther epeat ...until loop
(or thedo ... whi | e loop) that is equivalent to using the SIMPOL whi | e with no
starting condition and with an ending condition.

The basic whi | e loop looks like this:

i nteger err, i

/[l Basic while loop (simlar also to for...next |oop), no ending
/1 condition

i =10
while i >0
i =i -1
end while
/!l Repeat...until style |loop, no starting condition
i =10
whil e
i =i -1
end while i ==

/1 Both conditions in use, the starting condition tests the | oop
/1 variable and the ending condition tests the error return val ue

i =10
err =0
while i >0
err = testfunc(i)

i =i -1
end while err ==

The preceding example shows three different uses of thewhi | e loop. Animportant point to consider
is that the ending condition following the end whi | e keywords should be read as "end the while
loop if the condition istrue”.

@ Tip
Please note that the condition must evaluate to either . t rue or . f al se.

38

Chapter 7. Variables

Variables are placeholders that are used in a program in order to provide a method of accessing the
objectsthat are acted upon by the program. They arereally like the gluethat holds everything together.
In this chapter we will discuss how variables are used in a SIMPOL program. We will discuss the
various types, how to create them, their visibility within the program, how some variables can hold
more than one type of object, and how variables affect the objects they represent.

Variable Typing

SIMPOL iswhat isknown as astrongly typed language. By thisisgenerally meant that it is considered
an error to assign an object or value of one type to a variable of another type. As an example, if |
have one variable that is declared to be of type i nt eger it isan error to assign a variable of type
nunber tothat variable. It will result in atype mismatch error. Thisis oneway that the programming
language protects the programmer from making an error that might otherwise be very hard to find. If
instead of generating an error, the programming language automatically converted the variable of type
nunber to aninteger value, truncating or rounding the non-integer portion of the value, it would be
very difficult to track down, especially in alarge program since the problem may only appear to be
intermittent (it would only occur when the value in the variable of type nunber was not an integer
value).

That is all well and good, but there are some situations where it is absolutely essential to be able to
handle more than one type using only one variable. As an example, consider the situation where you
may wish to process all of the controls on aform. Each form control hasits own type. If it is possible
to declare avariable to be of type For nCont r ol and if that type is designed to represent any form
control, then it would then be possible to use asingle variable to contain a reference to any control on
theform, without causing an error. In SIMPOL by using thet ype property of the object it would then
be possible to detect which type the variable currently contains and to perform appropriate operations
onthat object. Later inthischapter this capability, also known as polymorphism, isdiscussed in greater
detail.

Declaring Variables

Variablesin SIMPOL must be declared before they can be used. They also do not carry any sort of type
designator, asis common in various dialects of BASIC, such as adollar sign for strings or a percent
symbol for integers. Currently there is only one method available for declaring variables. A program
statement must begin with the type designator and befollowed directly thereafter by the variable name.

function main()
string s
s = 'foobar'
end function s

In the preceding example the variable s isdeclared to be of type st r i ng beforethe text valuef oo-
bar isassignedtoit. One of the more interesting things that this syntax allowsisto declare avariable
to be of atype that may be unknown to the programmer at the time that the program is written. This
can occur when a database field is passed to a function and a variable must be declared to be of the
same type as the contents of the field. The example that follows demonstrates this:

function di spl ay(ppcstypelrecord r, ppcstypelfield fld)
string s
fld.datatype tenp

if tenp.type == string

39

Variable and Type
Scope and Visihility

s =r.get(fld)

else if tenp.type == integer
s = .tostr(r.get(fld), 10)
end if

end function s

In thisexample the variablet enp isdeclared to be of the same type as the datatype of the field. Each
time the function is called it may be passed a field with a different content type. Similarly, afunction
could return a different value each time it is called, if the return value is dependent on one of the
parameters passed and the return value is declared by using the datatype of one of the parameters that
is passed into the function.

Although these capabilities can provide considerabl e flexibility and power when designing programs,
it isalso possible in even a medium sized program to lose track of the type of avariable, especidly if
that variableis dependent on the datatype of adatabasefield. It istherefore strongly advised that in any
larger function that some sort of naming convention be adopted for naming variables. It isn't necessary
to make them as complicated as the notation often associated with Windows C programmers. Since
thereisno limit to the size and precision of integers and numbersin SIMPOL and no significant pointer
capability, it usually sufficient to indicate the type with a single letter. one convention that may show
up regularly inthe supplied examplesisto use alowercase | etter to indicate the type, then an uppercase
letter and then the remainder islowercase or in some cases title case where words are joined together.
Generally we use: sfor string, i for integer, n for number, b for boolean, d for date, t for time, dt for
datetime, fsi for fsfileinputstream, fso for fsfileoutputstream, r for record, ppcs for ppcstypel, etc.

There is no concept of the REDI Mkeyword in SIMPOL. If avariable is declared at one place in the
function, and then there is a new declaration using the same variable name at another place in the
function (evenif thetype changes), thisisnot an error. Thevariableis considered to be destroyed at that
point and anew variableis created of whatever type designation has been used in its declaration. This
feature can, however, lead to errorsthat may be hard to detect, so it isimportant that the programmer
be cautious in their use and reuse of variables. There is no advantage to the compiled program of
using one variable name twice or two different variable names. From the point of view of program
maintenance, it may be better practice not to use this feature unless it is abundantly clear from the
program why it was used.

Another important point to remember is that variables in SIMPOL do not automatically initialize to
zero or the empty string. Theinitial value of any variableis. nul . This may cause some confusion at
the beginning since any operation that includes avalue that equals. nul isalsogoingtoequa . nul .
Always remember to initialize any variable before using it! Also, if avariableis not initialized before
it is passed to a function, then the local variable in the function will also be equal to . nul until a
value is assigned to it. More importantly, since there is no object to which to assign the results when
the function returns, nothing can be passed back to the calling function in that parameter.

Variable and Type Scope and Visibility

Scope and visibility are often a complex topic in programming languages. That is not the case with
SIMPOL. In SIMPOL thereis only one kind of scope and two kinds of visibility. Before we get into
the details, however, it may be useful to explain what these two concepts actually mean. By scope, we
generally mean the area of the program where avariableis still in existence and is accessible. BASIC
derived languages often have two or more types of scope, global and local being the most common.

Global scope meansthat the variableis visible and accessible anywhere in the program. It also means
that the variable will not be destroyed until the program ends or some statement within the program ex-
pressly destroysthe variable. Globally visible and accessible variables are often the root of unidentifi-
able side-effectsin complex programs. In a programming language like SIMPOL that is multi-thread-
ed, alowing global variables would be extremely messy, since they would have to be visiblein every
thread and may change unpredictably depending on how the various threads are scheduled and exe-
cuting. The aternative would have been to add syntax to lock them which would have added overhead
and complexity. There are no global variablesin SIMPOL.

40

Value Types, Reference
Types, and Type Tags

Local scope often means within afunction, although in some languages it may be only within a block
statement, such as a for...next loop that is itself within a function. Local scope in SIMPOL means
within a function. From the point in a function where a variable is declared it is visible and remains
in existence until the function ends. When the function ends, all of the variables are destroyed, any
memory they areusingisreleased anditisasif they had never existed. Variablesare not visible outside
of afunction. although they can be passed as arguments to another function. Technically though, once
thefunctionisentered anew local variableiscreated and thevalueof thevariableinthecalling function
is assigned to the new local variable which is then in scope until the end of the function at which
point its value (which may have changed) is then reassigned to the variable from the original calling
function. Static variables are a special form of local variable that retains its value when the function
is exited but is only accessible from within the function. There are no static variablesin SIMPOL.

Visibility is similar to scope but generally is used to refer to the ability to access type definitions and
functions. Asdescribed earlier, there aretwo kinds of visibility in SIMPOL, global and modular. All of
theintrinsic types and functions are globally visible. User-defined types and functions are visible only
within the same compiled unit unless they have been expressly made globally visible by exporting
them using the export keyword. Typicaly if a program is made up of a main code module plus
some linked in libraries (whether self-made or from other source) then the code libraries will make
some of their types and functions visible for use by other programs but they may not make all of the
types and functions visible unless that is necessary to use the library. There may be only one interface
function that is exposed but in actuality there may be a dozen or more functionsin the module that are
used to implement that exposed function. By only exporting the interface function, the programmer
can reduce the level of error checking on the implementation since they don't need to worry about
those functions being called from outside the module.

Value Types, Reference Types, and Type
Tags

There are two conceptually different data types within SIMPOL, value types and reference types.
Vauetypesare, asthe nameimplies, associated with values. These typesare similar to the scalar types
in other languages. Variables that are declared as: bool ean, i nt eger, nunber, or stri ng are
value types. When avariable is declared to be of one of these types and avalueis then assigned to the
variable, an object is created and associated with the variable and the value of the object is set to the
value that is being assigned. Values can be assigned to variables of this type using the = operator.

Reference types are more complicated, since they do not merely contain a single value but represent
more sophisticated objects. An object is assigned to a variable of thistype using the =@or the @ op-
erator. Thisis similar to the construct common in various BASIC dialects including Microsoft Visua
Basic and Superbase Basic Language that uses the SET keyword and the equals symbol.

There are acouple of important points to realize when working with reference types. First, even value
type variables can be used as reference variabl es. Second, more than one variable can refer to the same
object. See the example below:

function main()
i nt eger i
i nt eger j

=

5w0®

i =

J: =

| =
end function j
The statement | = 1 assigns to the integer object referred to by i the value of the integer constant
1, whereasj =@ i causes both i andj to refer to the same integer object, so that when avalue is
assigned toi it is setting the value of the object to which | refers. This appliesto any reference type

41

Variable and Object Persistence

and can provide agreat degree of flexibility when writing programs. As an example, adatabase record
isrepresented by asingle variable and a second variable can easily point to the same database record
while potential modifications are happening to thefirst variable. If those changes are occurring to the
actual object, then the second variable will also be aware of the changes. If the first variable is then
reassigned to another object, the second variable will still refer to the original object.

So what are type tags and why would anyone want to use them? Earlier in the chapter we discussed the
usefulness of having a variable be able to refer to objects of more than one type. In a strongly typed
language like SIMPOL, this normally wouldn't be possible. Thet ype object has two functions that
are accessed by the convention type(*) and type(=). The first of the two is used to declare a variable
that can contain a reference to any type. The second is used to declare a variable that can contain a
reference to any value type. That sounds pretty useful, we can now declare a variable that can refer
to any type, so why use anything else? Mainly because it is considerably more expensive to handle a
variable that can hold areference to any type and also because it makesit very difficult to find errors
in the program.

In line with that kind of thinking, type tags (you knew we would get back to them sooner or later)
were introduced to allow the declaration of variables that could refer to only a limited set of types.
So how does this work? Imagine we are creating a group of typesto represent form controls. We may
create atext box object, a check box, a command button, and so on. We might choose to assign atag
to each of the types called For mCont r ol . By doing that we can then use the type object to create
avariable that can refer to any type that is tagged as For nCont r ol but not any other type, so if
there is amistake in the program it will still break at the right point for the right reason. The way we
declare the variable looks like this: type(FormControl) fc. So how do we actually assign the tag?
Look at the following example:

type t Text Box (FormControl, EditControl)
string Text enbed
bool ean Enabl ed enbed
t ype(For mCont rol) next

end type

type t CheckBox (ForntControl)
string Caption enmbed
bool ean Enabl ed enbed
bool ean Sel ect ed enbed
t ype(For mCont rol) next
end type

In the preceding example the t Text Box type is tagged as being both a FormControl and an Edit-
Control. Thet CheckBox typeisonly tagged asaFormControl. A variable that has been declared to
be of type tag FormControl can hold areferenceto either of these two types. Before we leave typetags
behind us, it is important to point out that alocal variable can be declared either inside the function
or elsein the parameter list of the function.

Variable and Object Persistence

"Variables are like the glue that holds everything together." This description is especially appropriate
in SIMPOL, since any object that isno longer referred to by any variable anywhere within the program
will immediately be discarded. This is an important point to understand. If an object is no longer
referenced in any way by the program, viaavariable or a property of an object that isitself referenced
by avariableit will bediscarded. Evenif thereisalinked list of objects each of which refersto the next,
aslong asthe beginning of thelist isanchored by being referred to by avariable the entirelist will still
exist. Once thereis no way for the program to refer to the beginning of the list, any object not referred
to by avariablewill be discarded. If the third element of thelistis still referred to by avariable but the
base is not, then the base and all elements preceding the third member will be discarded. If, however,
each object in the list has a property that refersto the preceding object aswell as one that refersto the

42

Variable and Object Persistence

next object (adoubly-linked list) then as long as any member of thelist isreferred to by avariable (or
by another object that is anchored by avariable) then the entire list is safe and will not be discarded.

Thisallowsfor the creation and use of quite complex data structuresin memory while only retaining a
single base variable to anchor the entire structure. Once afunction isexited, all local variables created
withinthefunction are destroyed. If thelocal variablewerein the parameter list, then the corresponding
variable in the calling function will be assigned the value of the local variable prior to the variable
being destroyed.

An important point to remember is that if a variable is passed to a function and the variable has not
yet been initialized to refer to an object, then it cannot receive any changes made within the original
function since no abject exists to assign the results to. Also, it is not possible to create an object in a
function and assign it to alocal variable and then have that object returned to the calling function. The
only way to do thisis to have the new object be the return value of the called function and to assign
the results of the function call using the object reference assignment operator (=@.

Chapter 8. Intrinsic Functions

The Nature of Intrinsic Functions

In SIMPOL intrinsic functions are defined as functions that are always available (that are part of
SIMPOL). They always begin with adot (.), take a constant number of parameters (although the data
type of the parameters may not be fixed), have no named parameters (so all parameters must always
be specified), operate only on values and they always return avalue. Also thereis no function object
to represent an intrinisic function. The dot operator preceds the function name to ensure that no user
function can be defined that would conflict with a current or future intrinisic function (user functions
cannot be defined with a name that begins with the dot operator).

The remainder of this chapter is divided into sections that briefly describe the various intrinsic func-
tionsgrouped under aspecific heading. Thevarioustypesof intrinsic functions can beroughly grouped
under the following headings:

» Compression Functions
» Conversion Functions
* Numeric Functions

» Sdlection Functions

Blob Functions
* String Functions

The name of each group describes the type of functions that it includes. As time passes, the list of
intrinsic functions will undoubtedly grow and quite possibly additional groups will be added as well.
When that happens this section will be updated.

Compression Functions

SIMPOL provides some basic compression and decompression functions for compressing strings and
blobs. Currently thereis only one of each type, listed below:

e .conpressi()
e .deconpressl()

The functions will normally be supplied in pairs. The names of the current set end in the digit 1,
primarily to make clear that they are not the only version nor are they very likely to bethelast version
aswell asto associate them with each other. For the actual usage details see the Intrinsic Compression
Functions section in the "SIMPOL Language Reference”.

Conversion Functions

The conversion functions group includes functions that are used to convert from one value type to
another. Whether converting from string to integer or number, from one of the numeric typesto string,
or even converting from a blab to a string, the functions will be classified as conversion functions.
Thelist of the current intrinsic functions from the conversion group is:

e .char()

e .charval ()

Numeric Functions

e .deintegerize()

e .integerize()

* .lcase()
» .tcase()
» .toblob()
e .tostr()
e .toval ()
» .ucase()

The details of the proper syntax and usage of each of these can be found in the "SIMPOL Language
Reference” in the "Conversion Functions" section of the "Intrinsic Functions' chapter.

Numeric Functions

Numeric intrinsic functions are specific to working with numeric values, whether they are integers or
numbers. They are generally used to perform some mathematical operation using the value or values
passed. The following is the current list of numeric intrinsic functions:

o . fix()
e .ipower()
e .ipowernod()

The details of the proper syntax and usage of each of these can be found in the "SIMPOL Language
Reference” in the "Numeric Functions® section of the "Intrinsic Functions' chapter. Of the three, the
. fix() function isthe most useful for most people. The other two are primarily used in the imple-
mentation of RSA encryption.

Selection Functions

Intrinsic selection functions as a group includes those functions that are used to make a choice from
among the arguments and then to return one of them. The list of functionsin this group is:

o Lif()
 .mn()
o . max()

Thesimplest of theseisthe. i f () function, which evaluatesthe first argument and then if it isequal
to. t r ue it returns the second argument otherwise it returns the third argument. The other two func-
tions: . mi n() and. max() return either the item with the lowest value or the highest value respec-
tively. For full information regarding the proper syntax and usage of each of these see the "Selection
Functions" section of the "Intrinsic Functions' chapter in the "SIMPOL Language Reference’”.

Blob Functions

The blob data type requires certain special functionsto cater for the ways in which it will be manipu-
lated. The functions currently available are;

« .inbl ob()

46

String Functions

* . subbl ob()

The first is used to find the first matching blob in another blob. The second is used to extract a blob
from ablob beginning at some offset for a specified length. These two functions are comparable to the
string functions. i nstr () and. subst r . For further information about these two functions see the
"Blob Functions" section of the "Intrinsic Functions' chapter in the "SIMPOL Language Reference".

String Functions

There is a special set of intrinsic functions for working with strings, just as there are for blobs. The
following list contains all of the string-specific intrinsic functions:

e .instr()
e .len()

o Llstr()

e .rstr()

e .substr()

The first of the functions is used for finding a match for a string within another string. The sec-
ond returns the length of the string in characters (not bytes!), and the last three are for slicing up a
string; . | st r () returnsastring beginning at the first character for the desired number of characters,
. rstr() doesthe same starting from the end of the string and working toward the beginning, and
. substr () takesastarting point and a count and works from left-to-right to return any substring
from any point in the original string. For the precise technical description of these functions, see the
"String Functions' section of the"Intrinsic Functions' chapter inthe"SIMPOL Language Reference'.

47

48

Chapter 9. System Functions

The Nature of System Functions

System functions differ from intrinsic functions in several ways. They are alowed to have named
parameters (or not), the parameters can have default values, and not all parameters are required. To
differentiate between the intrinsic functions and the system functions, the former begin with adot and
the latter with an exclamation mark. In both cases this has been done to ensure future compatibility of
code. New functions that are added to the language as part of core SIMPOL will have either the dot
or the exclamation mark at the beginning and will therefore never be able to have the sasme name as a
user-defined function. This chapter discusses the various system function that are part of SIMPOL.

The ! begi nt hread() Function

SIMPOL provides a multi-threaded program execution environment regardless of whether or not the
target development platform implements support for multiple threads. Writing programs to use multi-
ple threads can generally be considered an advanced topic, but in SIMPOL it isfairly straightforward.
All that is necessary to start anew thread isto call the! begi nt hr ead() function passing the name
of the function where execution should begin. A second optional parameter allows the user to pass a
reference to any type. This will most often be some type that provides some additional information
to the function that would otherwise not be available. When anew thread is begun the original thread
continues execution without waiting for the results of the new thread. In SIMPOL a common use of
multiple threads can be found in the way that the tcpsocketserver type works. Each time a connection
is made to the server, anew thread is created that begins execution at the function that is passed in the
i sten() method. Each of the threads executes concurrently with the others and with the original
server thread.

Another placethat will seeregular use of threadsisthe user interface support provided by the window1
type. For each window that is visible (including child windows but not including form controls) a
separate thread is required to manage the events for that window. If no thread is provided then the
window will appear to be dead, because it will not respond to events.

The first parameter to the function is areference to the function that should be called. In practice, this
will simply be the name of the function but it could aso be a function variable that has the function
assigned dynamically during program execution. The second parameter is optional, areference to any
type. This parameter is very important sinceit is the only way to provide access to information about
the remainder of the program that may be needed within the function. Remember there are no global
variablesin SIMPOL.

The biggest problem with having multiple threads all having access to the same object at the same
time is when more than one thread wishes to change the value of some property within the object.
Thisis not generally safe since there is no way of knowing which thread is doing what at what time
compared with the others. The only safe way to modify values would be to lock the object or some
portion of the object. This can be done using the lock1 type. It is provided specifically to facilitate the
safe use of common objects by multiple threads concurrently. If one thread wishes to modify avalue
in a common object it can attempt to lock the lock1 object that is a member of the common object.
If that fails, then it needs to wait and try again (retries can also be built into the call to lock). This
allows for the safe regulation of access to the common object. For more information about the lock1
type see the "SIMPOL Language Reference”.

The ! | oadnodul e() Function

The capability to create libraries implies an ability to not only link the libraries at compile time but
also to load a library dynamically at runtime. This function provides that capability. It has limited

49

The! wai t () Function

use in most cases currently because there is no capability for detecting loaded modules nor isthere a
method for unloading them. These capabilities are planned for the future.

The !'wai t () Function

This function provides are system friendly method of waiting for a specified amount of time. The
argument to the function is the number of microseconds that the function should wait. While the
function is waiting, it will not make unnecessary use of system resources, however, if there is more
than one thread being processed, a true wait will only occur if all of the threads are waiting for some
reason (waiting for a connection, waiting via this function, waiting in some operation that includes
aretry and timeout, etc.).

50

Chapter 10. User-Defined Functions

User-defined functions are one of the most important characteristics of any modern programming
language. They providethe programmer with the ability to write modul ar programs and create reusable
code components. Over the course of time a good programmer will build up a powerful toolbox of
regularly-used functionsthat have been well-tested. Thistoolbox of functions enablesthe programmer
to produce powerful and reliable programs quickly and easily.

Defining and Calling Functions

To define a function the keyword f unct i on is placed at the beginning of the line and outside the
body of any other function. That is followed by at least one space and then the name of the func-
tion. Following the name is an opening parenthesis, the parameter list and then the closing parenthe-
sis. The parameter list may be empty. If it is not, then the parameters are listed starting with their
type and then the name of the parameter. A default value can also be assigned to a parameter by
placing an equals sign after the parameter. The entire syntax diagram would look like: f uncti on
<nane>([<par ameter type> <paraneter nanme>[=<val ue>], .]). Thereturnvalue
of thefunction isplaced on thelast line of thefunctionfollowingtheend f unct i on statement. This
can be avariable, an expression, or even the entire function body (assuming it is a single statement).
A function does not need to return avalue.

To call afunction it is sufficient to place the name of the function followed by the open parenthesis,
the argument list, and the close parenthesisin the program code. If the function returns avaluethat can
be assigned to a variable or used within an equation. Even if afunction returns avalue that value can
be ignored if the programmer so chooses. The following is an example of the definition and calling
of afunction:

function main()
end function hello("world")

function hello(string s)
string t

t ="hello" + s
end function t

Function Scope

A user-defined function is only visible within the unit in which it is compiled unless the function
was also defined with the expor t keyword. This makesit possible to create reusable code modules
compiled as SIMPOL library files (*.sml) and to only expose the functionsthat represent the interface.
All of the supporting functions that are not exposed are invisible to external callers.

Function References (Pointers)

SIMPOL supports the concept of function references, so it is completely permissable to declare a
variable of type function, then assign a reference to a function to the variable, and finally use the
variableto call thefunction that isreferenced. This providesapowerful mechanism for writing generic
code that can allow function references as parameters enabling functions to be written that pass off
the responsibility for certain operations to functions that are defined by the caller. The caller can pass
these functions as references. An traditional example of this would be a sort function that takes a
comparison function as aparameter. The sort function only needsto be able to manipulate the contents
of the array, it does not need to know how to compare the members.

51

52

Part Ill. Web Server Applications
— CGl, ISAPI, and FastCGl
for Dynamic Web Content

Inthispart wewill cover using SIMPOL to generate dynamic web pagesand truly powerful web-based applications
using a variety of techniques all based on creating web content at the server. Using the technology described in
this part, it is possible to build some fast, powerful, and reliable server-side web applications.

Table of Contents

11. SIMPOL Web Server APPlICAIONSoeiieiiieiiii ettt 57
[T g1 oo 1 1o o PRSI 57
HOW Tt WOTKS et e e et e eean s 57
OhEr FEALUIES ... ettt e e e et e et e e et e e e e eeanns 58
Web Server Application TULO@loooiviiiiiiiii e 59
CGl SAMPIES ..ttt ettt e et e e e e e 65

55

56

Chapter 11. SIMPOL Web Server
Applications

Introduction

One of the powerful featuresin the new SIMPOL language is the built-in support for producing web
server applications. The key to thisisthe cgicall type and the various loader programs for supporting
this type. SIMPOL supports severa standard ways of working with this type, which provides access
to the Common Gateway Interface (CGI). This includes standard CGl, ISAPI (Internet Information
Server APl), and Fast-CGl. All of these technologies work in similar ways and ISAPI and Fast-CGl
are based on the older CGlI technology.

A significant difference between the ISAPI approach and traditional CGI is that the ISAPI server
extension is normally loaded once and then left loaded, whereas the standard CGI program is loaded
and then unloaded each time it is called. The advantage, especially in the case of an interpreted or
byte-code compiled program is that the interpreting environment is left loaded and only the program
must be loaded and run each time. Thisis similar to Microsoft's ASP (Active Server Page) and Sun's
JSP (Java Server Page) technology in that the interpreters for these technologies are built in or else
dynamically loaded by the web server enabling them to provideimproved performance. Onedifference
in thisis that SIMPOL programs are not combinations of code and HTML markup, but are instead
compiled programs. The difference in performance can be considerable. The ease of design of ASP
and JSP pages is also supported within the SIMPOL IDE. Using the server page support SIMPOL
source code can be mixed with HTML on the same page in exactly the same style asin ASP pages.
When the project is compiled, the server pageis also compiled, providing the best of both approaches
— mixed-mode design plus the speed of compiled code.

If performanceisreally what you are looking for though, then the real answer is Fast-CGlI. Using the
Fast-CGl support in SIMPOL it is possible to not only load the execution environment and leave it
loaded, it is also possible to load the actual program and allow it to perform itsinitialization once and
then thereafter only respond to calls. This approach isthe fastest that is redlistically possible (short of
adding a special program in a compiled language like C directly to the web server code). A SIMPOL
Fast-CGI program has an initialization function, an execution function, and a termination function.
The initialization function is only called the first time the program is loaded. The execution function
is called each time a call is made to the program by the web server and the termination function is
called only when the program is being unloaded. Fast-CGl is currently supported by a number of web
servers on various platforms, most notably though by the Apache web server.

All of these technologies are very unified in the way that they are implemented in SIMPOL. In each
case a parameter of type cgical is passed to the starting point in each program. In each case the
program can then act in a similar fashion, retrieving server variables using the get vari abl e()
method or key valuesfrom aposted form using thekeyval ue() method. Infact, with careful design
it ispossibleto write aprogram that will work in al environments without change. Such examples can
be found in the examplesincluded with the product. One item of good design that is used consistently
throughout the examples is that of storing parameters that might change in a configuration file and
retrieving them at runtime. This means that the program does not need to be recompiled or modified
to runin different locations or even on different platforms.

How it Works

To produce a program that can be called from a web server is fairly easy. Below is a standard web
version of a"Hello World" program that is written in SIMPOL :

function main(cgicall cgi)
string s

57

Other Features

s = "Content-type: text/HIM{d}{a}{d}{a}"
s = s + "<htm ><body>Hel | o Wor | d! </ body></ht m >"
end function s

This program might be saved as cgi hel | 0. srma. When compiled the program would normally be
called cgi hel | 0. snp. To get the Apache web server to run this program it would have to be pref-
aced by what is known as a shebang line. Thisisaconvention that originated on Unix. It is formatted
in such away that it isnormally considered acomment in shell scripts but this one has aspecia format
and isinterpreted to determine which program should be used to execute the remainder of the script.
In the case of aweb server program thislineis retrieved by the web server and used to find out what
program should be used to execute that script. For a Windows-based program, the shebang line might
look like this:

#! C:\ Program Fi | es\ SI MPQOL\ bi n\ snpcgi 32. exe{d}{a}

The SIMPOL IDE is especially designed to make building these types of programs quite easy. Simply

go into the dialog called from the Project — Settings menu item and add a target. In the target add/
modify dialog add the target and the shebang line that is appropriate. When you build the project it
will automatically copy the result to the target directory and prepend the shebang line to it. To get it
to be called is web server specific. On Apache, in the ht t pd. conf file the line: Add- Handl er
cgi -script .snp would need to be added and if running, Apache would need to be restarted.
This program is aready available on the Superbase web site: SIMPOL Hello World Sample [http://
www.superbase.co.uk/cgi-bin/cgihello.smp].

Other Features

Obviously just being able to respond to requestsisn't bad, but there are a number of things that a pro-
gram needs to be able to do when acting as aweb application. One common requirement is to support
cookies, both session cookies (that expire when the browser is closed) and standard cookies with an
expiration date. The cookie support built into the cgicall type fulfills both of these requirements. An-
other useful feature is the ability to return content of various types, such as sending afile to be saved
on the target machine. Thisis also supported, since the first line that must be sent back by the cgicall
objectisthe Cont ent - t ype line. Thisisdifferent from the HTML metatag content-type, since that
already presumes a content-type of t ext / HTML. Using this capability it would be possible to create
an e-commerce site that sells programs and after payment sends the file automatically to the browser
where it can be saved. By not having a download directory that is static, the files are not available
except via the program, which can test the user's right to access the download in the first place. It
is also possible to interact with web server applications el sewhere that require a content-type that is
different from the basic one.

In addition to the content-type and cookie support SIMPOL's CGI implementation also includes full
support for both GET and POST. The correct way to usetheseitemsisspecificto CGl andisoutsidethe
bounds of this document, but there are a multitude of books and web pagesthat discussthe use of CGl.

Finally, there is also support for retrieving environment variables, form variables, and even the input
stream for alowing uploads from browsers directly to the program (such as uploading a company
logo as a JPEG). In addition to al of the CGl-specific capahilities, there is till the entire range of
capabilitiesbuilt into SIMPOL . For example, using the CGI support combined with the TCP/I P socket
support it is possible to create a web-based email system. Using the tcpsocket type an SMTP email
client (even aserver) together with a POP3 client could bewritten. Add to that the support for PPCSand
the web pages can even be built based on datain a Superbase database. Thiswould permit any number
of web-enabl ed front-endsto be written to work together with an existing Superbase application. There
is simply no advantage to trying to use a product like Microsoft's ASP framework with Superbase
database tables viathe ODBC driver when access via SIMPOL using PPCS will provide afaster and
more reliable solution all from the same software house. Not only that, but once the application has
been written and compiled, al that is needed to switch to a Linux or Unix-based web server is to
link the appropriate Linux shebang line (which must have only atrailing linefeed) to the front of the

58

http://www.superbase.co.uk/cgi-bin/cgihello.smp
http://www.superbase.co.uk/cgi-bin/cgihello.smp
http://www.superbase.co.uk/cgi-bin/cgihello.smp

Web Server Application Tutorial

Web

already compiled program and place it on the Linux machine in the appropriate location. No change
to the source or even the compiled program is necessary!

Server Application Tutorial

In this section we will try to build a moderately sophisticated example that uses a design that will
allow the program to run using al of the various web server deployment strategies. As our example,
we will use the shisreportfast.sma program provided in the Pr oj ect s directory. The program starts
with the function mai n() as shown below.

function main(cgicall cgi)
string sReturnval
Cont actFi |l e cf
string sl SAPI PhysPat h

sl SAPI PhysPat h
sl SAPI PhysPat h

cgi . getvari abl e(" APPL_PHYSI CAL_PATH")
.1 f (sl SAPI PhysPath > "" \
rtrim sl SAPlI PhysPath, "{0}"), "")

cf =@i nit (sl SAPI PhysPat h)
sReturnval = fcgi(cgi, cf)
fcgiterm))

end function sReturnval

Theinteresting thing to notein thisfunction isthat thereisvery littleto the function itself. Thefunction
calsthei ni t () function, then passesthereturnvaluefromthat functiontothef cgi () functionand
receivesthereturn valuefromthat and finally callsthef cgi t er m() beforereturningthereturnvalue
fromthef cgi function. Thereason for thisdesignisthat although both ISAPI and CGI programs(like
almost all SIMPOL programs) begin with the mai n() function, Fast-CGI programs are initialized
using the f cgi i ni t () function, subsequent calls only cal the f cgi () function, and when the
Fast-CGl instance is closed, only then will the f cgi t er n() function be called. To write for all
three architectures requires alittle bit of planning, so since the Fast-CGlI version would never call the
mai n() function, everything isdesigned for the Fast-CGlI version and the other two usethe mai n()
function to call the Fast-CGI components. In the case above, sincethei ni t () functionisused in
several places in the contact system, it was decided to have both the mai n() and f cgiinit ()
functions call acommon function which in both cases returns what is then required.

Taking acloser look at the beginning of the program another | SAPI-specific item can be seen. That is
the request for the variable APPL_PHYSI CAL_PATH. Thisvariable isonly available in ISAPI (and
possibly only in Microsoft Internet Information Server (11S). There are a number of | SAPI-specific
variablesthat can beretrieved, seethellSdocumentation for details. Thereason that thisissoimportant
isthat unlike when using CGl or Fast-CGl, ISAPI isdone viaaDynamically Linked Library or DLL.
DLL'sdon't have a concept of a current directory when they are executing, so they always inherit the
current directory of the parent process, in this case that of the web server. That may or may not be
important depending on your web server application, but as you will see later, in this case, knowing
the current directory or more importantly the location where the web server application was loaded
from isimportant.

The next thing to note about themai n() function isthe use of auser-defined type called ContactFile.
This type was automatically created using an SBL program and in this case is included using the
include directive and compiled into the program. In other cases, it may be copmiled as a standalone
library. It is a type that wraps up a Superbase file that is hosted using PPCS. In the near future a
utility programwill be created in SIMPOL that producesthisfrom an SBD or by interrogating a PPCS-
based table. Using this automatically generated type, it is much easier to accessthe various parts of the
CONTACT database table used by the sample contact system. Below isthe code that makes up thetype:

59

Web Server Application Tutorial

B /1
/1 CONTACT /1
/1 Constants and Type definitions /1
B /1
const ant f CONTACTNAME " CONTACT"

const ant CONTACT_LASTNAME "Last Nane"
const ant CONTACT_FlI RSTNAME "Fi r st Nane"
const ant CONTACT_CONTACTNO " Cont act No"
const ant CONTACT _PHONE "Phone"

const ant CONTACT_FAX " Fax"

const ant CONTACT ADDRESS " Addr ess"

const ant CONTACT_CI TY "Gity"

const ant CONTACT_STATE "State"

const ant CONTACT _ZI P "ZI P

type ContactFile export

ppcstypelfile file
ppcst ypelfiel d sLast Name

ppcstypelfiel d sFirstNane
ppcst ypelfi el d sCont act No

ppcst ypelfiel d sPhone
ppcstypelfiel d sFax
ppcstypelfiel d sAddress
ppcstypelfield sCty
ppcstypelfield sState
ppcstypelfield szl P
function open

end type

function ContactFile.open(ContactFile ne, ppcstypel ppcs, \
string sl paddress)

ppcstypelfile f

i nt eger

i Er r num

i Errnum= 0

f =@ ppcs. openudpfil e(sl paddr ess,

i f
Cfi

Tditddddddd

end if
end funct

@ .nul

l e

. SLast Nane
. SFi r st Nane
. sCont act No
. sPhone

. SFax

. SAddr ess
.sCity
.sState
.SZIP

ion i Errnum

f CONTACTNAME, error =i Errnum

=@getfield(f, CONTACT LASTNAVE)
=@getfiel d(f, CONTACT FI RSTNAME)
=@getfiel d(f, CONTACT CONTACTNO)
—@getfield(f, CONTACT PHONE)
=@getfiel d(f, CONTACT FAX)
=@getfield(f, CONTACT ADDRESS)
=@getfield(f, CONTACT CITY)
—@getfield(f, CONTACT STATE)
=@getfiel d(f, CONTACT ZIP)

Our next step isto have alook at thei ni t () function. It is shown below:

function init(string sl SAPI PhysPat h="")
ppcst ypel ppcs

60

Web Server Application Tutorial

string sl paddress
i nteger i Errnum
Cont actFi |l e cf

cf =@ ContactFile.new)

i Errnum = 0
ppcs =@ ppcstypel. new(udpport=.nul, error=i Errnum \
user name="sbhi scont act ")

sl paddress =

get pri vateprofil estring(sCd SECTI O\, sCE PPCSSERVER, \
sDEFI PADDRESS, sl paddress, \
sl SAPI PhysPath + sCA | N FILE, \
sCd | Nl EOLCHAR)
i f slpaddress > ""
if cf.open(ppcs, slpaddress) !'=0
cf =@ . nul
end if
end if

end function cf

As we can see from the program code, the primary purpose of this function is to create an object of
type ContactFile, create a ppcstypel object, and then using these two objects and the | P address that
isretrieved from a configuration file, to open the CONTACT database file. In a complex example this
function might be opening dozens of database files for use in a web server application. Earlier we
discussed the need to retrieve the physical path to the SIMPOL program in an | SAPI environment. The
reason isthe code in this function that reads a setting from a configuration file. It would not be avery
good design to hard code the | P address and port of the PPCS server, since moving the server would
require recompiling the code each time. It is more effective to put these kinds of settings in a con-
figuration file and retrieve them at runtime. The implementation of the function get pri vat epr o-
filestring() isreasonably compatible with the Windows function of the same name, minus a
few limitations and the fact that it works on multiple platforms. It can befoundintheconf i b. s
library inthel i b directory.

The actua f cgi () contains little more than a call to the actual function that does the work, as can
be seen below:

function fcgi(cgicall cgi, ContactFile cf)
SBI SReport Fast (cgi, cf)
end function ""

The basic design of atypical web server application uses a sandwich approach. The top of the pageis
one dlice of bread, the bottom of the page is the other, and the output from the program is the filling.
If the application is designed carefully making use of cascading style sheets, then changing the look
and feel of the web site can be done without even recompiling the program. The way that is done is
tousethe HTM__I ncl ude() function to output the top and bottom from filesthat arelocated in the
directory from where the program is loaded or some other consistent location. This function is part
of thesbi slib.snm .

function SBI SReport Fast (cgicall cgi, ContactFile cf)
i nteger i Errnum
string sTnp, sDateFormat, sTnp2, sTnp3
ppcstypelrecord r
date dt
obj set obsBase
obj setel enentref n

61

Web Server Application Tutorial

SBLI ocal edat ei nfo | di Local e
string sl SAPI PhysPat h
datetinme dtStart, dtEnd
bool ean bFound

sl SAPI PhysPat h
sl SAPI PhysPat h

cgi . getvari abl e(" APPL_PHYSI CAL_PATH")
.1 f (sl SAPI PhysPath > "", \
rtrim sl SAPI PhysPath, "{0}"), "")

| di Local e =@ SBLI ocal edat ei nf 0. new()

sDat eFormat = "nmmmm dd, yyyy"
i Errnum= 0
sTmp = ""

dt Start =@ dateti ne. new()
dt End =@ dat eti ne. new()

Intheinitial segment of the SBI SReport Fast () theinitializationisdone. The function makes use
of a number of types and functions provided by libraries that are written and compiled in SIMPOL
itself. These typesinclude the objset, objsetelementref, and the SBLIocaledateinfo. Thefirst two types
are part of the obj set . sm library, which provides a set object that operates very similarly to the
set object in SBL but which has a key value that must be a string and an optional object reference.
This allows the collection and sorting by key value of a set of objects of any type. In this example
we will use it for storing the output string in order by athree-level sort. The last of the typesis part
of the implementation of date format functions to be found in the SBLDat eLi b. snl file. In SBL
there are certain global valuesthat determine the formatting for dates, including the names of the days
of the week, the months of the year, and the abbreviated months of the year. Since there is nothing
global in SIMPOL, this needs to be handled differently. In this program we initialize an object of type
SBL |ocaledateinfo and then pass it to the functions that require this object. This particular library is
compatiblewith functionsfound in SBL, so there are no optionsthat would not existin SBL. Thereare
other libraries being built that provide more sophisticated date formatting routines, though the SBL -
compatible ones should be used when working with data from tables via the PPCS type 1 protocol.

The next section of the program checks to seeif the return value fromthei ni t () function actually
contains an object or if it failed (returned . nul). If it succeeded, it then outputs the content type.
Unlikethe older Superbase Internet Server product (SBIS), web server programsin SIMPOL can work
with any content type desired or required. After outputting the content type and the header, the top of
the sandwich is loaded and output by the HTML_| ncl ude function. Finally, the table is set up and
the header is output including the current date.

if cf =@ .nul or cf.file =@ . nul
CAd FileError(cgi, .nul, "Error openi ng database \
file ' CONTACT' ")
el se
cgi.output ("Content-type: text/HTM.{d}{a}{d}{a}", 1)
cgi . out put ("<ht m ><head><title>" + sTITLE + \
"</title>" + CRLF, 1)

[ILEEEL i irirrirrigi
[/ External HTM. File [/
[/ I ncl ude the header and css [/
[ILEEELE il
HTM__I ncl ude(cgi, sl SAPI PhysPath + "header. ht ni')

LELITELE it irrrrri

/1 Programtitle /1

LELITELE it irrrrri

//cgi.output(CRLF, 1)

cgi . out put (' <tr><td><center><h2 class="titl edblue">" + \

62

Web Server Application Tutorial

STI TLE + ' </ h2></center></td> + CRLF, 1)
cgi.output('</tr>+ CRLF, 1)

LEEEEEEEEEE sy

/1 Center the table /1
LEEEEEEEEEE sy

dt =@ dat e. new()

dt. set now()

sTnp = DATESTR(dt, sDateFormat, |diLocale)

cgi.output (' <tr><td align="center"><center><h3 \

class="titl edblue3">" + sTnp + ' - Partial \

Client Quick Listing</h3></center></td></tr>\

<tr><t d><cent er >Were \

the first letter of the |last name is equal to \
"D’ and the result is sorted by C ty\

, then Last Nane, \

t hen Fi r st Name</ st rong>. </ span>\

</center>
</td></tr>'+ CRLF, 1)

cgi . out put (' <tr><td><center><tabl e border=1 w dt h="510">" + \
CRLF, 1)

cgi.output('<tr> + CRLF, 1)

cgi.output('<th class="stdhdr" w dth="25%>City</th> + \

CRLF, 1)

cgi.output (' <th class="stdhdr" w dth="25% >Last name</th>" + \
CRLF, 1)

cgi.output (' <th class="stdhdr" w dth="25% >Fi rst nane</th>" + \
CRLF, 1)

cgi.output (' <th class="stdhdr" w dt h="25% >Tel ephone</t h>\
</tr> + CRLF, 1)

Once the preparations are complete, the main part of the program can begin. This is the part of the
program that reads the records that match the search criteria, formats the output, and then outputs the
result. In this case the program begins by recording the starting time for the search. It then selects the
first record in the table according to the LastName index that begins with the letter "D". To make the
selection the ContactFile object is used. Each of the properties corresponds to a field in the file with
the same name (fields with spaces in the name have the spaces converted to underscores). Also, each
field is prepended with a single letter that indicates the data type of the field. Fields that are indexed
will have an object associated with their index property and using that the first selection can be made.
Afterwards, the record object is used to select the next record in the same index order with which the
record itself was selected. As each record is selected and determined to be a valid part of the result
set, a string is formulated to hold the three-level sort key, first using the name of the city, then the
last name, and finally the first name. Following that another string is assigned the components of the
final output, which equatesto arow of the HTML table. That string is then added as an object to the
objset using the first string as the sort key.

E Note
The string is actually passed to the addel enent () method of the objset by creating
anew string using st ri ng. new(sTnp2) . The reason for this is the objset stores a
reference to astring object, not astring itself. If only the s Tnp2 string had been passed,
each time it goes around the loop a reference to the exact same string object using a
different key would be assigned to the element of the objset so that at the end, all of the
elements would point to only one string that contained the last value created. To avoid
this, anew string object is created and initialized with the value of the stringin s Tnp2.
This ensures that each element references a different string. At that point, the objects

63

Web Server Application Tutorial

are only anchored by the objset, so once the objset goes out of scope, al of the strings
are aso freed.

This continues until the first non-matching record is found in the index. At that point, the loop exits
and the objset contains all of the results in the desired sort order.

/'l Record the starting tine for the search
dt Start. set now)

// Select the first record that starts with a Din the

// Lastnane i ndex and then continue to select records

/[l until the first letter is no |longer a D.

bFound = .fal se

r =@ cf.slLast Nane. i ndex. sel ectkey(" D', error=i Errnum \
f ound=bFound)

obsBase =@ obj set. new()

/| SELECT ;

/I WHERE Last name. CONTACT LI KE "D*"

/1 ORDER Ci ty. CONTACT, Last Nanme. CONTACT, Fi r st Nane. CONTACT
/1 TO APPEND

/| END SELECT

/1l This section performs the actual report and stores
[/l the sort key plus the desired output into the set.
/1 The set will automatically be stored in sorted order.

while r '@ .nul and .l case(.lstr(r.get(cf.sLastNane),\
1)) == "d"
sTnp = PAD(r.get(cf.sCity), 40) + \
PAD(r. get (cf.sLast Name), 60) + \
r.get (cf.sFirstNane)

sTnp2 = '<tr><td class="stdtext">" + \
Istr(r.get(cf.sCty),15) + \
"</td><td class="stdtext"><a href="" +\

HTM_._Page(" shi scont act di spl ay. smp"”, cgi) + \
"?cno=" + r.get(cf.sContactNo) + '">" + \
.Istr(r.get(cf.sLastNane), 15) + \

"</td><td class="stdtext">" + \
.Istr(r.get(cf.sFirstNane), 15) + \

"</td><td class="stdtext">" + \
.Istr(r.get(cf.sPhone), 10) + '</td></tr> + CRLF

obsBase. addel enent (sTnp, string. new sTnp2))
r =@r.select(.false, error=i Errnumnm
end while i Errnum> 0

Finishing the report is now just a matter of retrieving the first element of the objset, outputting the
element, and then retrieving the next element until we run out of elements. There is no rea need to
find out how many elements there are, since we can just continue until either the returned element is
equal to areferenceto. nul orthet property isequa to areferenceto . nul . Then weretrieve the
time again and output the rest of the the table and close up the remaining bits of the HTML.

/1 This part now outputs the results of the report that
/1 had been stored in the set while gathering the

CGI Samples

/1 results. The output comes out in the correct order

/1 sorted three | evels deep, by using a conbi ned key

/1 conposed of the City, the |astnanme and the first name

/1 where each of the first two have been padded to 60

/] characters w de.

n =@ obsBase. getfirst()

while n!@ .nul and n.t '@ .nul
cgi.output(n.t.element, 1)
n =@n.t.getnext()

end while

dt End. set now()

/] After report section
cgi.output (' </table> + CRLF, 1)

cgi . out put (' <p>Total : ' + \
.tostr(obsBase.total count, 10) + " match" + \
.1 f(obsBase.total count <> 1,"es","") + \

found froma total of ' + \
.tostr(cf.file.recordcount(error=i Errnum, 10)\
+ ' records. The total search tinme was ' + \
.tostr((dtEnd - dtStart)/1000000, 10) + \
seconds. </ strong>\
</ p>
</center></td></tr> + CRLF, 1)
[EEEEEEEErrrr i rrrrrrry

[HLPETEEEL i ririrrrsr
/1 I ncl ude external HTM. file /1
/1 as the footer /1
[HLPETEEEL i ririrrrsr
HTM__I ncl ude(cgi, sl SAPIPhysPath + "footer. htnt)
end if
end function ""

Thevery end of theprogram occurswhenthef cgi t er m() iscalled either fromthenai n() function
or directly by the Fast-CGlI support. In this case, thereis nothing for the function to do, so it is empty.

CGIl Samples

As mentioned earlier, on the Superbase web site their are a number of samples of programs that
are already running using SIMPOL to serve dynamic web pages. More will be added as time
passes. To access the samples visit the page: SIMPOL Samples Page [http://www.superbase.co.uk/
simpolsamples.htm]. On this page there are links and explanations as well as the ability to view the
source code of each program.

65

http://www.superbase.co.uk/simpolsamples.htm
http://www.superbase.co.uk/simpolsamples.htm
http://www.superbase.co.uk/simpolsamples.htm

66

Part IV. Using Databases

Working with databasesis an important part of most programming languages that deliver dynamic web content or
that are used for desktop application development. SIMPOL comes ready to work with different types of database
content but the onething that they have in common isthat they are all represented using objects. In this part we will
learn how to access databases in Superbase PPCS format and also use the new SBME format for single program
multithreaded access. Eventually there will also be objects in SIMPOL for using volatile databases (typically
hosted only in memory) and for accessing various SQL databases, but they will come later.

Table of Contents

12. Using Databases iN SIMPOLcouuiiiiiiiiieiie e e et e e e e e enanas 71
TEMINOIOGY .. ettt ettt ettt e et e et e e et e b e et e e e e e s 71
Traditional File-Oriented Datalasesovevniiiiiiiiiee e 71

F gL oo 1 1o o R PP 71
SBL Database COMMANGSceuuiiiiiiiiiieeie et e e e ennes 71
Common Database Programming Problemscooiviiiiiiiiiii e 72
Object-Oriented Database AcCeSS iN SIMPOLooviiiiiiiiiiiecci e 72
F gL oo 1 1o o R PP 72
Database Type Tags for Generic Database Functionalityccooeviiiiiiiiniiinnns 73
A Comparison of SBL Commands and SIMPOL Methodscccoccoiviiiiiieinns 73
SUMMBIY et et e et e et e e e e e e e ea s 74

13. USING PPCS N SIMPOL ...oiiiiiiii ettt e e e e e e 75
LT G E Y o = O SO UPSTPPN 75
Setting Up a PPCS Server USiNg SUPEIDESEovviviiieiiiii et 75
Object-Oriented Datalase ACCESSuuuiiiiiiae ettt 76

14. Using SBME Databases in SIMPOLcoiiiiiiiiiiiiiiiieieiie e e e 81
[T g1 oo 1 1o o PRSI 81
Difference Between SBME and SBF'Scouuiiiiiiiiii e 81
Programming with SBME Databasesccouuuiiiiiiiiieeiiiieece e 82

69

70

Chapter 12. Using Databases in
SIMPOL

This chapter will describe the approach to databases using objects in SIMPOL. This chapter should
be read first before trying to use any of the database access technologies from SIMPOL.

Terminology

A good placeto start in this chapter isadiscussion of terminology. In traditional desktop databaseslike
Superbase, dBase, FoxPro, and Paradox, it is common to refer to database files, fields, indexes, and
records. In SQL databases it is more common to use the terms tables, columns, and rows. Loosely it
would be accurate to say that database files equate to tables, fields equate to columns, and rows equate
to records. In SIMPOL we tend to stick with the desktop database terminology when refering to non-
SQL data sources, although we are attempting to standardize on the terms: tables, fields, and records.
The reason for selecting tables rather than files is that in some databases more than one table can be
stored in the same physical file, as is the case with Microsoft Access and with the new Superbase
Micro Engine. That would result in overuse of the word file and as such the decision was made to
use table instead.

Traditional File-Oriented Databases

Introduction

In traditional desktop database environments such as Superbase and dBase, there are numerous com-
mands in the programming languages to handle the various tasks associated with working with data-
base files. In some cases the command set can be quite large and often somewhat ambiguous in that
command names may be reused in various combinationswith dightly or even widely different effects.
The result is that generally the programmer is required to remember a large number of commands
with various parametersin order to accomplish very basic manipulation of the database. Sincein most
cases these commands are considered key wordsin the language, they also reduce the available group
of obvious variable names that can be used by the programmer.

SBL Database Commands

SBL hasalarge array of database oriented commands that are composed of one or more key wordsin
the programming language. For example, in Superbase Basic Language (SBL) thereis awide variety
of SELECT commands. These include:

» SELECT FI RST

» SELECT LAST

* SELECT NEXT

» SELECT PREVI QUS
» SELECT CURRENT

» SELECT KEY

» SELECT DUPLI CATE
» SELECT WHERE

» SELECT REMOVE

» SELECT

Each of these commands also has various parameters that can be appended to the end or in some cases
inserted earlier in the command. There are numerous other commands that exist purely to manipulate
databases.

71

Common Database Pro-
gramming Problems

Common Database Programming Problems

One of the biggest issues by far, however, which people run into when working with these languages
for manipulating databasesiswhat | call the current everything problem. The assumption is made that
files are globally visible and that field names in files are globally visible identifiers. Although that
simplifies things when doing simple things, it results in great complexity and confusion when doing
more complex things. It also results in limitations such as not being able to open the same file twice
in the same instance of the program because there would be no way to differentiate between the two
versions (or only with great complexity).

A common error made by SBL programmersisthat of selecting arecord using an index different to the
current index as seen from the user's perspective, and then after establishing that the sel ection worked,
resel ecting the record with alock. Unfortunately, the second selection occurs using the current index,
which is not that used when they selected the record the first time and so they lock the wrong record
and possibly make and save changes to the wrong record. See the code in the example below:

The current index is LastNane and the current file is ADRB
SELECT KEY 12345 FILE "ADRB" | NDEX RecNo. ADRB
| F FOUND ("ADRB") THEN
Here the SELECT CURRENT LOCK operates on the Last Nane
i ndex which is whatever was current before the
SELECT KEY took place agai nst the RecNo index.

SELECT CURRENT LOCK

Correct woul d have been to use:
SELECT CURRENT LOCK FI LE " ADRB" | NDEX RecNo. ADRB
but this is a conmon error.

Account Bal ance. ADRB = Account Bal ance. ADRB + deposit %

The program now assi gns the deposit anpunt into the wong
account nunber and stores it. This problemw Il be difficult
to track down because the deposit to the wong account won't
al ways happen. If the current index is RecNo, then the code
will work, if it is not, then the deposit will be nade to
whi chever record is current in the current index.

STORE
END | F

In an object-oriented environment these kinds of issues don't exist since all selections are made as a
call to a method of an object, so there is no way that you can accidentally call the wrong object (at
least not easily).

Object-Oriented Database Access in SIMPOL

Introduction

There are anumber of different object-oriented approaches to working with databases and in general
those methods are directly related to the type of database access that they attempt to model. With SQL
style access the approach tends toward recordset objects, which is completely understandable since
SQL isall about doing queries and doesn't really have anidea of direct table access. That isreserved to
the routines that actually implement a SQL database engine. In SIMPOL the database accessis based
around accessing database sources (which can be files or servers) and then from that file or server

72

Database Type Tags for Gener-
ic Database Functionality

accessing tables. Each table has a ring of field objects and a ring of index objects. Record objects
are created as the result of selecting arecord using one of the selection methods. Index objects carry
a reference to the field for which they are an index. In later releases there may be aring of objects
that describe the elements of an index that is either multiple field or based on something other than
field information.

One big difference between the older Superbase approach to working with tables and field names and
the object-oriented version is that opening a table does not simply create a group of globally visible
identifiers. Thismeansthereisalittle morework involved when using objects. At the sametime, there
is no limit to how many times a table can be opened concurrently or how many records could be the
current record. Since records are objects whenever arecord object existsit is available.

Another significant difference is in the way that records are selected. The object-oriented approach
takes alittle getting used to, but is perfectly logical and will eventually feel quite natural and obvious.
Table objects can either select the first or last record in atable in sequential order. Index objects can
select either the first or last record in index order or select via a key value into the index. So what
about selecting the next or previous record? That is reserved to record objects. Only a record object
knows how it was selected and therefore its index position. A record can also select only the next
or previous record according to the order that was used to select the record, either in index order or
sequential order of the table. To change the index of a record the record can be reselected with an
option to change the index.

Database Type Tags for Generic Database Functionali-
ty

In keeping with the object-oriented design of SIMPOL aset of typetags (seethe section called “Value
Types, Reference Types, and Type Tags') was created for use with databases that are of a consistent
form. This set of typetagsis known as the dbl set. This set of tags includes the following:

« dbltable
e dbifield
e dbli ndex
e dblrecord

By writing generic functions to use the type tags rather than the specific object type declarations it
makes it very easy to switch between different database types without rewriting the functionality for
each individual type.

@ Note

One difference between sbmel types and ppcstypel types is that the former have a
table or tablename property where the latter have afil e or fi | ename property in
addition to the tablename. This does not affect the use since when working with the
db1* type tagsthe table can be used in most cases. A more signficant difference isthat
ppcstypelfields have amuch greater array of properties than sbomelfields. They include
help text, comments, display formats, and other things that are not provided by the more
storage-oriented and lower level engine from sbmel. In general, generic database rou-
tines should not be dependent on a display format that is provided with a column (or
column widths that may not exist, etc.).

A Comparison of SBL Commands and SIMPOL Meth-
ods

Comparing the two approaches should help to clarify much of the difference in approach between the
command based and the object based methods. To summarize and compare the SBL commandsto the
SIMPOL object methods then, hereis asmall table:

73

Summary

Table 12.1. Comparison of SBL file access commandsto SIMPOL methods

SBL

SIMPOL

SELECT FI RST | NDEX ™"

dblt abl evar.

sel ect (|l astrecord=.fal se)

SELECT LAST | NDEX ""

db1t abl evar.

sel ect (|l astrecord=.true)

SELECT FI RST | NDEX
RecNo. TEST

dbli ndexvar.

sel ect (| astrecord=. fal se)

SELECT LAST | NDEX
RecNo. TEST

dbli ndexvar.

sel ect (| astrecord=.true)

SELECT KEY 123 | NDEX
RecNo. TEST

dbli ndexvar.

sel ect key(123)

SELECT NEXT

dblrecvar. sel ect (previ ousrecord=. fal se)

SELECT PREVI QUS

dblrecvar. sel ect (previ ousrecord=.true)

SET | NDEX Nane. TEST

dblrecvar. sel ect current (dbli ndexvar_Nane)

SELECT FI RST LOCK | N

dblt abl evar
| ock=.true)

.select(lastrecord=.fal se,

SELECT FI RST LOCK | N-
DEX RecNo. TEST

dbli ndexvar
| ock=.true)

.select(lastrecord=.fal se,

SELECT KEY 123 LOCK
| NDEX RecNo. TEST

dbli ndexvar

.sel ectkey(123, |ock=.true)

SELECT NEXT LOCK

dblrecvar. sel ect (previ ousrecord=. f al se,

| ock=.true)

SELECT CURRENT LOCK

dblrecvar. sel ectcurrent (| ock=.true)

SELECT REMOVE

dblrecvar. del et e()

There are numerous other combinations, but the previoustabl e should show areasonable cross-section.
One of the interesting abilities in SIMPOL is that of deleting a record but still having the record
available. When the del et e() method is called, the record is deleted but the record object still
exists. Its stored property issetto. f al se and it isreset internally to appear like a new record that
has been filled in. That means that the record could now be saved as anew record (possibly with some

modification).

Summary

In this chapter we have looked at the generic differences between working with databases in com-
mand-oriented languages like SBL and the methods employed by SIMPOL . In the following chapters

we will discuss the specific issues affecting access to PPCS and SBME databasesin SIMPOL.

74

Chapter 13. Using PPCS in SIMPOL

This chapter will describe in detail the issues surrounding database access in SIMPOL using the Su-
perbase Peer-to-Peer Client/Server (PPCS) approach. By the end of the chapter you should feel rea-
sonably confident in accessing PPCS database tables from SIMPOL .

What is PPCS?

PPCS provides a protocol for accessing database tables and binary files using a variety of communi-
cation methods. Currently there is support for direct serial cable connections using RS-232 and also
modem-based connectivity. Thereis also support for NetBIOS and UDP/IP. PPCSis a connectionless
protocol. In practical terms, that meansthat thereisno actual maintained connection between the client
and the server. Each transaction between the client and the server is complete and independent of any
other connection. For example, assume that a UDP connection is made across the Internet and a data-
base table is opened and the client selects arecord via an index. Then for some reason the connection
to the Internet goes down. After a short while the connection comes back up and the user selects the
next record. In such a situation, since no request had been made to the server in the interim, the PPCS
client program would not be aware that anything had happened and would successfully receive the
next record. Thiswould not be the case with a connected protocol.

As described in the previous paragraph, PPCS allows access to database tables and binary files that
have been shared on a PPCS server. The type of access provided isrecord level access to the database
tables in a shared read-write mode. That means that only operations that can work in a shared read-
write mode are supported. Records can be created, locked, modified and deleted using this access
technology. Not supported ischangesto the database structure, such asadding, modifying, or removing
fields and indexes or even creating or removing database tables. In SIMPOL thisis known as PPCS
Type 1. At some stage we will release a PPCS Type 2. Thiswill support the full range of capabilities
of the new Superbase Micro Engine database and will also allow for complete remote management
of the database backend. The binary file support allows the sharing of binary files for direct transfer
via PPCS from the server to the client. The name space within a PPCS Type 1 server isflat, so binary
and database files with duplicate names even if from different directories cannot be served on the
same server.

In SIMPOL thereis currently only support for using PPCS via UDP. Preparation has been made to
support serial connections, but the actual capability has not yet been implemented. Also, it is not
possible to transfer binary files using PPCS in SIMPOL. By using the TCP/IP sockets afile transfer
protocol can easily be created. Sample programs including a client and server program are provided.

Setting Up a PPCS Server Using Superbase

Setting up a PPCS server using Superbase is relatively easy, especialy if you are using Superbase
2001 or later. At thevery least, Superbase 3.6i build 478 or later isrequired sincethat isthefirst release
of Superbase with the PPCS technology. In al cases there is a remote connections wizard provided
with each version and a document included in Adobe Acrobat format that describes how to set up a
PPCS server, client, etc. using the wizard. If you are using 2001 or later, the wizard can save off the
configuration as a standalone program for later use (and modification).

@ Note
SIMPOL Professiona includes a SIMPOL -based PPCS server engine and is licensed
for three concurrent users for testing purposes. The server engine and ar eadn®e. t xt
file that explains how to use it can be found in the si npol ser ver directory in your
SIMPOL installation.

75

Object-Oriented Database Access

Object-Oriented Database Access

Unlike the standard command-based approach provided with SBL, dBase, and other products, in SIM-
POL database accessis done via objects. To use the database accessin SIMPOL easily and effective-
ly it is very useful to learn about the logic behind the decisions on how the database objects were
designed. Once the underlying system is clear, it will feel very natural using the database objects to
accomplish database-oriented tasks in SIMPOL. Also, the object-oriented approach will completely
eliminate many sources of errors that occurred in SBL programs in the past. Asistruein genera in
SIMPOL, there is nothing global about database objects. Thereis no current record, current file, cur-
rent index, etc. Instead, it is possible to have as many current records as required, ssmply by having a
different variable (or element in a set, or element in an array) that references each record object.

In the beginning, thereisthe ppcstypel object. Thisis used to open tablesfrom various backend PPCS
servers. Unlike the implementation in SBL, it is only necessary to create one of these per communi-
cation method, since the connector is not specific to atarget backend (in the case of UDP connections
— in the case of serial connections it would be necessary since this is a hardware limitation). Using
the ppcstypel object, a database table is opened from a backend and a reference to the databasefileis
assigned to a ppcstypelfile variable. At this point we can already retrieve records in sequential order
from the database tabl e, either starting at the beginning or the end. The database file object holds all of
the information necessary to analyze the structure of the database table. There is afirstfield property
that holds a reference to the first field in the database table definition. It contains a property called
next that holds a reference to the next database field in the file definition. The next property of the
last field in the file definition will contain a reference to the first field in the definition thus forming
aring. A similar ring exists for the indexes.

When arecord is selected from the database using either an index object, a database table object, or
arecord object, then a ppcstypelrecord object is returned. This object contains the data, but has no
concept of the actual file description, fields, etc. The reason for thisisfairly technical, but essentially
for it to do so, it would have needed to be arecord object for a specific data type created at the time
the database was opened that was designed specifically for that database file and would have made it
impossibleto easily use the samevariablefor recordsfrom different database tables. As such, to access
the datafor a given field from arecord object it is necessary to make use of the ppcstypelfield object
for the field from which the information is to be read (or to which the datais to be assigned). Thereis
aget () methodandaset () method for reading and writing datafrom and to the variousfields of a
record. Both take afield reference as a parameter although theset () method also takesavaueasits
second parameter. Another approach isto use the member operator. This was specially implemented
for accessing thedatain therecord object in avisually moreelegant way, but hasseveral disadvantages,
such as the fact that it can't use a variable, and if a field name is passed that is incorrect (including
incorrect case) then it will cause aruntime error that cannot currently be trapped. The example below
will demonstrate accessing a record from atable via PPCS and reading the values from the fields.

The beginning of the program starts as usual in the function mai n() . We begin by declaring the
various variables that will be needed for this function. The remainder of the description can be found
directly in the comments of the program itself.

function nmain()
string sResult
i nteger i Errnum
ppcstypel ppcs
ppcstypelfile f
ppcstypelrecord r
ppcstypelfield fld
ppcst ypeli ndex i dx
bool ean bFound

[/ i Errnum MJUST be initialized or there will be
/1 no object in which to return the result

76

Object-Oriented Database Access

i Errnum= 0

/[l W now attenpt to create a ppcstypel object which should
[/l alnost always work. In this case we pass .nul to the
/1 udpport parameter because we don't care which port we
/1 get, we just want one. W have to pass .nul to the named
/| parameter udpport since otherw se the function won't know
/1 whether we want a UDP or a serial (not yet supported)
/] connecti on.
ppcs =@ ppcstypel. new(udpport=.nul, error=i Errnum \

user name="exanpl el1")

[/ W can test for an error value here or for the ppcs
/1 variabl e containing .nul
if ppcs =@ . nul
SResult = "Error nunber " + .tostr(iErrnum 10) + \
" creating ppcs object!{d}{a}"
el se
/1l Now we are going to open the database table using
/1 the ppcstypel object
f =@ ppcs. openudpfil e(" ppcs. super base. co. uk: 1280", \
"CUST", error=i Errnunm
if f =@ .nul
SResult = "Error nunber " + .tostr(iErrnum 10) + \
" opening file "CUST ! {d}{a}"
el se
/[l W got this so far so we have the tabl e open

// Now we are going to |locate the reference to the
/1 index we want to use for selecting the record.
/I The following loop will start at the firstindex

// and then go around until it either finds the desired
/1 index or returns to the first index in the ring.
bFound = .fal se

idx =@f.firstindex
while idx !@ .nul

if idx.field. nanme == "Last Fi rst Nane"
bFound = .true

el se
i dx =@ i dx. next

end if

end while idx =@ f.firstindex or bFound

i f not bFound
SResult = "Index 'LastFirstNane' not found!{d}{a}"
el se
[/ We found the index for our test so now we sel ect
/[l the record that we are | ooking for using the
/1 sel ectkey() method.
r =@i dx. sel ect key("Johnson, Amanda", error=i Errnum

[l 1f the selection fails thenr will not refer to an

/1 object because we did not pass a found paraneter to
/1 the method. When using an inexact match that we

/1 expect mght fail (like |Iooking for Joh*) we woul d

/1 pass a found paranmeter so that we always get the

/1 cl osest matching record returned.

if r =@ . nul

77

Object-Oriented Database Access

e

SResult = "Error nunber " + .tostr(iErrnum 10) + \
" retrieving record!{d}{a}"

se

// W found the record we were | ooking for, so |et

/1 us now output the contents of the record. This

[/ time we will use the get() method and a | oop that

/] tests the datatype of the field to allow us to

/[l format it properly. W |oop around the fields in

/[l the file retrieving each field s name and val ue

/[l and then add it to the result string.

fld =@f.firstfield

SResult = "Record for Amanda Johnson: {d}{a}"
whi | e
if fld.datatype =@ string
SResult = sResult + " " + fld.name + ": " + \

r.get(fld) + "{d}{a}"
else if fld.datatype =@ integer or \
fl d.datatype =@ date or \
fld.datatype =@ tine

SResult = sResult + " " + fld.name + ": " + \
.tostr(r.get(fld), 10) + "{d}{a}"
el se if fld.datatype =@ nunber
SResult = sResult + " " + fld.name + ": " + \
.tostr(.fix(r.get(fld), 100), 10) + \
"{d}{a}"
end if

fld =@fl d. next
end while fld =@ f.firstfield

/1 As you can see fromthe code above, we treat

// dates and times as if they were integers. This
[l 1s because there are no built in functions to

[/ format a date, a tinme, or a datetine. The reason
/[l is that there are too many different ways this
/1l mght be done for different locales and it is

/'l best solved with a SI MPOL-based |ibrary. Such a
/[l library is part of the current distribution but
/1 not relevant for this exanple.

// Now let's get the next record in the sane index
/1 and output that.
r =@r. sel ect(error=i Errnun

if r =@ . nul
SResult = sResult + "Error nunber " + \
.tostr(i Errnum 10) + \
" retrieving record!{d}{a}"
el se

/1 Again we succeeded in getting the next record
/!l without error, so this time we will output the
[l fields expressly using the menber operator for
/1 the ppcstypelrecord object. The advantage to
/1 using the nenber operator is the code | ooks

/] easier to understand. The di sadvantage is that
/[l if the field nanme changes the code will break
/1 whereas the previous version would not. The

/] previous version neither knows nor cares what
/1 the fields are call ed.

SResult = sResult + "{d}{a}Next Record:{d}{a}"

78

Object-Oriented Database Access

SResult = sResult + " RecNum " + \
.tostr(r!RecNum 10) + "{d}{a}"

SResult = sResult + " Firstnane: " + \
r'Firstname + "{d}{a}"

SResult = sResult + " Lastname: " + \
r!Lastname + "{d}{a}"

SResult = sResult + " Organization: " + \
r! Organi zation + "{d}{a}"

SResult = sResult + " Street: " + \
r'Street + "{d}{a}"

SResult = sResult + " CGty: " + rlCty + "{d}{a}"

SResult = sResult + " Country: " + \
r'Country + "{d}{a}"

SResult = sResult + " LastFirstName: " + \
r!Last FirstName + "{d}{a}"

SResult = sResult + " CreditLimt: " +\
.tostr(.fix(r!CreditLimt, 100), 10) + \
"{d}{a}"

SResult = sResult + " Balance: " + \
.tostr(.fix(r!Balance, 100), 10) + \
"{d}{a}"

end if
end if
end if
end if
end if

end function sResult

Aswe can see from the previous program, there is alittle bit more overhead when accessing the parts
of the database programmatically from SIMPOL as compared with SBL, but there is absolutely no
possibility of errorsin the SIMPOL method, since the record object is always aknown quantity. There
are also alarger number of ways to write things so that the program code does not need to know too
much about the actual data to still do its job. This alows us to write more generic and library code
that gradually adds to our ability to do ajob more quickly.

Almost every bit of the preceding program could be applied to accessing a database using the sbmel,
simply by changing the data types and the opening method. In SIMPOL agreat deal of effort has been
invested to ensure that program code will be able to deal with different database typeswithout needing
to be greatly rewritten.

79

80

Chapter 14. Using SBME Databases in
SIMPOL

This chapter will describe in detail the issues surrounding database access in SIMPOL using the Su-
perbase Micro Engine (SBME). The SBME is a hew, next-generation database design that incorpo-
rates support for all of the value data types (as well as some additional data types that have a single
value for an object of that type that is of one of the value types) that are included in the SIMPOL
programming language. The database engine has few limitations and is extremely fast with a very
small footprint (ca. 150 KB).

@ Note

The single-user engine is accessed using the "sbme" component. The multiuser engine
currently only provides PPCS Type 1 access. Thisengineisincluded as athree-user test
version on the same machine where the IDE isinstalled. The multi-user engine compo-
nent "ppsr" is the only current way to access the new database engine for multi-user
access. A later multi-user engine will provide PPCS Type 2, which will alow for the
full array of capabilities provided by SIMPOL. If you are planning to use the multi-user
engine then it is recommended that no use be made of blob, boolean, or datetime fields
since these are not supported for mapping to PPCS Type 1.

Introduction

The SBME database engine is a high-performance database engine that provides a fairly low-level
API for accessing database tables and records. It isnot an SQL-style API but rather atable and record-
oriented one. The current engine provides a storage-only database (no calculations, constants, valida-
tions, triggers, etc.). The format is as follows:

SBME database files have an sbmextension

The file can contain one or more database tables

All of the parts of the database table are contained within the database file

+ Each table consists of one or more fields and O or more indexes

» A field has a datatype that must be one of the value types or else a date, time, or datetime

» Anindex is currently associated with a specific field, though in future may be over multiple fields

One of the more significant points to be aware of is that there is no column width or display format
associated with afield.

Difference Between SBME and SBF's

There are anumber of differences between the SBME database design and that of the older Superbase
format. One thing that immediately is noticeable is the lack of a column width or display format.
Another big difference is that there are no field characteristics like "read only", "required", "non-
stored", nor any validation, default or calculation formulae. The reasons for this are numerous. Ovedr
the years most of the more advanced Superbase programmers have found that the use of these features
tends to cause more trouble than they are worth. The only onesto profit from the use of such features
tend to be very simple databases with little or no significant program code. The more complex an
application becomes the more restrictive the use of these features becomes. As such, the right place
to put these types of featuresisin the code that is responsible for saving recordsin a given table.

81

Programming with SBME Databases

One of the common complaints voiced by some customers was the fact that Superbase databases tend
to clutter up adirectory with many files(sbd, sbf ,sb! , 1 - 999 — indexes). Other customersliked
the ability to change afile definition by simply copying over the sbd file (though thisis not generally
recommended). In the new design, all of the components of the database file are in one container.
Optionally more than one database table can be stored in the same container. Because the SBME API
is so low-level, there is no built-in referential integrity, data dictionary, etc. but if desired, much of
this can be implemented inside of any sbmfile.

Programming with SBME Databases

Essentially, working with SBME databases from a programmatic standpoint is virtually no different
to working with PPCS databases. For a fairly in-depth description please see the section called “ Ob-
ject-Oriented Database Access’ and Chapter 12, Using Databases in SMPOL. The only significant
differences arise in the creation and opening of SBME databases. To open an SBME database, the
new() method of the sbmel iscalled. In that call the name of the database file and the action to take
must be specified. The action can be one of the following characters or combinations of characters:

« O— open
e C—create
« R—replace

* OC — openif exists otherwise create
* RC — replaceif exists otherwise create

Once the file has been opened the sbmel object can be used to retrieve the list of tables and if the
table nameisknowntheopent abl e() method can be used to retrieve areferenceto thetable. From
that point onwards things work identically to the way PPCS works for accessing fields, indexes, and
records other than a difference in terms of the types of information available for the actual objects
(properties and methods for things like readonly, required, etc.).

Creating an SBME database is done by first opening or creating an sbmfile and then by calling the
newt abl e() method. The following function ispart of thedblut i | . sm library that isincluded
inthe | i b directory. The entire source code to the project can be found in the pr oj ect s\ | i bs
\ dblutil directory.

function create_shneltabl e from dbltabl e(type(dbltable) dbSrc, \

sbnel sbnFil e,
string sNewTabl eNane) export

i nteger iResult, iErrnum

string sTabl enane

type(dbifield) fld

sbnelnewt abl e sbmmt

sbnelnewfi el d sbimfl d

sbnelnewi ndex sbmmi dx

i Result = i | MEX_ERR_SUCCESS

if dbSrc =@ . nul

i Result = il MEX ERR PPCSOBJNUL
else if sbnFile =@ . nul

i Result = il MEX ERR SBMEOBJNUL
el se

i f sNewTabl eName > ""
sTabl enane = sNewTabl eNanme
el se

82

Programming with SBME Databases

i Errnum= 0
if dbSrc.type =@ ppcstypelfile
sTabl enane = dbSrc.fil enanme
else if dbSrc.type =@ shbneltabl e
sTabl enane = dbSrc. t abl enane
end if
end if

i f sTabl ename > ""
i Errnum= 0
sbnFile. | ock("shared", iErrnum
if iBrrnum!= 0
i Result = il MEX ERR SBMEOBJLOCKED
el se
sbrmt =@ sbnFi | e. newt abl e(sTabl enane)
if sbmt =@ . nul
i Result = il MEX ERR SBVMETABLECREATEFAI LED
el se
fld =@dbSrc.firstfield

whi | e
sbmfld =@ sbmt . newfi el d(fl d. nane, fl d. datatype)
if fld.index '@ .nul and fld. datatype ! @ nunber
sbmi dx =@ sbmt . newi ndex(sbmfld, 100, "")
end if

fld =@fl d. next
end while fld =@ dbSrc.firstfield

sbmmt . creat e(i Errnum

if iErrnum!= 1Sl MPOL_ERR SUCCESS
i Result = il MEX ERR SBMETABLECOW TFAI LED
end if
sbnFile. commt ()
end if

i Errnum= 0
sbnFi | e. unl ock(i Er r num
end if
end if
end if
end function i Result

From the preceding program code, specifically following the statement i f sTabl enane > ""
the order of events when creating anew tableis:

» Get at least a shared lock on the sbmel object using thel ock() method

e Create a new table with the desired name using the newt abl e() method, which returns a
sbmelnewtable object

 For each field desired create a new field using the newf i el d() method of the sbmelnewtable
object

 If afield should also be indexed then create an index on the new field using the newi ndex()
method of the shmelnewtable object and passing the reference to the somelnewfield object

» Createthetable by calling thecr eat e() method of the somelnewtable object

e Cadl theconmm t () method of the sbmel object to write the changes back to the file

83

Programming with SBME Databases

e Cal theunl ock() method of the somel object

Thereisalso anumber of toolsand library modules being created that are intended to make importing
data and creating files easier. Watch the pr oj ect s directory for ongoing changes.

Part V. Calling SIMPOL
Functions as DLL Calls

Wefelt that oneway to make SIMPOL availablewould beto allow thecalling of SIMPOL functionsasif they were
DLL calls. This could be useful for interacting with other Windows programs and would also assist existing Su-
perbase usersto gradually port their applications to the new language by allowing them to write new functionality
in SIMPOL but still call thefunctionsfrom the older Superbaselanguage. Inthis part of the reference guidewewill
explore how to call SIMPOL functions and programs from Superbase (and other languages) asif they were DLLs.

Table of Contents

15. Calling SIMPOL Functions as DLL CallScccouuiiiiiiiiiii e 89
INEFOTUCTION ...ttt ettt e et e e et e e e e et e e e eeta e eaeens 89
USING SMEXEC ..ottt 89
SMEXEC EXample USING SBLuiiiiiiieiiiii ettt 89
SMEXEC-Compatible FUNCtion 1N SIMPOLoiiiiiiiiiiiece e 93

87

88

Chapter 15. Calling SIMPOL
Functions as DLL Calls

Introduction

In this chapter we will discuss how we might call aSIMPOL program or even just afunctionasaDLL
call from Superbase or Visual Basic. In order to use this functionality from Superbase it is essential
that the user be running Superbase 3.6i build 496 or later, since only as of that release is it possible
to call Win32 DLLs.

Thisfunctionality isnot in asflexible aform as may be provided over the long term, but it is provided
in a usable way in order to promote interoperability between existing Superbase applications and
SIMPOL programs. There are a few limitations such as only a single string argument can be passed
to the function being called in SIMPOL and only a single string can be returned as the result of the
function call to the calling program. This is partly related to the differences in datatypes that are
available to each language. In SIMPOL there are virtually no limitations on the size and precision
of numeric types and the language supports both . nul and . i nf as special values. Strings are also
based on Unicode and are essentially unlimited in size. At another point in the future, there will be a
method of accessing SIMPOL functionsasDLL callsfor interoperability but thenit will be specifically
designed to work with Win32 (and Linux and Mac OS-X) in as transparent a manner as possible.

In spite of the fact that only one string can be passed as an argument to the SIMPOL function, if it
contains TAB-delimited itemsthesewill be asigned to separate string parametersin thetarget function.

Using SMEXEC

There are three API functions that are provided in SMEXEC for allowing callsto SIMPOL functions
from external applications and languages. Those three functions are:

» SMExec_LoadSMPModul e()
» SMExec_Unl oadSMPModul e()
e SMExec_RunSMPFuncti on()

Thefirst of these functionsis used to load a compiled SIMPOL program (either an SMP or an SML).
The second isused to free that program and rel ease the memory that it isusing. Thethirdisused to call
afunction in the program that wasloaded. It isimportant that the return value from theload function be
tested for success (0). If the load has failed, then none of the other functions should be called. Calling
the unload function with an invalid handle can aso result in agenera protection fault (GPF).

SMEXEC Example Using SBL

In this section we will examine a source code program in SBL that makes callsto a SIMPOL library
caledj pegl i b. snl . The complete SBL source code for this program is called SMEXEC. SBP and
isincluded in the sanpl es/ SBL directory.

The program below begins by declaring a few variables that smply hold the location of the various
paths for parts of SIMPOL. It also stores the current directory so that it can be restored later and
prepares Superbase for using API calls.

@ Note
The following program is written in the Superbase Basic Language (SBL). Tofit it into
the available space, lines have occasionally need to be continued on the following line.

89

SMEXEC Example Using SBL

The SIMPOL line continuation character, the backs ash, hasbeen used for this. However,
SBL does not have a line continuation character, so wherever this character is used the
following line must be rejoined to the line containing the character and the character
must be removed!

Example 15.1. SBL program calling SIMPOL function

SUB mai n()
DI M cd$, si npol pat h$, si npol bi n$, si npol |i b$

si npol path$ = FN spath("C:\ Program Fi | es\ SI MPOL\ ")
si npol bi n$ = sinpol path$ + "BIN"
sinpol I i b$ = sinpol path$ + "LIB\"
cd$ = DI RECTORY

REG STER CLEAR

The next line of the program does a change of directory to the SIMPOL bi n directory. Thisis nec-
essary because the SMEXEC32. DLL is statically linked to the SMPCOL32. DLL and if it isnot in the
current directory then the operating system won't be able to find it unlessit is added to the path. SIM-
POL is not installed such that anything has to be added to the path and therefore it is better to make
this change. In the future the change should not be necessary, but to use the functionality at the time
of writing, it is necessary to be in the location of the DLLSs.

Dl RECTCORY si npol bi n$

It isalso necessary to use the fully qualified path name when laoding the DLL on WindowsNT, 2000,
and XP because there is no guarantee that on those OS's that the operating system will look for the
DLL in the current directory. The format used in this example will work on all operating systems
and is therefore recommended. If you put the SIMPOL bi n directory into the path, then the full path
names are not required. In the standard installation the directory is not added to the path.

' * SBU NT UTI LFUNC
' SMExec_LoadSMPMbdul e(PSBUBYTE pnodnane,

b SBRAMSI ZE npdnanechar count ,
'ox SBRAMSI ZE byt esper char,
' PPVA D ppnodi nf o)

REGQ STER si npol bi n$ + " SMEXEC32. DLL", \
" SMExec_LoadSMPModul e, " JCIIM

' * SBUI NT UTI LFUNC SMExec Unl oadSMPModul e(PVA D pnodi nf o)
REG STER si npol bi n$ + " SMEXEC32. DLL", \
" SMExec_Unl oadSMPModul e, " JJ"

SBUI NT UTI LFUNC

SMExec_RunSMPFunct i on(PVO D pnodi nf o,
PSBUBYTE pf uncnane,
SBRAMSI ZE f uncnanechar count ,
PSBUBYTE ppar ans,
SBRAMSI ZE par anthar count ,
PSBUBYTE pout put ,
SBRAMSI ZE maxout put char count ,
PSBRAMSI ZE pout put char count ,

E I I R I R T

90

SMEXEC Example Using SBL

X SBRAMSI ZE byt esper char)
REGQ STER si npol bi n$ + " SMEXEC32. DLL", \
" SMExec_RunSMPFuncti on", " JJCICIFIMI"

The program now declares a few variables that are used with the calls to the SMEXEC functions. It
then clears the screen, prints the start time (this for doing time tests of calls to SIMPOL functions),
and assigns the SIMPOL program file and function names to their respective variables.

DI M smp$, func$, par ans$, h&%{ 10) , r es$, pos%o
CLS

? "Start time: " + TIME$S (NOW, "hh:mmss.sss") + " - ";
? DATE$ (TODAY ,"dd nmm yyyy")

?
smp$ = sinpollib$ + "JPEG.IB. SM."
func$ = "snmexec_get|j pegsi ze"

Now we load the compiled SIMPOL program/library (*. snp or *. sm). The parameters to the
function call are the program/library name (smp$), the length of the program/library name parameter
(LEN (snp$)), the number of bytes per character (always 1 in SBL but it could be 2 if called by
aprogram that is operating internally in Unicode), and a pointer or reference to along integer where
the handle can be stored if the function is successful (h&%4 1)). In our example, if the call to load the
library is successful, a handle to the library is returned in the variable h&%{ 1) . It is necessary to use
an array here since the function needs to assign the handle and this is the only reasonable way to do
thatin SBL. Array variables are passed by reference rather than by value. It isalso possibleto |oad any
number of SIMPOL programg/libraries at the same time and to make calls to them as needed, freeing
them at the end. They do not need to be loaded and then unloaded right away.

h&% = CALL ("SMExec_LoadSMPMbdul e", snp$, LEN (snp$), 1, h&% 1))

At this point we can reset the directory. Prior to loading the program the current directory needsto be
that of where the SIMPOL components are located. After the program is loaded the directory can be
changed. Thisis atemporary restriction and it will be removed in later versions.

DI RECTORY cd$

Now we test the return value from loading the program and if it is not equal to zero then something
has gone wrong. If an error occurs here, the likelyhood is that the file was either not found or that a
required component could not be loaded. The return values will be SIMPOL error values.

| F (h&% <> 0) THEN
? "Error " + STR$ (h&%".") + " loading '" + snmp$ + "'"
ELSE

Only one parameter can be passed to the SIMPOL function and it is always a string, but it is easily
possible to place multiple parametersinside the string and to separate them with TAB characters. The
T AB-separated entrieswill be assigned in order to each argument (which must be of type string) within
the function paramter list. The maximum size of the parameter that can be passed when calling from
SBL isthe size of a Superbase string, which is 4000 characters. When calling from another language
like Visual Basic, the limitation would be the maximum size of aVB string. In the case of thisexample
the parameter being passed is the name of a JPEG file from which the size of the image isto be read.

91

SMEXEC Example Using SBL

paranms$ = " SBLOGO. JPG'

The maximum size of the return value, which is always a string, is 4000 characters. Here the variable
is being presized to accomodate the maximum amount being returned.

res$ = SPACE$ (4000)

Now we call the function in the SIMPOL program/library. The return value of the call indicates
whether SIMPOL was able to call the function and if the function had any errors. It is not the return
value of the SIMPOL function. That is returned in the r es$ parameter. The h&%variable receives
the return value and the parameters to the function call are the handle to the program/library that we
received when it was loaded (h&% 1)), the name of the function we are calling in the loaded SIM-
POL program/library (f unc$), the length of the function name that we are passing in the previous
parameter (LEN (f unc$)), the string parameter that we are passing to the function we are calling
(par ans$), the length of the value passed as the parameter (LEN (par ans$)), avariable to hold
thereturn value of our function cal (r es$), the size of thereturn buffer (4000), apointer or reference
to along integer variable that will receive the number of characters written to the return buffer (h&
% 2)), and the number of bytes per character that should be used in the return buffer (in the case of
SBL thisisalways1).

h&% = CALL ("SMeExec_ RunSMPFuncti on", h&{ 1), func$, \
LEN (func$), parans$, LEN (parans$),\
res$, 4000, h&% 2) , 1)
I F (h&% <> 0) THEN
? "Error " + STR$ (h&% "9999");
? " executing '" + func$ + """
ELSE

Assuming that the function call succeeded, we can retrieve from the return value inr es$ the actual
string that may have been returned. For safety's sake we are using the LEFT$() function to retrieve
the number of characters that we were told was returned in the result. Then we output the results of
the function call, once as we received it to show what the return value actually was, and once after
having interpreted it. Normally a programmer would decide their own best return format and simply
interpret the results as needed.

res$ = LEFT$ (res$, h&% 2))

? "Size of the returned result string: ";

? STR$ (h&¥%2),".")

? "Result: '" + res$ + "'"

pos%®b = INSTR (res$," ")

| F pos%% THEN
? "The size of the JPEG i nage called: " + parans$;
? " is " + FN nunmeric(LEFT$ (res$, pos%®o- 1));
? "x" + FN nuneric(MD$ (res$, pos%®o+ 1))

END | F

END | F

Now we need to unload the SIMPOL program since we are finished using it. Forgetting to unload
the program could result in memory and resources not being freed. Superbase does not free resources
on behalf of external programs when it closes. It is the responsibility of the programmer that uses
external callsto do that. We pass in the handle to the program (h&%{ 1)) in the unload call. If this

92

SMEXEC-Compatible
Function In SIMPOL

handle isincorrect or does not exist, then a GPF can occur, so it isimportant to maintain these handle
values carefully.

h&% = CALL (" SMExec_ Unl oadSMPModul e", h&%4 1))
END | F

Finally, we output the finishing time for comparison purposes and clear the registered API calls from
memory.

? :? "BEnd time: " + TIME$S (NOW, "hh: mm ss.sss") + " - *;
? DATE$ (TODAY ,"dd mmm yyyy")

REG STER CLEAR

END SUB

The preceding program should provide a useful template for building calls to SIMPOL functionality
into aprogram based on SBL . The basic approach should also be clear to anyone working with similar
languages such as Visual Basic, although the REGA STER command would need to be replaced with
the Decl ar e syntax.

SMEXEC-Compatible Function In SIMPOL

In the previous section we discussed in-depth a program in SBL that calls a SIMPOL function in a
library calledj pegl i b. sm . Theactual function in the SIMPOL source code needsto be written to
the interface provided by SMEXEC. In this section we will ook at that function.

The original function prototypein SIMPOL is as follows:

function getjpegsize (string sFilename, integer iWdth, integer
i Hei ght) export

Unfortunately this function cannot be called via SMEXEC directly, since functions that are called
from SMEXEC, aswe learned in the previous section, can only take a single string argument and can
only return a string result. That means that we will have to create an interface function that can be
called via SMEXEC and that can then call the desired function and return the results in the correct
format. For ease of understanding later, we can call this function smexec_get j pegsi ze() . The
source code for the interface function is shown below:

functi on snmexec_getj pegsi ze(string sFil enane) export
string sResult
i nteger i Wdth, iHeight, iResult

iWdth =0

i Height = 0

i Result = getj pegsi ze(sFil enane, i Wdth, iHeight)
if i Result ==

sResult = "w" + .tostr(iWdth, 10) + " h:" + \
.tostr(i Height, 10)
el se
sResult = "e:" + .tostr(iResult, 10)
end if
end function sResult

93

SMEXEC-Compatible
Function In SIMPOL

In the interface function the only parameter passed inisthesFi | enane parameter and the values of
the two integers are converted to strings and passed in the return value if the function succeeds and
if it failsthe error value is passed in the return value. The programmer is free here to implement any
method desired to transmit the information via the string result back to the caller.

94

Part VI. Working with Sockets

One of the more powerful features that is built into SIMPOL is the support for TCP/IP. This includes both client
and server components. Using these componentsit is possible to build awide range of programs that can interact
natively with the Internet. Email clients, web servers, mail servers, file exchange servers and any number of other
programs that might require communication over the Internet can be built on top of the SIMPOL sockets support.
In this part we will explore basic client and server functionality, which the user can continue to expand upon as
required.

Table of Contents

16. Client Applications USING TCP/IPoouuiiiiii et 99
INEFOTUCTION ...ttt ettt e et e e et e e e e et e e e eeta e eaeens 99

ThE tCPSOCKEL TYPE ..ttt ettt eeeaas 99

To BIOCK, Or NOt t0 BIOCK ... civiiiiiiiiie e 99
Practical Example — URLDUMPoiiiiiiiiii et e 99

[N the BEGINNING ... ceeeiiiiiiii e et e e e e era e ees 100

The Main BVENE ... e 100

17. Server Applications USING TCP/IPciiiiiicii e 107
INEFOTUCTION ...ttt ettt e e et e ettt e e et et e e e eenaaeaees 107

The tCPSOCKEISEIVES TYPI ...ttt ettt et e e e e e eeens 107
When @ CoNNECEION OCCUISccuuuueiiiti ettt e ettt e et e et e e e et eeeebe e eenes 107
Exiting the | i st en() Method ... 107

97

98

Chapter 16. Client Applications Using
TCP/IP

Introduction

The best place to begin when learning about the tcpsocket type is building a simple client program.
In this chapter we will examine the code that is used for a basic URL dumping program. It makes a
connection to aweb server and requests a resource using the GET method of the HTTP protocol. For
details of how to program HTTP-compliant applications, the reader is directed to the various RFC's
that are associated with this protocol (starting with RFC1945).

@ Tip
One of the more useful tools when building any type of TCP/IP-based serviceisthe pro-
gramt el net . Telnet providesaconsolewith which the user can examinewhat isgoing
on when a server connection is made and then can test the interaction with the server.
Regardless of whether the objectiveisto build a server or aclient, it is aways useful to
have a console available with which to test the interaction of the target components.

The tcpsocket Type

SIMPOL's tcpsocket type provides the necessary functionality to create powerful TCP/IP-based pro-
grams. The properties of the object are not terribly important for client programs. They are destination
and port; both are read-only and contain the destination | P address and port number and the local port
number used. More interesting for client programs is the methods: new() , sendbl ob(), send-
string(), receivebl ob(),andreceivestring(). Thenew() method of the tcpsocket
type is used to create an object of this type as the result of making a TCP/IP connection to a server
using the dest i nat i on parameter provided to the new() method. The two receive methods are
for receiving dataand the two send methods for sending data. Either can be used, but the blob versions
will normally be more efficient since most protocols over TCP/IP tend to use byte-oriented data and
not Unicode.

To Block, or not to Block ...

The methods of the tcpsocket type do not block in SIMPOL. However, if not i neout is specified
then the default value of . i nf will result in the operation never exiting. When waiting on data using
either of the receive methods if no data ever arrives the program will wait forever (or until the socket
closes). It is far better to control this in the program by setting a timeout value and using it as the
optimum time to exit if nothing happens. By placing the receive operation in aloop, the program can
continue to loop until no dataiis received within the allotted timeout period. At that point the program
can exit, or in the case of a GUI-style program it can ask the user whether to retry or cancel, etc.

Practical Example — URLDump

The program ur | dunp. sma implements a basic HTTP client that permits the sending of a GET
request to aweb server. It then receivesthe result and outputs the entire returned page into atarget file
name. Although the same thing can be done with a browser, what makes this program interesting isthe
fact that it also outputs the headers that were sent from the server, which the browser normally strips
off. These arethe most interesting part, especially if you aretrying to track down why something might
be going wrong. The code used in this example could also be reused to eventually provide a light-
weight browser component or aweb crawling robot or any of a number of different useful programs
based on the HTTP protocol.

99

In the Beginning ...

In the Beginning ...

To start with, we need to create a few useful symbolic constants. The use of symbolic constants is
what makes a program readable and easy to maintain. Just as using stylesin adocument makesit easy
to change the look and feel of adocument very quickly, the sameistrue of agood computer program.

Example 16.1. Constants portion of the urlget program

LELTTELEL i rirrrr
/1 Synbol i ¢ Constants /1
LELTTELEL i rirrrr

constant sURLID o

const ant sSTDPORT ":80"

const ant i Tl MEQUT 1000000

constant sCET "CGET"

constant sSSP o

constant sCRLF "{d}{a}"

constant sSHTTPVER "HTTP/ 1. 0"

const ant sURI BASE "http://"

const ant sCONTENTLENGTH "content-length:"

constant sHTTP "HTTP"

const ant sl GNORECHARS " {d}{a}"

const ant SERRTXT_CONNECT "Failed to connect to host"
const ant sSERRTXT_SEND "Error sending request to host,

error nunber:

const ant SERRTXT_RECEI VI NGDATA "Error receiving results from\

host, nunber:
const ant SERRTXT_FI LEOPENFAI LED "Error opening output file"

const ant SERRTXT_PAGE 'Page '
const ant SERRTXT_NOTFOUND "' not found"
const ant SERRTXT_SUCCESS "' successfully retrieved"

There are two types of constants listed in this section, one set consists of the values used in various
parts of the program, the other is specifically error and success messages that are returned to the user.
Many of these values may not currently make much sense, although the name of the constant may
help clarify their meaning and later in the actual program code how they are used will also help clear

things up.

The Main Event

Now that we have established the constants we will be using (obviously, these actually got created
during the writing and restructuring of the program, not before the work began), let's have alook at

the program code.

Example 16.2. Beginning of themai n() function of the urlget program

function main(string sUl, string sQutfile)
t cpsocket http
string sDonmai n, sResult
i nteger i Errnum i Pos, iContentlLength, iPos2
fsfil eout putstream fpo
bl ob bContent, bReceive, bTnp, bHeader, bStatus

100

The Main Event

sResult = ""
bTmp = ""

if .instr(sUl, sURLID) == 0
sUrl = sURIBASE + sUrl

end if

sDomai n = get domai nroot (sUrl)

/1 Now do a quick check and make sure that if they provided
// a URL |ike wwv foobar.comw thout the ending slash, that
[l we add it.

if sDomain == .rstr(sUl, .len(sDomain))
sUl =sUl + '/

end if

if .instr(sDomain, ":") ==
sDomai n = sDomai n + sSTDPORT

end if

The start of the program is the mai n() function. It takes two parameters. the URL of the page to
retrieve and the name of the output file in which the retrieved page should be stored. After declaring
and initializing the variables the program first evaluates the URL and extracts the root domain from
it, since tht is what is needed to create the connection. It also checks the URL to ensure that if a base
domain was based that the closing slash has been appended (otherwise it adds one) since without the
closing slash it will fail when attempting to retrieve the default page from the web server. Finaly the
root URL ischecked to seeif it includesthe optional port information. If it does (such as: 8080) then
the program does nothing but if there is no port information (the normal case) then it adds: 80 to the
end of the domain root. Thisis necessary since the first parameter to the tcpsocket.new() method is
the destination in the format of either | P addr ess: port or donai n nane: port.

Oncethe basic initialization has been completed, the program then attemptsto open a TCP/IP connec-
tion to the web server named inthesUr | parameter. The variable was named ht t p to make clear to
anyone reading the source code what the object is used for.

Example 16.3. Creating the socket connection in the urlget program

i Errnum= 0
http =@t cpsocket. new(sDomai n, error=i Errnum

If the connection fails, an error message is assigned to the return variable and the program exits. If itis
successful, however, then the GET request is formulated and sent to the web server viathe tcpsocket
object referenced viathe ht t p variable.

Example 16.4. Beginning the TCP/I P conver sation in the urlget program

if http =@ . nul
sResult = sERRTXT_CONNECT + sCRLF
el se
/1 Full-Request and Full - Response use the generic nessage
/1 format of RFC 822 for transferring entities. Both
/1l messages mmy include optional header fields (al so
/1 known as "headers") and an entity body. The entity

/! body is separated fromthe headers by a null |ine

/[l (i.e., aline with nothing preceding the CRLF).

/1

/1 Full -Request = Request-Li ne ; Section 5.1
/1 *(Gener al - Header ; Section 4.3

101

The Main Event

/1 | Request - Header ; Section 5.2
/1 | Entity-Header) ; Section 7.1
/1 CRLF

/1 [Entity-Body] ; Section 7.2
/1

[l This is known as a full request in the format of HITP
[/ 1.0 but without any additional headers or an entity
/1 body, therefore the closing second CRLF to conpl ete
/1 the message:

/! Request-Line = Method SP Request-URI SP HITP- Ver si on
/1 CRLF

bContent = sGET + sSP + sUrl + sSP + sHITPVER + sCRLF + \
SCRLF

/1 Although it may not normally be necessary, it is far
/1l nore elegant to use a socket that will not wait

/1 forever. By setting a tinmeout on the various socket
/1 operations (default is .inf -- never) we remain in

/[l control of the program so that if a long tine passes
[/ with no or insufficient activity, the program can

[/l exit properly. In a GU -style programthe user can be
/| asked whether to continue waiting or if they wish to
/1 cancel the operation.

htt p. sendbl ob(bCont ent, tineout=1, error=i Errnun

Assuming that there is no error when sending the request, the program now prepares to receive the
response. The program sets up aloop to receive the response from the server. As described earlier, to
ensure that the program doesn't hang while waiting for aresponse (which could happen if the server or
the connection went down after the request was sent), the loop is entered and ther ecei vebl ob()
method is called and set to time out when the standard timeout value expires. The loop will only exit
if an error occurs, nothing is received on the connection within the scope of the time out period, or the
content received contains two carriage-return plus linefeed pairs.

@ Note
Technically thisimplementation isnot asforgiving asit should be, since according to the
standard published in RFC-1945 applications should be reasonably tolerant in terms of
which formatting they accept and the carriage return and linefeed pair specifically should
be treated as merely linefeed and any carriage return should be dropped (this supports
UNIX-based programmers where carriage return is not normally considered to be part
of the end of line character).

Example 16.5. Retrieving the header from the web server in the urlget program

if iErrnum!= 0
sResult = sERRTXT _SEND + .tostr(i Errnum 10) + sCRLF
el se
bRecei ve = ""
/1l Now we retrieve the header (it may be nore than
/1 just the header that comes in, but we are technically
/] interested in the header at the nmonent).
bHeader = ""
whi | e

102

The Main Event

bTmp = ""
bTnp = http.receivebl ob(ti neout =i TI MEQUT, error=i Errnum
bHeader = bHeader + .if(bTnp > "", bTnp, "")
i Pos = .inbl ob(bHeader, .toblob(sCRLF + sCRLF))
end while iErrnum!= 0 or bTnp <= "" or iPos > 0

The previous receive loop may or may not have received the entire page but it should have received
either the entire header or it exited for some other reason. The next piece of code teststo seeif, in fact,
it did receive the header and the associated separator. If so, the portion following the header (minus
the separator) isassigned to the variable bRecei ve and the header alone isreassigned to the variable
bHeader .

Example 16.6. Checking theresponse code in the web page header in the urlget
program

// Now that we have received the entire header, we

/'l exam ne the header The first thing to evaluate is

/1l the response code, since it needs to be in the 2XX
/1l class for success. If it is a 4XX then we won't be
[/l getting any content back.

if iPos > 0
bRecei ve = . subbl ob(bHeader, iPos + 4, .inf)
bHeader = .subbl ob(bHeader, 1, iPos - 1)
end if

The next step is to check the header and see what type of response was received from the web server.
Unless the web server isusing HTTP 0.9 there should be a response code. If there is none, then all
we will get back is the body of the response, which will either be the requested page or some error
text. If thereis afull response, then we can evaluate the status line and see if the request succeeded.
If it did not, then there is no additional content to retrieve. ThebRecei ve variableis set to be equal
either to its current value if it has any content or else to the empty string. This is to ensure that the
concatenation of the variables later does not result in avalue of . nul .

Example 16.7. Parsing the web page header in the urlget program

/1l After receiving and interpreting a request nessage,
/'l a server responds in the formof an HTTP response
/'l nmessage.

/1

/1

/1 Response = Si npl e- Response | Ful | - Response

/1

/1 Si npl e- Response = [Entity-Body]

/1

/1 Ful | - Response = St at us-Line ; Section 6.1
/1 *(Ceneral -Header ; Section 4.3
/1 | Response-Header ; Section 6.2
/1 | Entity-Header) ; Section 7.1
/1 CRLF

/1 [Entity-Body] ; Section 7.2
/1

/] Status-Line = HTTP-Versi on SP Status- Code SP

/1 Reason- Phrase CRLF

[/ "HTTP/" 1*DIGT "." 1*DIAT SP 3DIG@ T SP PHRASE CRLF
/1

103

The Main Event

/[l Either we will get a sinple response or a full
/| response.

i f .subbl ob(bHeader, 1, 4) == .tobl ob(sHITP)
i Pos = .inbl ob(bHeader, .toblob(sSP))
if iPos >0
bSt at us = . subbl ob(bHeader, iPos + 1, 3)
end if
end if
if bStatus > "" and bStatus[1] != "2

/1 The page was not found for sone reason

/1 1f the bReceive section is enpty, we need to
/] set it to the enpty blob (and not .nul) for
/1 output |ater.

bReceive = .if(bReceive >= "", bReceive, "")

Assuming that the request succeeded the next thing to look for isthe content length field in the header.
Once we either have a content length value or we establish that there is not one to be found, the final
step is to read the remainder of the output from the web server. The content length can assist usin
deciding when to stop, but it is not necessary, nor is it always correct, according to the standard, but
for the purpose of this program we will assume that it is.

Example 16.8. Retrieving the web page content in the urlget program

el se
/1 and | ook for the "content-I|ength" header field.
i ContentlLength = -1
i Pos = .inblob(.toblob(.|case(bHeader.getstring(1, .inf,\
1))), .tobl ob(sCONTENTLENGTH))

if iPos > 0
i Pos2 = .inbl ob(.subbl ob(bHeader, iPos + \
.1 en(sCONTENTLENGTH), .inf),\
.t obl ob(sCRLF))
if iPos2 >0
bTnp = . subbl ob(bHeader, iPos + .| en(sCONTENTLENGTH), \

i Pos?2)
i ContentLength = .toval (bTnp.getstring(1l, .inf, 1),\
s| GNORECHARS, 10)
end if
end if

/1 1f we found a "content-I|ength" header, then we know
/1 how nmuch data is still to conme. If we don't, then we
/1l can only rely on the tineout and continually | oop

/1 until we receive nothing on the connection.

if i ContentlLength >= 0
whi | e bRecei ve. size < i ContentLength
bTmp = ""
bTnp

htt p. recei vebl ob(ti meout =i TI MEQUT, \
error=i Errnun
bRecei ve = bReceive + \
Lif(bTmp > "", bTnp, .toblob(""))
end while iErrnum!= 0 or bTnp <= ""
el se

104

The Main Event

whi | e
bTnp
bTnp

http. recei vebl ob(ti meout =i TI MEQUT, \
error =i Errnunm
bRecei ve = bReceive + \
i f(bTmp > "", bTnp, .toblob(""))
end while iErrnum!= 0 or bTnp <= ""
end if
end if

Now that we have al of the output from the web server (regardiess of how much that actually is) itis
time to formulate the response to the user, either one of success or failure. Also the output from the
web server needs to be written to the output file.

Example 16.9. Returning theresultsto the user in the urlget program

/[l Finally, we deal with the result, which is either
/!l success or failure. If failure, we need to tell the
[l user what went w ong.

if iErrnum!= 0 and i Errnum!= 705
SResult = SERRTXT_RECEI VI NGDATA + \
.tostr(i Errnum 10) + sCRLF
el se
fpo =@fsfil eout putstream new(sCQutfile, error=i Errnum
if fpo =@ .nul or iErrnum!= 0
sResult = sERRTXT_FI LEOPENFAI LED + sCRLF
el se
if bStatus > "" and bStatus[1] != "2
sResult = sSERRTXT_PAGE + sUrl + \
SERRTXT_NOTFOUND + sCRLF
el se
sResult = sSsERRTXT_PAGE + sUrl + \
SERRTXT_SUCCESS + sCRLF

end if
f po. put bl ob(bHeader + .tobl ob(sCRLF + sCRLF) + \
bRecei ve)
end if
end if
end if
end if

end function sResult

105

106

Chapter 17. Server Applications
Using TCP/IP

Introduction

In the previous chapter we discussed the creation of client applications using TCF/IP. In this one
we will explore the other side of the process, a TCP/IP-based server program. In SIMPOL TCP/IP
server programs are largely similar to client programs except in one specific area: the initialization of
the program. Aside from that, they merely use a tcpsocket object to conduct the opposite half of the
conversation to that of the client.

The tcpsocketserver Type

Server programs make use of the tcpsocketserver type for their initialization. The new() method
takesaport number and aner r or object as parameters. The port number must bein the range from
1 through 65535. More importantly it is advisable that the port should be appropriate for the type of
service being supplied. If you are implementing a web server, then port 80 is appropriate. Check for
the standard port assignments and try to use one that is either appropriate for a standard service or one
that is generally unused. Also, unless you are implementing a service that normally uses a port below
1024, it is strongly recommended that a port in the range from 1025-65535 be selected. Ports between
1and 1024 arein arangethat istypically restricted and they may not as easily passthrough afirewall.

Assuming that a tcpsocketserver object is successfully returned from the new() method, the only
thing left to doisto call thel i st en() method of the object. Thel i st en method takes four para-
meters: af unct i on reference, ar ef er ence to an object of any type, ati neout vaue, and an
error object. The first of these is areference to the function that is to be called when a connection
is made, the second is an optional reference to any object type. The object would typically be some
user-defined datatype holding references to resources that are commonly needed by each connection,
such as database table references, areference to the tcpsocketserver object, etc. Thet i meout value
would probably be set to . i nf for most systems. The final parameter should by now be familiar. It
is an integer object that will be filled with an error value in case anything fails while trying to listen
on the port.

When a Connection Occurs

When a client connects to the port on which the server is listening, SIMPOL makes a call to the
function referred to by the function reference passed into thel i st en() method. The function must
defined with the following prototype:

f uncnane (tcpsocket connect i onnane, type(*) user - def i ned-type)

Thefirst parameter isthe tcpsocket object representing the connection from the caller and the second is
the optional user-defined object (thiscan be. nul). Each connection will begin anew thread that starts
by calling the function reference passed to the | i st en() method. The conversation with the caller
then takes place in exactly the same way that a conversation would take place in a client application
(see the previous chapter for details). When the function ends then the thread will also end.

Exiting thel i sten() Method

Callingthel i st en() method of thetcpsocketserver object resultsinthe codein that thread halting at
the call to the method until either an error occurs, the timeout expires, or thebr eak() method of the
tcpsocketserver object is called. At that point, the original thread wherethel i st en() method was
invoked will continue execution. If that resultsin the object going out of scope, which would normally

107

Exitingthel i st en() Method

destroy the object, that will only happen if no thread is running that was invoked via a connection to
the object and no other reference to the object still persists. A connection can be used to shutdown or
restart the server if the programmer chooses to implement such functionality. This would require that
areference to the server object also be passed to the function that is called for each connection.

108

Part VII. User-Interface Components

SIMPOL providesanumber of different componentsfor interacting with the user interface. Thisincludeswindows,
forms, and common dialogs. Some programming environments only provide forms and fail to actually provide
windows themselves, but with SIMPOL we have chosen to provide thefull range of possibleitemsin order to give
the greatest range of functionality to the programmer. User-interface components are the basic building blocks
that can make a program easy to use or a nightmare for the user, which of these depends on the choices made
by the programmer. When designing a user interface, it is important that the programmer design for simplicity
and ease of use. It aso helps if they actually have direct contact with those who may be using the interface, to
get useful feedback.

Table of Contents

18. Using the wxWidgets Component in SIMPOLooviiiiiiiiiiii e 113
WINAOWS 8N DIBIOGSceeviiieeiiiie ettt ettt e e e e e eees 113
Introduction to Windows and DIi@lOgscccuuuieiiiiiiieiiiiieeeei e 113

Creating a SiNGle WINAOWcoouuiiiiiiiiiieiei e 114

Creating MUltiple WINAOWScoouuiiiiiiieie e 114

WOrKing With DI@lOGScoeuuuiiiiiiiie ettt 116

Menu Bars, Menus, and MenU ITEBMSiuiiiiiii e 121
FOrms and FOrmM CONIOISuieiiiiieeeeii e 123
INErOdUCEION £0 FOMIS ...t 123

Creating SIMPIE FOMS ..ot et 123

Working with FOrm CONtrolSviiiiiiiiiiii e 125

The Grid CONLIOI ... 129

SUMMBIY ettt et et et e it e e e e e e e e eeens 131

COMIMON DIAIOGS ...ttt ettt ettt ettt e et e e e e s 131
Parting NOLES ...ttt ettt ettt e e e e 131

19. Common Dialogs and Other Ul Utilities in SIMPOLocooviiiiiiiiiieiiiiieeeiieeeeeen, 133
Common Dialogs iN SIMPOLoouuiiiiiiicii e 133
Message BOXES iN SIMPOLcoouiiiiiii et 134

111

112

Chapter 18. Using the wxWidgets
Component in SIMPOL

In this chapter we will cover the basics of using the wxWidgets support in SIMPOL. Currently this
component isavailable for Win32 and Linux. Other platformswill follow. We have every expectation
that the other platformswill come up fairly quickly, since the wxWidgets toolkit is by nature a cross-
platform toolkit.

@ Note
For information about developing data-aware form applications, see Part X, “Program-
ming Data-Aware Form Programs’.

All of the main examplesin this chapter are availablein the pr oj ect s\ exanpl es directory.

Windows and Dialogs

Introduction to Windows and Dialogs

The window support in SIMPOL using the wxWidgets component is designed to allow the creation
of a broad variety of windows. Currently we only support the creation of a top-level window or a
diaog. The dialog can be either modal or non-modal. The windows can have either sizeable or smple
borders; they can have various types of controls such as vertical and horizontal scroll bars (in various
styles), the maximize button, the minimize button, the visibility button (this is the close button — it
is called the visibility button in SIMPOL becauseit only affects whether the window is shown or not,
it is not destroyed when the user clicks this button, that is |eft to the programmer). For full details of
what is available, see the "wxwindow" entry in the "The wxWidgets-based (WXWN) Components'
of the "Components" appendix in the "SIMPOL Language Reference’.

@ Note
If you wish to have scrollbars on the window, or specify which buttons are shown, this
must be decided when the window is created, these things cannot be modified after the
window has been created!

Windows are not ssimply provided to house aform, although to start with, that is all that they are able
to do. Windowsin SIMPOL have been designed with the idea of containership, so that later on, other
types of content can be placed into a window without requiring the additional overhead of placing
that content on a form. An example might be a terminal or console control that is used to provide a
console window with output from the program and input from the user. Another use might be to house
a document filter for display of images and other content types in a free-floating window. For this
reason it is not a good idea to get into the habit of thinking that windows and formsin SIMPOL are
synonymous. It is better to think of aform as one of the types of content that awindow can provide.

In order to process the events that occur when awindow is shown, there is a specia function, called
wxprocess() thatisresponsiblefor processing al of the eventsthat occur in the wxWidgets-based
controls in all windows (except for modal dialogs). This function takes a single parameter that tells
it how long to process events before returning. In many cases, you may wish to leave the program in
this processing state for the entire duration of the program once you have done the initialization and
shown the first window. In that case, passing the value . i nf to the function will keep it processing
messages until you call the wxbr eak() function. As an alternative, you can place the wxprocess()
call in aloop and have it exit the call after a set period of time.

113

Creating a Single Window

Creating a Single Window

It is best to start out working with windows by creating a single standard window. Examine the small
example program below (it can be found inthe pr oj ect s\ exanpl es directory.

Example 18.1. Creating a Single wxwindow

function main()
wxwi ndow w
i nteger i Errnum
string sResult

i Errnum = 0
w =@ wxwi ndow. new(0, 0, 640, 480, captiontext="Miin test w ndow', \
error =i Errnunm
if w=@ .nul
SResult = "Error nunber: " + .tostr(iErrnum 10) + " opening \
mai n wi ndow{d}{a}"
el se
w. onvi si bi | i tychange. functi on =@ qui t
wxprocess(. i nf)
end if
end function sResult

function quit(wxw ndow w)
wxbr eak()
end function

As can be seen from the above example, the window is created by calling the new() method of the
wxwindow type. Almost all of the features of the wxwindow object can be specified during creation,
and some must be specified at that time since they cannot later be changed. The example defaults
to showing the window once it has been created, as well as various other features, such as having a
system menu, minimize and maximize buttons, making the window sizeable, and so on. The next thing
is the assignment of a function to handle the onvisibilitychange event. This event is called when the
user takes some action to dismiss the window. Instead of the window being closed, it is hidden. If the
programmer has defined a handler for the onvisibilitychange event, then that function will be called
and it will be passed the object responsible for the call, in this case the wxwindow object represented
by the variablewin the mai n() function.

In the example the argument to the wxpr ocess() function was the value . i nf , soit is essential
to assign an event handler to the window's onvisibilitychange event. Otherwise the window will be
hidden when the user clicks on the Close button but the thread will continue indefinitely and since
thereisno longer any method of closing the window the program will not exit unless closed externally

(using Ctrl+C from the command line or Project - Stop Execution from the IDE).

Creating Multiple Windows

Building upon the beginning made in the previous section, creating additional windows is also quite
simple. The following program demonstrates the creation of the main window from the first example
followed by the creation of two other windows.

Example 18.2. Example of Creating Multiple Top-L evel wxwindows

114

Creating Multiple Windows

function main()
wxwi ndow w, w2, w3, w4
i nteger i Errnum
string sResult

i Errnum = 0
w =@ wxwi ndow. new(0, 0, 320, 240, captiontext="Miin test \
wi ndow', error=i Errnun
if w=@ .nul
SResult = "Error nunber: " + .tostr(iErrnum 10) + " opening \
mai n wi ndow{d}{a}"
el se
w. onvi si bi |i tychange. functi on =@ qui t
W2 =@ wxwi ndow. newm 320, 0, 320, 240, captiontext="Second test \
wi ndow', error=i Errnum\
menubut t on=. f al se, border="si nple",\
backgr oundr gb=0xFFFFFF, vscrol | bar=.true,\
hscrol | bar=. true)
if w2 =@ . nul
SResult = "Error nunber: " + .tostr(i Errnum 10) + \
" openi ng second wi ndowd}{a}"
el se
w3 =@ wxwi ndow. newm 0, 240, 320, 240, captionbar=.false, \
error=i Errnum vscrollbar=.true)

if w3 =@ . nul
SResult = "Error nunber: " + .tostr(i Errnum 10) + \
" opening third wi ndow{d}{a}"
el se

w4 =@ wxw ndow. new(320, 240, 320, 240, \
captiont ext ="Fourth test wi ndow', \
error =i Errnum maxbutton=.false, \
backgr oundr gb=0xCOCOCO0)

W2. onvi si bi I i tychange. functi on =@ qui t

w3. onvi si bi I i tychange. functi on =@ qui t

w4. onvi si bi I i tychange. functi on =@ qui t

wxprocess(. i nf)

end if
end if
end if
end function sResult

function quit(wxw ndow w)
wxbr eak()
end function

The program above is somewhat more complicated than the earlier program, but the basi ¢ technique of
creating the windows hasn't changed. Please note that all of the windows are top level windows. The
way the program is currently written, closing any of the windows will close all of them. This could
easily bemodified to use adifferent (or no function) to handlethe closing of all but one of thewindows,
to prevent the program from exiting except, for example, when the main window is closed. The second
window has been created so that it cannot be resized and has no buttons or system menu. It can be
closed only using the Alt+F4 keyboard combination, as can the third window, which has no caption
and therefore no close gadget or system menu. The fourth window can be resized but not maximized.
Most commonly you might actually make the window not resizeable and take away the maximize
buttonif you wanted to prevent any resizing. Two of thewindows have the default background window
color for the operating system, one has the color white and the last has the color gray.

115

Working with Dialogs

Working with Dialogs

Dialog windows in SIMPOL are very similar to regular windows. The only significant differenceis
the fact that dialogs can be shown modally. That means that no further access to the application via
the GUI isavailable aslong as the dialog is displayed. The user must deal with the modally displayed
dialog before they can continue. This is the way most dialogs are displayed. Another type of dialog
is the non-modal dialog. These dialogs always stay in front of the windows of the application, but it
is possible to click on the windows behind while the dialog is displayed. This sort of dialog is often
used for things like a"Find and Replace" dialog in a word processor, where the user should still be
able to click into the document while the dialog is displayed. One significant change from the older
SBL language is that forms are used both in windows and in dialogs, unlike the older product that
differed between forms and dialogs, including having different properties and events for things like
editable text controls.

Modal Dialogs

Thewxpr ocess() isnot used to handle events for amodal dialog, but rather the dialog has a spe-
cial method for showing itself modally and for handling events while it is shown. The pr ocess-
nodal ()) method is called to show the dialog and handle events whileit is shown. Seethe examples
below:

Example 18.3. A Minimal Modal wxdialog Example

function main()
wxdi al og d

i nteger e
e =0
d =@wxdi al og. newm(1, 1, 600, 400, captiontext="Hello Wrld", visible=.false, err
if d!@ .nul
d. processnodal (. i nf)
end if

end function

Thisdialog program isvery simple. Unlike the one for the wxwindow type, thereisnoqui t () func-
tion and no onvisibilitychange event handler. Animportant point to note is that the dialog was created
withthevi si bl e parameter setto. f al se. Itisthen shown using the pr ocessnodal () method
of the wxdialog type. Again the value. i nf is supplied. If the dialog is created with the parameter
Vi si bl e setto. t r ue, then it must be managed by awxpr ocess() statement.

When amodal dialog is set to invisible, it automatically exitsthe pr ocessnodal () method. This
happens if the user clicksthe close gadget of the window. It can & so be done programmatically, in an
event handling function called by a button on aform, as shown in the next example.

Example 18.4. A Modal wxdialog

function main()
wxf orm f
i nteger e
wxdi al og d
wxf ornmbutton b

e =0
f =@ wxform new 100, 80, 0xCOCOCO, error=e)

116

Working with Dialogs

if f '@ .nul
f.addcontrol (wxforntext, 10, 10, 80, 20, "Hello world!")
b =@f.addcont rol (wxfornbutton, 30, 55, 40, 22, "")
b. oncl i ck. function =@ qui t
/[l 1t is essential to create the dialog invisible, since
/Il otherwise it will already be shown and cannot be then
/1 shown nodal |y.
d =@ wxdi al og. newm(50, 50, innerw dth=f.w dth, \
i nner hei ght =f . hei ght, captiontext="Hell o", \
vi si bl e=. fal se, error=e)
if d!@ .nul
f.set cont ai ner(d)
d. processnodal (.1 nf)
end if
end if
end function

function quit(wxfornbutton ne)
[/l Setting a nopdal dialog to invisible is the only
/1 programmatic way to cl ose the dial og.
me. f or m cont ai ner. setvi si bl e(.fal se)

end function

Notethat it isimportant to create the dialog invisibly. If it is not, then it will cause an error when you
try to show it using the pr ocessnodal ()) method, sinceit is aready being shown. To close the
modal dialog programmeatically, al that isrequired isto set its visibility back to . f al se.

Non-Modal Dialogs

Non-modal dialogs are created in exactly the same way as modal dialogs. The only significant differ-
ence is that non-modal dialogs are simply shown, either by creating them visibly, or by setting them
to visible, and their events are handled by the wxpr ocess() function. Here is the same sample
modified to be non-modal:

Example 18.5. A Non-Modal wxdialog

function main()
wxf orm f
i nteger e
wxdi al og d
wxf ornbutton b

e =0
f =@ wxform new(100, 80, 0xCOCOCO, error=e)
if f '@ .nul
f.addcontrol (wxforntext, 10, 10, 80, 20, "Hello world!'")
b =@ f . addcont rol (wxf ornbutton, 30, 55, 40, 22, "")
b. onclick. function =@ qui t
/1 1t is still good to create the dialog invisible and then
/1l showit after |loading the forminto it.
d =@ wxdi al og. newm(50, 50, innerw dth=f.w dth, \
i nner hei ght =f . hei ght, captiontext="Hell o", \
vi si bl e=. fal se, error=e)
/1 Now we need to trap the onvisibilitychange event (closing
/! the window), since if we don't, the window will close and
/1 the programwill not.

117

Working with Dialogs

d. onvi si bi l i tychange. functi on =@ qui t

if d!@ .nul
f.set cont ai ner(d)
d. setvisible(.true)
wxprocess(. i nf)
end if
end if
end function

function quit(type(*) ne)
// Here we allow dual use of the function
wxbr eak()

end function

Dialogs Using Standard Buttons

Another area where dialogs can differ, is that on many operating systems they have a specific look
and feel associated with them. Thanksto the cross-platform nature of the wxWidgetslibrary, SIMPOL
provides an additional capability to thedialogs, called " Standard Buttons'. By using thisfunctionality,
the dial og buttons such as OK and Cancel or Y esand No are created and managed by the dialog, rather
than being placed by the programmer. This ensures that they are handled correctly for each target
platform. For example, on the Macintosh it is customary to put the Cancel on the left, whereas the

same button is found on the right on Microsoft Windows.

@ Note
Currently the only style of dialog that will close when the user presses the Esc key is

the one using standard buttons.

Here is the modal-dialog example converted to use standard buttons:;

Example 18.6. A Modal wxdialog with Standard Buttons

function main()
wxf orm f
i nteger e
wxdi al og d

e =0
f =@ wxform new(100, 40, 0xCOCOCO, error=e)
if f '@ .nul

f.addcontrol (wxfornmtext, 10, 10, 80, 20, "Hello world!")
/[l 1t is essential to create the dialog invisible,

/1l otherwise it will already be shown and cannot
/1 shown nodal |ly.

d =@ wxdi al og. newm(50, 50, innerw dth=f.w dth, innerheight=\

f.hei ght, captiontext="Hello",

vi si bl e=. fal se, stdbuttons="ok",

if d!@ .nul
d! ok. onclick. functi on =@ qui t
f.setcontai ner(d)
d. processnodal (. i nf)
end if
end if

118

Working with Dialogs

end function

function quit(wxdi al ogstdbutton ne)
/1 Setting a npdal dialog to invisible is the only programmtic
/!l way to close the dial og.
nme. di al og. setvi si bl e(.fal se)

end function

When you run this program, you may find that it looks a bit strange. That is because the area of the
diaog that is controlled by the standard buttons support may be in a different color. The reason for
thisisthat when using the standard buttons, the default font and default system colors are used for the
various components, together with where they are supposed to be positioned in the dialog itself.

Hello world!

The wxdialog with standard buttons, showing the color problem.

The solution to thisisto use the default system font and default system colorsfor the form and controls
on the form that is being shown in the dialog. To make this easier, there is a supplied library called
ui syshel p. sm that contains a function called get def aul t f ont () that returns the default
system font as awxfont object. Another useful item in the library is the syscolors type. Just create an
object of thistypeand call thenew() method of thetypeassigningit to thevariable, and it will contain
an array of all of the available system colors. Thetotal number of colorsisfound in the count property.
A SIMPOL sourcefile called ui syshel phdr. sma can befound inthei ncl ude directory. That
file contains the symbolic constants for the various colors used on the various versions of Windows.
Other operating systems will also eventually be catered for by this library. The colors are stored in
the array as sysrgb objects. Y ou can access the individual color components or the entire color value,
as shown below:

sysrgb col or
syscol ors col ors
i nteger col orval ue, red, green, blue

colors =@syscol ors. new)

col or =@ col or s[COLOR_BTNFACE]
col orval ue = col or. val ue

red = color.red

green = col or.green

bl ue = col or. bl ue

Another useful type is the windowsversion type. It is the return value of the get wi ndowsver -
si on() function. All of the components are available as properties. If all that isneeded isastring, the
companion function get wi ndowsver si onstri ng() will prove handy. Finaly, two more com-
panion functions provide information about the display size. The function get di spl aysi ze()
returns the size of the physical display and theget usabl edi spl aysi ze() returnsthe size of the
display minus the area used by the taskbar.

Using thefacilitiesprovided by ui syshel p. smi itispossibleto rewritethe standard buttons dialog
to not have the color problem. Also, to ensure that the font used in the text in the dialog is consistent
with that used by the buttons, the default system font is also retrieved. Here is the changed program,

119

Working with Dialogs

please note that it requires the library file to be added to the project settings and the include directory
must be added to the include directories section:

Example 187. A Modal wxdialog with Standard Buttons Usng
ui syshel p. sn

i ncl ude "ui syshel phdr. sna"
/1 This requires the uisyshelp.sm library to be added to the project
function nmain()

wxf orm f

i nteger e

wxdi al og d

syscol ors col ors

wxf ont deffont

sysrgb col or

e =0
colors =@syscol ors. new)
f =@ wxform new(100, 40, col ors. col ors[COLOR_ BTNFACE] . val ue, \
error =e)
if f '@ .nul
def font =@ get def aul t font ()
f.addcont rol (wxforntext, 10, 10, 80, 20, "Hello world!", font=\
def f ont)
/1 1t is essential to create the dialog invisible, since
/1l otherwise it will already be shown and cannot be then
/1 shown nodal ly.
d =@ wxdi al og. newm(50, 50, innerw dth=f.w dth, innerheight=\
f.hei ght, captiontext="Hello", \
vi si bl e=. fal se, stdbuttons="ok", error=e)
if d!@ .nul
d! ok. onclick. functi on =@ qui t
f . set cont ai ner (d)
d. processnodal (. i nf)
end if
end if
end function

function quit(wxdi al ogstdbutton ne)
/1l Setting a npdal dialog to invisible is the only programmtic
/!l way to close the dialog.
nme. di al og. setvi si bl e(.fal se)

end function

The results can be seen in the image below. The color is how consistent throughout and the font has
changed dlightly (the letter "H" in "Hello" is taller and the rendering of the "rl" is different).

Hello word!

.................................

120

Menu Bars, Menus, and Menu Items

The wxdialog with standard buttons, without the color problem.

Menu Bars, Menus, and Menu Items

Any reasonably modern user-interface offers various methods of accomplishing the same goals, such
as keyboard commands, tool bar and form buttons, and menus. Some user-interface design guides go
so far as to say that any functionality that is reachable via atool bar button or a form button, should
always provide amenu item to accomplish the same thing. Part of the reason for thisisthat many users
may not be inclined to use a mouse, or under certain circumstances the user may not have a mouse
available. Also, providing menus and menu items allows the user to look around in a (hopefully) well-
sorted and logically devised set of various groups of functionality. It is an easy way to get to know a
product if the menus provide a clear overview of what can be done with the program.

ThewxWidgets-based menu support that is part of SIMPOL offersthe usual menu capabilities: menus,
sub-menus, and menu itemsthat can also be either checkable or one of agroup of options. An example
menu program is show below:

Example 18.8. A wxmenu Example

function main()
wxwi ndow w
wxmenubar nb
wxrmenu fil enenu, printnmenu
i nteger i Errnum
string sResult

i Errnum= 0
w =@ wxwi ndow. new(0, 0, 640, 480, captiontext="Main test \
wi ndow', error=i Errnun)

if w=@& .nul
sResult = "Error nunber: " + .tostr(i Errnum 10) + \
" opening main wi ndow{d}{a}"
el se

w. onvi si bi |l i tychange. function =@ qui t

nb =@ wxnmenubar . new()

filemenu =@ wxnenu. new()

nb.insert(filenmenu, "&File", nane="fil enenu")
filemenu.insert("", "&New', enabl ed=.fal se, nanme="new')
filemenu.insert("separator")

print nenu =@ wxnenu. new()

printnenu.insert("radio", "&.aser Printer", checked=.true, \
nane="| aserprinter")
printnenu.insert("radio", "& nkjet Printer", \
name="i nkjetprinter")
printnenu.insert("radi o", "La&vdel Printer", \

nanme="1| abel printer")

filemenu.insert("submenu", "&Printer", submenu=printnenu, \
name="pri nt nrenu")

filemenu.insert("checkable", "Print Second &Copy", \
checked=. true, nane="secondcopy")

filemenu.insert("separator")

filemenu.insert("", "E&it{9}Ctrl+Q', nane="exit")

filemenu! exit.onsel ect.function =@ quit

121

Menu Bars, Menus, and Menu Items

nb. set wi ndow(w)
wxprocess(. i nf)
end if
end function sResult

function quit(type(*) ne)
wxbr eak()
end function

The program above demonstrates most of the capabilities of the menu support in SIMPOL. A menubar
(like @l other SIMPOL GUI objects) exists indepently of its representation in awindow. A menubar
can be assigned to awindow and then be replaced by another. Looking at the preceding program, we
first create a menu bar and then an empty menu that we insert into the menu bar. It is not necessary
to do it thisway, we could just as easily have filled the menu first and then inserted it into the menu
bar. Next we insert a menu item that is set to disabled from the start. Following this, a separator is
inserted and then a printer menu is created that contains three radio items, only one of which can be
selected and we pre-select the first one. The printer menu is then inserted into the file menu as a sub
menu. Thisisthen followed by a checkable item, entitled "Print Second Copy". Next we add another
separator and the item to exit the program. Thisitem isa so given akeyboard accelerator (by adding a
tab character and the desired accel erator combination). In closing thequi t () function isassigned to
the onselect event of the exit item. Finally the menu bar is set into the window and the program then
waits for events. A picture of the menu can be seen below:

M Main test window

Printer 2 & Laser Printer
v Print Second Copy Inkjet Printer
Label Printer

Exit Ctrl+Q

An example of the wxmenu in action.

Thetrickiest part of working with menus may be learning how to correctly address the various parts.
The containership model of the menusis asfollows: wxmenubar contains objects of type wxmenubar-
entry. That contains objects of type wxmenu. The wxmenu objects contain objects of type wxmenu-
item, which can themselves contain objects of type wxmenu. So, assuming that there is a variable
called nb and the menu bar from the program above, to access the | abel pri nt er item, the fol-
lowing code would be used:

nb! fil enenu. menu! pri nt menu. subnmenu! | abel pri nt er

The member operator (!) is used to access the wxmenubarentry that contains areferencetothefi | e-

nmenu menu object. The member operator is again used to access the wxmenuitem represented by
the pri nt menu object, and then accesses the | abel pri nt er item of the sub menu by using the
member operator on the submenu property of the pri nt menu menu item.

Creating menus by hand can be quite boring, but until thereisamenu editor available, the menu editor
provided by the older Superbase product (including the downl oadabl e demo) can be used, together with

122

Forms and Form Controls

the conversion utility provided for converting Superbase menu programsto SIMPOL source code. The
menu conversion utility isintheut i | i t i es directory and the programiscalled: ngmengen. sbp.

Forms and Form Controls

Now that we have windows, dialogs, and menus, it might be useful if we had something to actually put
into the windows. That is where forms and form controls come in. Thisis the primary user-interface
areathat makes up the real "meat" of most applications.

Introduction to Forms

The form capability in SIMPOL is intended to provide the primary interface support for creating
desktop applications. Formsare normally contained in windows or dialogs, so make surethat you read
the section called “Windows and Dialogs’ before trying to make use of the content of this section.
Currently the following form control types are available for use on aform:

» wxformtext — for providing labels and other text on the form

» wxformedittext — provide controls for data-entry from the user
» wxformbutton — pushbuttons for every occasion

» wxformbitmapbutton — pushbuttons with images instead of text
» wxformcheckbox — for getting individual choices from the user
» wxformoption — to get one of a set of choices from the user

» wxformcombo — to allow the user to select a single choice from a drop-down list or to enter a
new option

» wxformlist — to get one or more selections from alist of options

All of the form controls have the type tag wxf or ntont r ol so that a variable can be created that
can hold areference to any valid form control.

Creating Simple Forms

The form has a background color, and a height and width. It also has a container property that holds
areference to the current container object (or . nul). Forms and form controls exist outside of their
visible representation. This is quite handy, since a form does not need to be displayed or even be
associated with a container and in spite of that, the contents of the various controls can be assigned or
read. A form can be moved from one window to the next ssmply by calling the set cont ai ner ()
method of the form and passing the target window reference to the method.

Toassignacolor toaform, window, or form control, SIMPOL makes use of thergb type. Thisprovides
amethod of assigning a color using the standard RGB methodology. An rgb object has asits value the
combined integer value of the color. This can also be used to assign colorsto controls and forms, etc.
but in general it is better to use an rgb object since under certain conditionsthe requested color may not
be available and when the color is created using the rgb type the closest avail able color will be selected.

Creating abasic form is quite simple, as can be seen from the following program code:

function main()
string sResult
wxform f
i nteger i Errnum
wxwi nhdow w

123

Creating Simple Forms

/1 Initialize the error variable so that we are passing a valid
/1 object to be filled.
i Errnum = 0

[/l Create our initial form
f =@ wxform new(640, 400, error=i Errnum

if f =@ .nul
SResult = "Error " + .tostr(i Errnum 10) + \
" creating forn{d}{a}"
el se

/1 Assuming the formwas created successfully, assign a col or
/[l to the background. Here, since we are creating the rgb

[/l object from pure values, we should use the red, green, and
/1 blue properties to ensure that a valid color is produced.
f . set backgr oundr gb(red=0xa0, green=0xa0, bl ue=0xa0)

[/l Create a window to contain the form
w =@ wxwi ndow. new(0, 0, 640, 480, captiontext="Test form\
wi ndow', error=i Errnun
if w=@ .nul
SResult = "Error + .tostr(i Errnum 10) +
wi ndow{d}{a}"

creating \

el se
/1 Assum ng the wi ndow was created successfully, assign the
/1 function to handl e soneone clicking the cl ose gadget.
w. onvi si bi |i tychange. functi on =@ qui t
/1 Now we assign the background color fromthe formto the
/! wi ndow so that they match. This tinme we can assign the
/[l rgb object since it will be certain to be a valid col or.
w. set backgr oundr gb(f. backgr oundr gb)

// Now let's add a mnimal title to the form roughly
/] centered
f.addcontrol (wxforntext, 285, 19, 70, 16, "Test Fornt)

/!l Finally, we nmove the forminto the w ndow that we have
/'l prepared
f.set contai ner(w)

/1 Enter the wxprocess() function and wait for events
/1 The user pressing the close gadget (or Alt+F4) will cause
/1 the onvisibilitychange nethod to fire which will then
[/l call the wxbreak() function. That will cause it to drop
/1 out of the wxprocess() function, ending the program
wxprocess(. i nf)
SResult = "Success{d}{a}"
end if
end if
end function sResult

function quit(wxw ndow w)
wxbr eak()
end function

The majority of what is going on can be read from the program comments in the code. Note that the
form creation actually takes place before the window creation. Thisis avery basic form program that

124

Working with Form Controls

doesn't have all that much happening. Still, it is an excellent little program to study, since it teaches
anumber of very important concepts when creating forms. It is also a good idea to read the section
in the "SIMPOL Language Reference" regarding the form and each of the form controls. The form's
addcont rol () method has been designed to allow virtualy al of the various properties for each
control to be set when the control iscreated. Thiswill allow the program code to be compacter for those
who prefer such an approach. Many people complained about the wordiness of the object SBL code.

Although it isalittle early in the life-cycle of the SIMPOL language to talk about best practice there
are certain things that are standard with most event-driven programs that can already be applied here.
Most programs can be broken down into three pieces: initialization, execution, and termination. Ini-
tialization sets up the program, execution runs the program, and termination closes the program per-
forming any necessary cleanup. From this we can see that the previous program is initialized, then
enters the wxpr ocess() function and remains there processing events until some event resultsin
thewxbr eak() function being called. The termination of the program is quite minimal since SIM-
POL tends to cleanup most things for you, all that isleft is assigning the return value of the program
and returning it.

Working with Form Controls

Now that we have had a chance to work a bit with forms, the next step isto add more controls to the
form. As such, the next program wxf or ms2. snp builds on the work done in the first program. It
will look a bit more complicated, but not too much more.

function main()
string sResult
wxf orm f
i nteger i Errnum
wxwi hdow w
t ype(wxforntontrol) fc
wxf ont font

/1 Initialize the error variable so that we are passing a valid
/1 object to be fill ed.
i Errnum= 0

/!l Create our initial form
f =@ wxf orm new 640, 400, error=i Errnum

if f =@ .nul
sResult = "Error " + .tostr(iErrnum 10) + " creating form{d}{a}"
el se

/1 Assuming the formwas created successfully, assign a color to
/1 the background. Here, since we are creating the rgb object

/1 from pure val ues, we should use the red, green, and bl ue

/] properties to ensure that a valid color is produced.

f . set backgr oundr gh(red=0xc0, green=0xc0, bl ue=0xc0)

/|l Create a window to contain the form
w =@ wxwi ndow. new(0, 0, 640, 480, captiontext="Test form\
wi ndow', error=i Errnun)

if w=@& .nul
sResult = "Error " + .tostr(iErrnum 10) + " creating \
wi ndow{ d}{a}"
el se
sResult = "Success{d}{a}"

/1 Assum ng the wi ndow was created successfully, assign the
/1 function to handl e soneone clicking the cl ose gadget.

125

Working with Form Controls

w. onvi si bi |i tychange. functi on =@ qui t

/1 Now we assign the background color fromthe formto the

// wi ndow so that they match. This tine we can assign the rgb
/1 object since it will be certain to be a valid col or

w. set backgr oundr gb(f. backgr oundr gb)

// Now let's add a mnimal title to the form roughly centered
fc =@f.addcontrol (wxforntext, 285, 19, 70, 16, "Test Form')
fc. set backgr oundr gb(r ed=0xC0, green=0xC0, bl ue=0xC0)
fc.settextrgb(red=0x0, green=0x0, bl ue=0x0)

font =@wxfont.new("Arial", 10)

fc.setfont(font)

// Now a few nore controls just for playing with

[/l a place to type:

fc =@f.addcontrol (wxforntext, 39, 84, 98, 16, "Editable text\
box")

fc. set backgr oundr gb(r ed=0xC0, green=0xC0, bl ue=0xC0)

fc.settextrgb(red=0x0, green=0x0, bl ue=0x0)

fc.setfont(font)

fc =@f.addcontrol (wxfornedittext, 146, 82, 175, 20)

fc. set backgr oundr gb(r ed=0OxFF, green=0xFF, bl ue=0xFF)

fc.settextrgb(red=0x0, green=0x0, bl ue=0x0)

fc.setfont(font)

/1 sone option buttons

fc =@f.addcontrol (wxfornoption, 146, 132, 63, 22, "one")
fc. set backgr oundr gb(r ed=0xC0, green=0xC0, bl ue=0xC0)
fc.settextrgb(red=0x0, green=0x0, bl ue=0x0)
fc.setfont(font)

fc =@f.addcontrol (wxfornoption, 146, 154, 63, 22, "two")
fc. set backgr oundr gb(r ed=0xC0, green=0xC0, bl ue=0xC0)
fc.settextrgb(red=0x0, green=0x0, bl ue=0x0)
fc.setfont(font)

fc =@f.addcontrol (wxfornoption, 146, 176, 63, 22, "three")
fc. set backgr oundr gb(r ed=0xC0, green=0xC0, bl ue=0xC0)
fc.settextrgb(red=0x0, green=0x0, bl ue=0x0)
fc.setfont(font)

/] a check box

fc =@f.addcont rol (wxf or ntheckbox, 148, 107, 70, 22, "Do it")
fc. set backgr oundr gb(r ed=0xC0, green=0xC0, bl ue=0xC0)
fc.settextrgb(red=0x0, green=0x0, bl ue=0x0)

fc.setfont(font)

/1 a conmbo box

fc =@f.addcontrol (wxfornconbo, 148, 210, 172, 126, edittype=\
"droplist")

fc. set backgr oundr gb(r ed=0OxFF, green=0xFF, bl ue=0xFF)

fc.settextrgb(red=0x0, green=0x0, bl ue=0x0)

fc.setfont(font)

fc.insert("red")

fc.insert("green")

fc.insert("bl ue")

fc.insert("yell ow")

fc.insert("nmagenta")

fc.insert("cyan")

126

Working with Form Controls

// a list box
fc =@f.addcontrol (wxform ist, 381, 103, 182, 217, \
sel ecti ont ype="ext ended")

fc.insert("red")
fc.insert("green")
fc.insert("bl ue")
fc.insert("yell ow")
fc.insert("nmagenta")
fc.insert("cyan")

fc. set backgr oundr gb(r ed=0OxFF, green=0xFF, bl ue=0xFF)

fc.settextrgb(red=0x0, green=0x0, bl ue=0x0)

fc.setfont(font)

fc =@f.addcontrol (wxforntext, 381, 85, 117, 16, "Choose one\
or nore")

fc. set backgr oundr gb(r ed=0xC0, green=0xC0, bl ue=0xC0)

fc.settextrgb(red=0x0, green=0x0, bl ue=0x0)

fc.setfont(font)

fc =@f.addcontrol (wxforntext, 69, 212, 69, 16, "Choose one")

f c. set backgr oundr gb(r ed=0xC0, green=0xC0, bl ue=0xC0)

fc.settextrgb(red=0x0, green=0x0, bl ue=0x0)

fc.setfont(font)

/1 and some buttons: an OK and a Cancel button

fc =@f.addcontrol (wxfornbutton, 226, 352, 83, 27, "OK")
fc.setfont(font)

/1 here we assign the event handling function
fc.onclick.functi on =@ eval uat ef or m

/[l and here we assign a reference to the object we want passed
/[l to the function.

fc.onclick.reference =@ sResul t

fc =@f.addcontrol (wxfornbutton, 334, 352, 83, 27, "Cancel")
fc.setfont(font)

fc.onclick.functi on =@ eval uat ef or m

fc.onclick.reference =@ sResul t

/!l Finally, we nmove the forminto the w ndow that we have
/| prepared.
f.set contai ner(w)

/1 Enter the process() function and wait for events

/1 The user pressing the close gadget (or Alt+F4) will cause

/] onvisibilitychange method to fire which will then call the
/1 the wxbreak() function. That will cause it to drop out of

/1 the wxprocess() function, ending the program

/1 Also, clicking on either of the wxfornmbutton controls wll
[l call the evaluateform() function which in turn will read the
[/l contents controls and assign that plus which button was
/1 pressed to the string of the object referred to by sResult.
[/ Then it will call the wxbreak() function with the sane result
/| as above.
wxprocess(. i nf)
end if
end if
end function sResult

function quit(wxw ndow w)

127

Working with Form Controls

wxbr eak()
end function

function eval uat ef or m{ wxf ornbutton b, string s)
t ype(wxforncontrol) fc
i nteger i
bool ean bDoneone

if b.text == "Cancel"

S = "You pressed Cancel {d}{a}"
el se

S = "You pressed OK{d}{a}"
end if

fc =@b.formfirstcontrol
whi | e
if fc.type =@ wxformedittext
s =s + "You typed: " + fc.text + "{d}{a}"
else if fc.type =@ wxforncheckbox

s=s + "Doit was " + .if(fc.state == "", "not ", "") + \
"checked{d}{a}"
else if fc.type =@ wxfornoption
if fc.state == "on"
S =s + "You selected the option '" + fc.text + "' {d}{a}"

end if
else if fc.type =@ wxformist
i = fc.getsel ected(1)

bDoneone = .fal se
if i == .nul

S =s + "You did not select an entry fromthe list{d}{a}"
el se

whi | e

i f not bDoneone
S =s + "You selected the followng itenms fromthe \
list:{d}{a}"
bDoneone = .true
end if
s=s+" '" + fc[i] + ""{d}{a}"
i = fc.getselected(i + 1)
end while i == .nul
end if
else if fc.type =@ wxfornctonbo
if fc.text >= ""
S =s + "You selected the entry '" + (fc.text) + "' from\
t he conbo box{d}{a}"

el se
S =s + "You did not select an entry fromthe conbo \
box{d}{a}"
end if
end if

fc =@f c. next
end while fc =@ b.formfirstcontrol
wxbr eak()
end function

Aswe can seefrom the previous program listing, although it is somewhat longer than thefirst example,
itisnot greatly different. It smply contains more controls and an additional event handling function.

128

The Grid Control

The technique for exiting the wxpr ocess() function isidentical to the one used by thequi t () .
In both casesthewxbr eak () functionis called.

Creating the form control information by hand could be quite long-winded, but fortunately the content
shown in the program was not created by hand, but rather generated using a utility program from a
Superbase form created with the Superbase Form Designer. Until a form designing utility has been
created for SIMPOL -based forms, we will use the older Superbase Form Designer to provide this
functionality. The current utility can convert all of the supported form objects including the event
procedure names. The actual utility is more sophisticated than the example code shown here. It also
creates an array of controlsthat isindexed according to the original control name from the Superbase
form and which provides the form control reference as the array element. This makesit fairly easy to
work with the form controls since they are al placed into the form controls array. Later in the life-
cycle of theforms, thiswill probably not be needed but the technique will still work and bevalid. The
form conversion utility isintheut i | i t i es directory and the program is called: sbv2wxsm sbp.

The Grid Control

In this section we will ook at the grid control. In SIMPOL one of the new controls that has been
added to the mix is a general purpose grid control. The grid control can be used for any number of
things. Internally in SIMPOL we will use it for implementing record and table view, for creating
and modifying database table definitions, as the properties grid for the form and report designers,
and much more. The grid functionality is currently a moving target, so this section will be regularly
revisited during the pre-rel ease cycle as new capabilities are added to the grid control. The most current
information will always be found in the SIMPOL L anguage Reference book.

Let's build a little sample program, like the other programs that went before, to play a bit with the
grid control. Asisthe case with the other sample programs, this program will aways be found in the
pr oj ect s\ exanpl es directory. This program will be called wxgri d. sma.

function main()
wxf orm f
wxwi hdow w
wxforngrid g
i nteger e
string s

0
@ wxwi ndow. newm(0, 0, 800, 600, visible=.false, \
capti ont ext ="wxgrid exanple", \
border="si npl e", maxbutton=.fal se, error=e)

S
e
w

if w=@& .nul
s = "Error
el se
/1 Assign the function to handl e the user clicking the cl ose gadget
w. onvi si bi |l i tychange. function =@ qui t
/[l Create a new form
f =@wxform new(w. i nnerwi dt h, w. innerhei ght, 0xCOCOCO, error=e)

+ .tostr(e, 10) + " creating w ndowd}{a}"

if f =@ .nul
s = "Error " + .tostr(e, 10) + " creating forn{d}{a}"
el se
// Add the grid control to the form
g =@f.addcontrol (wxforngrid, 1, 1, f.width - 2, f.height - 2,\
rowcount =50, col count =30, error=e)
if g =@ .nul
s = "Error

+ .tostr(e, 10) + " creating grid{d}{a}"

129

The Grid Control

el se
/I Change sonme of the |abels, just to show we can
g. setcol | abel s(startcol =1, "a col um | abel", "b", "3", "d", \
“5", "Foo", "gosh!")
g. setrow abel s(startrow=1, "a very long row | abel ™, "bb", \
“C', "IV

/1 Increase the width of the row | abels to acconodate the
/1 1ong one
g. setrow abel wi dt h(130)
// Now we create a cell with a set of choices (conmbo box),
/1l we could easily assign this to nultiple cells in the
/] sane st atenent
g. setcel |l choi ces(row=2, col =2, allowothers=.false, \
"<pi ck one>", "United Kingdont, \
"United States", "Germany", "France", \
"Italy", "Sweden", "Spain", "Portugal", \
"Norway", "Denmark", "Belgiunt, \
"Net her| ands", "Luxenbourg", "G eece", \
"Ireland”, "Austria", value="<pick one>")
/1 Assign some normal text content to one cell
g.setcellvalue(3, 3, "This is read only")
/1 Now make that cell read only
g. setcel l readonly(3, 3, .true)
[/ Wden the first colum just to show we can
g. setcol wi dt hs(col =1, 190)
/1 Assign the sane text to a bunch of cells in a range
g. setcel | val ue(startrow=5, endrow=10, startcol =4, endcol =5, \
val ue="This is sooooo cool!!")
/[l Wden the two colums to which we assigned the text
g. setcol wi dt hs(startcol =4, endcol =5, col wi dt h=130)
/1 Assign a multi-line text. Currently it is not possible
[/ to edit nmultiline text and allow the entry of new |line
/] characters.
g. setcel | val ue(row=7, col =1, \
value="This is a text that goes over{a}\
multiple lines. We will also increase{a}\
t he height of the row to conpensate")
/1l Now we can increase the height of the rowto show the
[l multiline text
g. set r owhei ght s(row=7, rowhei ght =60)
/1 Place the forminto the w ndow
f.set contai ner(w)
/1 Now show t he wi ndow and wait for events
w. set st at e(vi si bl e=. true)
wxprocess(. i nf)
end if
end if
end if
end function s

function quit(wxw ndow w)
wxbr eak()
end function

There are numerous other things that we can do with the grid control, thisis only avery simple exam-
ple. More capabilities will be added gradually asthey become necessary, but already using the current
state of the grid control, a great deal can be done, just use your imagination!

130

Summary

Summary

In this section we have looked at the basics of working with formsin SIMPOL. For more information
about the specifics of working with each individual control, see the appropriate sectionsin the " SIM-
POL Language Reference". Working with the formsis not greatly different than working with forms
in the older Object SBL language. The event type that is embedded in the various controlsis similar
to the events from the older language. One notable difference is that an optional reference property,
which must be an object reference, can be assigned. This provides a solution to the question of how to
pass important information into the event handling function. If more than one piece of information is
required then a user-defined type can be created that consolidates all of the information that is needed
into asingle object that is then passed around as required. A major advantage of this approach is that
if later more information is needed, the interface of the functions need not be changed, merely the
definition of the type needs to be expanded to include the additional information.

Common Dialogs

An important part of working with a graphical user interface is the area known as Common Dial ogs.
These arethedial ogsthat are presented to the user to provide accessto features that are common across
applications, thus retaining a standard look and feel. These types of dialogsinclude: file selection (for
opening or saving files), directory selection (with or without a new directory button), message boxes,
color selection, font selection, page setup, printer setup, and progress meters (gauges). All of these
are available through wxWidgets and will eventually be part of the capabilities provided by SIMPOL.
Most of these will be provided as functions, such asthewxf i | edi al og() , thewxdi rect ory-

di al og(),andthewxnmessagedi al og() functions. The use of each is quite straightforward, so
check out the associated information in the "SIMPOL Language Reference” book. These common
dialogs replace the ones provided by the older UTUI component, which is deprecated. For further
information regarding the Common Dial og support, see Chapter 19, Common Dialogs and Other Ul
Utilitiesin SSIMPOL.

Parting Notes

In this chapter an attempt has been made to introduce you to the various graphical user interface
componentsthat are currently availablein SIMPOL . The example do not include the message box and
common dialog components (yet), though those can be found in a preliminary form in Chapter 19,
Common Dialogsand Other Ul Utilitiesin SMPOL. For afairly thorough and morein-depth program
code example, examine the deno project in the pr oj ect s\ f or s directory.

131

132

Chapter 19. Common Dialogs and
Other Ul Utilities in SIMPOL

Common dialogs are typically provided by the operating system to perform commonly required tasks.
Typical common dialogswould bethosefor picking afileto open or to save, for configuring the printer,
or selecting afont or color. Currently SIMPOL provides support for the selecting of afileto openandto
save, presenting amessage to the user, and the selection of adirectory (with or without anew directory
button). Others will follow as we progress. The look and feel of these dialogs including largely the
functionality that is provided is very operating system dependent, so it may be that certain capabilities
are not provided that might otherwise be possible, in order to retain a common user-interface cross-
platform. The message box is a good example. This may have a different name on different platforms
but the functionality is fairly consistent: a dialog window is presented with a message to the user,
possibly including an icon, and one or more buttons from which the user must choose.

@ Note
Please come back and check this chapter regularly in each release. The common dialog
support isacurrently moving target. The older UTUI components that provided the ini-
tial common dialog support are now deprecated! Please migrate to the newer wxWid-
gets-based common dialog support.

Common Dialogs in SIMPOL

Common dial ogs provide amethod of accessing standard user-interface componentsthat are provided
to allow a common look and feel. These are implemented using functions rather than types in most
cases. The following functions are currently implemented:

 wxfil edi al og() — for getting afile name for opening or saving

« wxdi rect orydi al og() — for getting the name of a directory, including allowing the user to
create anew one

* wxnessagedi al og() — for showing some information to the user and getting their response
(oneof "ok","cancel ","yes",or"no")

Thewxfi | edi al og() functionimplementsthe functionality that allows the user to select an exist-
ing file to be opened as well as that of selecting the path and then typing in afile name for afile to be
saved. The behavior of the dialog depends on the purpose for which it isbeing used. If it isbeing used
to select afile name for saving and the user selects afile that already exists, and if the style includes
the value "overwri t epronpt " then they will automatically be prompted for confirmation that
they wish to overwrite the file that they have selected. In some operating systems, if the user enters
the name of afile that does not exist when using this technology to open afile, they will be prompted
with the question of whether they wish to create anew file. In other casesthey may not be ableto open
afilethat does not exist. The stylevalue " nust exi st " playsarole here.

The full syntax of thisfunction is:

wxf i | edi al og (type(wxdialogparent) par ent , string nessage, stringdef aul t di rect ory,
stringdef aul t fil ename, stringwi | dcar d, string st yl e, stringf i | enane, stringr esul t)

Currently thest y| e can contain either thevalue" open” or " save" to decidethebasic type of file
diaog. In addition to these two values, the style values " must exi st", "overwri t epronpt ",
and" mul ti pl e" areprovided to further influence how the dialog works. Generally, the viable com-
binationsare: " open, must exi st"," open, mul ti pl e","open, nust exi st, nul ti pl e",
and "save, overwritepronpt". Thew | dcar d parameter provides the capability to have a
number of different extensions and file descriptions on some platforms. However, not al platforms

133

Message Boxesin SIMPOL

support this capability so an application should not rely on thisability in across-platform environment.
A default value for the file name can be provided using the def aul t fi | ename parameter. The
starting directory is defined normally by the def aul t di r ect ory parameter, but this is a fairly
complicated issue, so check the description of this parameter in the "SIMPOL Language Reference”
book. Thef i | enanme andr esul t parameters must be actual objects, since they will befilled witha
value by the function. Ther esul t parameter will contain either " ok" or " cancel " indicating the
action taken by the user. Although anumber could have been chosen, the decision wastaken that using
strings for the return value is more programmer-friendly and that in the majority of places that they
will be used, they would not be difficult strings for most programmers to understand. They can till
be assigned to constantsif desired by the programmer. For compl ete documentation on the features of
this function, see the "wxWidgets' section of the "Components" chapter in the "SIMPOL Language
Reference" book.

@ Note
SBL programmers should note that this function corresponds to the REQUEST com-
mand in SBL for types 26 and 27.

The syntax and usage of the wxdi r ect or ydi al og() function is very similar to that of the pre-
ceding one. It isless complex, since the number of optionsisless. It isused to retrieve the name of a
directory and can optionally provide the user with the ability to create a new directory.

@ Note
SBL programmers should note that this function corresponds to the REQUEST com-
mand in SBL for type 28.

Message Boxes in SIMPOL

An extremely common requirement in programming isto be able to communicate with the user viaa
dialog box that displays a message. The dialog box should normally not permit the user to continue
until they have responded to the message. Most operating systems provide this type of functionality
although they differ in the details of how many different styles of message box may exist and therefore
how many different icon types or button combinations can be provided.

The message box function can be very smple. Aslittle as:

string sResponse

sResponse = . nul

wxnmessagedi al og(.nul, "Hello world!", "Message from SI MPOL", \
"ok", result=sResponse)

It can also be as complicated as:

string sResponse

sResponse = . nul
wxmessagedi al og(.nul, "Hello world!", "Message from SI MPCL", \
"yesno_def aul t no", "question", result=sResponse)

This example shows a Yes and a No button and aso shows an icon indicating the purpose of the
message. Currently there are only six possible values for theicon, " ", " questi on", "error",
"excl ai nf',"hand",or"i nf or mat i on". For full information on the various parameters seethe
section covering thewxnmessagedi al og() function inthe"SIMPOL Language Reference’.

134

Part VIIl. Converting From SBL

This part is dedicated to discussing the similarities and differences between SBL and SIMPOL in an effort to
ensure that moving applications and programming knowledge from the older Superbase product line to the newer

isaspainlessaspossible. Thispart will aso includeinformation about program code and utility programs designed
to assist in the conversion process.

Table of Contents

20. Moving from SBL t0 SIMPOLcccuuuiiiiiiiiiei e 139
TRE BASICS ... ittt e 139
Comparison Between Language Primitivesin SIMPOL and SBLcoccovvviiiieennnn. 141
SBL Commands and Functions and the SIMPOL Equivalentsccccooevvviiieeiinnnnen. 144
Differences Between SIMPOL and SBLiiiiiiiiieiiiiieecein e 158
Tools for Converting SBL t0 SIMPOLco.uiiiiiiiiieii e 158

137

138

Chapter 20. Moving from SBL to
SIMPOL

Making the move from being atraditional Superbase SBL programmer to being a SIMPOL program-
mer doesn't need to be as complicated as many people might believe. Although SIMPOL is an ob-
ject-oriented programming language, it is not nearly as complex or difficult as learning Java, C#, or
even VB.NET. There are very few key words and no real commands in SIMPOL. In SBL there are
literally hundreds of key words and a very complicated set of parameters that can be passed to each
command. If your SBL programs begin with aSUB main() and tend to be event-driven, spending most
of thetimein aloop waiting for the user to do something, then writing programsin SIMPOL won't be
terribly complicated for you, but evenif you have gotten into the habit of just using global variablesand
GOTO, GOSUB, and RETURN, itistill possibletolearn to write programsin SIMPOL without too
much effort. In the latter case, the job is complicated somewhat by needing to learn to use structured
programming techniques and do some advance planning before writing the program, but the benefits
are considerable: easier to understand code, easier and faster maintenance, and a greater amount of
code reuse resulting in smaller programs and an ever-growing toolbox of useful functions (and types).

The Basics

It is probably useful to discuss the available data types and programming elements, and then have a
look at the various commands from SBL and see how they are done using SIMPOL. In SBL there are
four basic data types: strings (maximum length 4000 characters), short integers (-32,768 to +32,767),
long integers (-2,147,483,648 to +2,147,483,647), and | EEE double-precision floating point numbers
— decimal values— (+ 10323319 10308'3). Variables of these types are indicated by using the dollar
sign ($) for strings, a percent symbol (%) for auto variables (can hold any of the numeric types), two
percent symbols (%%) for short integers, the ampersand and percent characters (& %) for longintegers,
and either the hash and percent (#%) or exclamation mark and percent (!%) characters for decimal
values. In SIMPOL thereisalso astring type (maximum length islimited by memory), an integer type
(greater degree of significant digits than an SBL Hugelnteger), a number type (exact precision, not
floating point and virtually unlimited size), a boolean type (true and false values), and the blob type
(virtually unlimited in size array of bytes). SIMPOL does not use any characters to indicate data type
for variablesso it isgenerally agood ideato use some sort of convention, such asaleading s character
for strings, i for integers, b for booleans, bl for blobs, and n for numbers. Which convention is used
is not as important as simply picking one and being consistent in its use. It is even okay to use b for
both blobs and booleans if it is obvious which iswhich.

One of the biggest and most significant differences between SBL and SIMPOL is the capability in
SIMPOL to create user-defined data types. This capability can completely change the approach to
solving a problem. It also makes it possible to use a much more object-oriented approach to solving
a problem, though it is not required to do so. User-defined types can include properties that are of
any of the standard types, be referencesto other objects, or be actual embedded objects of some other
complex type including user-defined types. This alows for fairly complex object design, which can
help to solve many problems that in SBL programs would only be able to be solved by using sets of
variables and variable arrays. One of the biggest advantages to using user-defined typesis that when
passing information from one function to another, the interface does not need to change if one more
piece of information is required. Instead the type is changed and the information is added to the object
that is being passed, so no change to the parameter list of the function is necessary.

SIMPOL has avery small set of key words, which are listed below:
» and
* AND
* ese

* embed

139

The Basics

* end

* export
* function
o if

* mod

* not

e or

* OR

* reference
* resolve
* type

e while

« XOR

It also has a useful set of operators, which are summarized in the following list:

140

Comparison Between Language
Primitivesin SIMPOL and SBL

.\

For a complete description of the key words and operators please see the SIMPOL Language Refer-
ence. Unlike classic SBL, SIMPOL has an extremely small set of key words, a slightly larger set of
operators, a number of intrinsic and system functions, and an ever growing number of components,
free functions and types (some of which are created using SIMPOL itself). In SBL there is alarge
number of key words, some of which are operators, some of which are commands, and some of which
arefunctions. Thereisaso afairly large set of objects that model a number of the components of the
system, such asthe forms, form controls, and windows, but which do not have arepresentation for the
databasefiles, fields, indexes, and records. In SIMPOL everything that is not akey word, an operator,
an intrinsic function, or a system function, is a type and to work with the type it provides built-in
methods (functions) and in some cases allows the assignment of event handling functions. In the next
section we will compare the key words that actually represent the underlying language structure and
in alater section we will explore the special commands and functions.

Comparison Between Language Primitives in
SIMPOL and SBL
The following table contains a comparison between the language primitivesin SBL and SIMPOL.

Table 20.1. Comparison of SBL key wordsto SIMPOL equivalents

SBL SIMPOL Comments

AND and, AND The AND operator in SBL although not described as such in the
online documentation is actually a bit-field operator. The reason
that thisis not obviousis that in most casesit is used for Boolean
comparisons together with the | F statement and that particular
statement in SBL compares with false, which isthe value ze-

ro. Anything that is not equal to zero is considered to be true. In
SIMPOL there are two different operators, the and and the AND.
The lowercase version is used for Boolean comparisons where the
result will be one of the special values: . true or. f al se. The
uppercase version is specifically used for testing whether certain
bitsin avalue are on or not by using amask. For a proper expla-
nation of bitwise operators see the Appendix in the SIMPOL Lan-

guage Reference manual.
DIM, GLOB- |typename vari- | There has been some discussion about adding the dim and as key
AL, REDIM, |ablename words to the language as aliases but the current assessment is that
ERASE, with the advent of so many languages that use the same approach
CLEAR as SIMPOL thereis no real advantage to providing an aternative

method of declaring variables. In SBL thereis a number of ways
to create avariable: using the DIM key word within a procedure
or function creates alocal variable, using it outside (assuming the
program is not started with a SUB main() creates a global vari-
able. Formsthat have variables on them cause those variables to
be created as global variables. Using the GL OBAL key word
creates aglobal variable. Just using a variable name (this does
not apply to object variables) within a procedure or function cre-
atesthe variable locally if no variable exists with that name at
the global level. If the program is not in a procedure or function
and was started without a SUB main() then using a variable name
creates aglobal variable. The ERASE command erases asingle
variable or multiple variables (both local and global)when using
wild cards. The ERASE command works only if the variableis
not used on aform (and never has been) if any form is open. The
REDIM command is used to resize an array variablein SBL In

141

Comparison Between Language
Primitivesin SIMPOL and SBL

SBL

SIMPOL

Comments

SIMPOL there are no global variables, so al of that complexi-

ty disappears. All variables must be declared in SIMPOL before
they can be used. If avariableis declared at one point in the func-
tion and then redeclared in another point, then it is destroyed and
recreated at that point. Many SBL programmers use the DIM
command only to create arrays. One of the common causes of
difficult to detect side-effectsin SBL programsisthat of not di-
mensioning (declaring) variablesin the appropriate locations. Al-
though it allows faster programming it results in more expensive
maintenance. Arraysin SIMPOL are quite different from thosein
most languages, since they do not need to be sized at the begin-
ning and they are not an array of a specific type, they are them-
selves an object and can contain any arrangement of items desired
and can also contain a mixture of types. This makes them quite
flexible, but requires some thought at timesto decide if they are
the best approach to a problem. SIMPOL comes with alibrary of
various pre-designed types that often provide a better solution to
storing a collection of items, such as the objset and the list types.
Just as the ERASE command is unnecessary, the sameis true of
the CLEAR.

FOR ...
NEXT
[STEP]

while ... end
while

In addition to the WHI L E loop construct SBL also provides a
FOR block statement. In SIMPOL the while ... end while block
statement is the only looping construction. The reasoning behind
this decision was that the FOR statement is essentially a specia
case of the WHIL E and therefore unnecessary. There would be
no speed advantage since the language is compiled.

FUNCTION
... END
FUNCTION

function ...
end function

A function in SBL isrequired to have a data type extension of ei-
ther the dollar sign ($) or one of the numeric value symbals (%, %
%, &%, #%, or 1%). The return value of the function is assigned
to alocal variable that carries the same name as the function it-
self. In SIMPOL, the return value of the function is the value of
the expression that immediately follows the end function state-
ment. This value (or object) can be of any type and thereisno
standard syntactic way of telling the type of the return value of a
function. The type of the return value can even change depend-
ing on certain things, such as the data typea that are passed to the
function to begin with! Also, it isnot required to make use of the
return value in SIMPOL, so afunction that has areturn value can
be called without assigning the return value.

IF ... THEN|
GOTO ...
ELSE IF
... THEN
...ELSE ...
END IF

if ... elseif ...

ese... end if

In SBL there are several kinds of | F statement. Thereisthe
IF...GOTO single-line statement that has no equivalent in SIM-
POL (GOTO is not supported in SIMPOL). There is also the nor-
mal single-lineIF ... THEN ... EL SE command that does not re-
quire an associated END | F statement. Finally there is the mul-
tiline block version that requires an END | F statement. In SIM-
POL the only form that existsis the latter block form that requires
the end if statement. Thisis part of the design philosophy of SIM-
POL, in that every command and/or block statement hasa sin-
gle entrance and exit. Also, SBL is essentially aline-oriented lan-
guage that isinterpreted, whereas SIMPOL is a statement-based
language that is compiled. The end-of-line character still endsa
statement in SIMPOL and there is aso aline continuation char-
acter so that long programming lines can be spread over multi-
plelines. Even if an if-statement ison asingle linein SIMPOL

Comparison Between Language
Primitivesin SIMPOL and SBL

SBL

SIMPOL

Comments

it must be followed by an end-of-statement character (: or ;) and
then the end if statement.

NOT

not

The NOT operator in SBL although not described as such in the
online documentation is actually a bit-field operator. The reason
that thisis not obviousis that in most casesit is used for Boolean
comparisons together with the | F statement or in aWHILE loop
as an exit condition. To work as a Boolean operator it needsto

be applied to an expression and that particular statement in SBL
compares with false, which is the value zero. Anything that is not
equal to zero is considered to betrue. In SIMPOL there are two
different operators, the and and the AND. The lowercase version
is used for Boolean comparisons where the result will be one of
the special values. . t rue or . f al se. The uppercaseversionis
specifically used for testing whether certain bitsin avalue are on
or not by using a mask. For a proper explanation of bitwise opera-
tors see the Appendix in the SIMPOL Language Reference manu-
al.

OR

or, OR

The OR operator in SBL although not described as such in the
online documentation is actually a bit-field operator. The reason
that thisis not obviousis that in most casesit is used for Boolean
comparisons together with the | F statement and that particular
statement in SBL compares with false, which isthe value ze-

ro. Anything that is not equal to zero is considered to be true. In
SIMPOL there are two different operators, the or and the OR.
The lowercase version is used for Boolean comparisons where the
result will be one of the special values: . true or. f al se. The
uppercase version is specifically used for setting certain bitsin a
value to the on or off by using a mask. For a proper explanation
of bitwise operators see the Appendix in the SIMPOL Language
Reference manual.

SELECT
CASE ...
CASE ...
CASE ELSE
... END
CASE |
SELECT

if ... elseif ...

ese... end if

Thereis currently no SELECT CASE block statement in SIM-
POL. Although the SBL block statement provides a certain ease
of reading and expression in the code, it was decided that unless
the implementation of ablock statement of this nature actually
provided more or different functionality to that of the if statement,
it was not worth crowding the field of key words with yet anoth-
er. There is discussion about adding a statement like this but with
the added capability that is found in the C programming language
of being able to fall through to the next case unless abreak state-
ment is encountered. Thiswould add a useful capability that is not
otherwise provided by theif statement.

SUB ... END
SUB

function ...
end function

In SIMPOL thereis no difference between afunction and a pro-
cedure (SUB) except that afunction that is used like a procedure
has no return value. The other basic difference isthat thereis no
practical limit to the number of parameters that can be passed (in
SBL thisislimited to 15), and parameters can be passed by name
or even left out. Thereisno CALL key word in SIMPOL, func-
tions are called by using their name directly.

WHILE ...
WEND

while ... end
while

The SBL version of the WHILE loop always tests the condi-
tion at the beginning of the loop. It also allows the programmer
to break out of the loop using the END WHILE command. In
some cases programmers have used additional WEND state-
ments inside the loop to cause the program to immediately return
to the beginning of the loop, but thisistechnically incorrect and

143

SBL Commands and Functions
and the SIMPOL Equivalents

SBL SIMPOL Comments

is not supported by the language. The SIMPOL version allows
acondition at the beginning and the end of the loop, and either
or both can be set. There is no command for breaking out of the
loop from somewhere in the middle, in keeping with the design
philosopy of SIMPOL. Some languages provide adlight varia-
tion of the WHILE loop known as: REPEAT ... UNTIL or Do
... Loop While. This block statement allows the block to always
execute once before the test is applied since the test is at the end
of the block. In SIMPOL thisis accomplished by using the while
statement with an ending condition but no starting condition. In
current SIMPOL code it is quite common to see both conditions
used: the first for the main test and the last to test for errors. The
final test is best read as: "end the while if the condition istrue'.

SBL Commands and Functions and the SIM-
POL Equivalents

The following table contains an alphabetical list of SBL key words and their SIMPOL equivalent
together with some explanatory text describing the differences.

Table 20.2. Comparison of SBL commands and functions to SIMPOL
equivalents

SBL SIMPOL Comments

ASC() . charval () The ASC() functionin SBL returns
the ASCII (OEM) value of the first
character in the string that is passed
asthe argument. In SIMPOL the

. charval () function returnsthe
Unicode character value of the first
character in the string passed as the ar-
gument.

BLANK type(dbltable).newr ecor d() Creating a new record in a database
in SIMPOL is done by calling the
newr ecor d() of the associated
database table object.

Unlike with SBL, the default formulae
are not executed at the point in time of
creating a new record, so it isthe re-
sponsihility of the SIMPOL program-
mer to perform any default calcula-
tions and assign the results to the asso-
ciated fields.

CALL I execut e() The CALL commandin SBL that is
used to execute external programs has
itsequivalent in SIMPOL in the form
of the! execut e() system function.
One current difference between the
two isthat the SIMPOL version does
not create a shell, so if you are using
itin Windowsto call things like the
COPY or DEL commands, you need
to call the command shell with appro-

144

SBL Commands and Functions
and the SIMPOL Equivalents

SBL SIMPOL Comments

priate command line switches or call a
batch file that contains the commands
instead.

CHARS() . char () The CHARS$() functionin SBL re-
turns the value passed as an ASCI|
(OEM) character. In SIMPOL the

. char () function returns a Unicode
character that is the equivalent of the
value passed as the argument.

DATES() DATESTR() The DATES$() functionin SBL takes
adate and an optional format string
and returns the date as a string for-
matted using the format string passed.
The SIMPOL version requires the for-
mat string to be passed. Supported for-
mats are the same in both versions:
"day month year", "month day year",
or "year month day". Separators can be
any character, though sensible choic-
es should be made. The actual format

string supports the following:

Table 20.3.

dd Day no leading zero

0d Day with leading zero

zd Day with leading space

mm Month no leading zero

Oom Month with leading zero

zm Month with leading
space

mmm Three letter abbreviated
month name

mmmm Month fully spelled out

vy Two digit year

yyyy Four digit year

DAYS string2date() The SBL command DAY Stakes ei-

ther adate or atext containing a date
and returns an integer representing
the number of days since 01 January,
0001. The SIMPOL version only sup-
ports converting a date expressed as a
string. It requires aformat string in or-
der to know how to process the date.
It returns a date object represnting that
time. The value of a date object isan
integer containing the number of days
since 01 January, 0001.

145

SBL Commands and Functions
and the SIMPOL Equivalents

SBL SIMPOL Comments
3 Note
Because of an error in
the way SBL calculates
the dates prior to the
Gregorian Reformin
England (September 2,
1752), the value of the
daysin SBL is 11 days
off. Also, SIMPOL starts
from O, rather than 1, so
the effect isactualy a
difference of 10 days.
This normally makes no
difference, but can be-
come an issue if working
with actual integer val-
ues and using the datain
both SBL and SIMPOL
as ahybrid system. Al-
so, in SIMPOL no sup-
port is provided for the
Gergorian Reform. In-
stead the Julian integer
value for the number of
days assumes no error
occurred. For historical
dates it would be neces-
sary use your own date
formatting function as
thisis considered alocal-
ization issue.
END no equivalent The SBL command END allows the
program to stop executing. In SIM-
POL programs will exit only when the
reach an error condition or they exit
through the end of the mai n() func-
tion.
ERR$() , ER- No equivalent In SIMPOL thereis no error handling
RNO, ERROR, in the form of interrupts such asisthe
ON ERROR, casein SBL. Instead, most function
RESUME, etc. callsthat can cause an error take an er-
ror object and in some cases an error
text object. In the case of an error, if
the error object has been passed, then
the error will be returned in the object.
If no object has been passed, then the
program will halt at that point with an
error. Most syntax errors will be found
during compilation and post-process-
ing of the IDE. In some cases errors
will occur at runtime but should nor-
mally be found during testing.
EXI STS() fileexists() In SBL the EXI STS() function has
two variants. One variant checks

146

SBL Commands and Functions
and the SIMPOL Equivalents

SBL

SIMPOL

Comments

whether the argument passed exists
asafileinthefile system. That func-
tionality is provided for in SIMPOL

by thefi | eexi st s() function. The
other variant takes avalue and an in-
dex and returns whether arecord exists
with that value in the target database
table without changing the current
record pointer in the target index. No
exact equivalent exists for this since
noneis realy needed. Thereisafunc-
tioncaled | ookup() thatisfound
inthe appf r amewor k. sni library
and which takes an index object, aval-
ue, and an error variable and which
returns arecord object if amatch is
found, otherwise it returns. nul .

FCASES$()

.tcase()

In SBL to convert a string such that
only thefirst character is capitalized
the programmer calls the FCASES$()
function; the equivalent in SIMPOL is
the. t case() (titlecase) function.

FI X()

fix()

TheFl X() function is commonly
used in SBL to ensure that a floating
point value is as close as possible to a
desired number of decimal places as
desired (floating point numbers are not
precise because base ten fractions are
not reliably representable in binary).
In SIMPOL the more important use

of the. fi x() functionisto truncate
the exactly precise but potentially ex-
tremely large number of trailing digits
from avalue. It would not be uncom-
mon to have a decimal value asthere-
sult of adivision operation that had
tens, hundreds, or even thousands of
digitstrailing the decimal point.

HRS()

HRS()

Thereis essentially no difference be-
tween these two functions, other than
that in SIMPOL the parameter passed
must be atime object. In both cases
the number of hoursin thetime arere-
turned as an integer.

I F()

()

Thereis essentially no difference be-
tween these two functions, other than
that in SIMPOL the argument must
result in a Boolean value of either
.trueor.fal se, whereasin SBL
zero is false and non-zero is consid-
ered to be true.

| NSTR()

.instr()

In both SBL. and SIMPOL these func-
tions are used to determine whether
some substring can be found in the tar-

147

SBL Commands and Functions
and the SIMPOL Equivalents

SBL

SIMPOL

Comments

get string. The only real difference be-
tween the two is that the SBL version
can take an optional leading parame-
ter that tells the function where in the
string to begin looking. The equivalent
in SIMPOL isto pass only the portion
of the string in which to look, and then
to adjust the value returned by adding
the offset to the beginning of the sub-
string that was passed.

1'S()

In SBL thel S() fuctionisused to
compareif two variables refer to the
same object. In SIMPOL this handled
using an operator. This question can
be negated in SBL by applying the
NOT to the result of the function. In
SIMPOL there are two equivalent op-
eratorsfor this: |@= and <@>.

LCASES()

.1 case()

In SBL to convert a string to lower-
case the programmer calls the LCASE
$() function and in SIMPOL the

.1 case() function servesthe same
purpose.

LEFTS()

str()

These two functions are essentially
identical in their function: they return
the portion of the string from the first
character until the end of the string or
until the position passed whichever is
less.

LEN()

.len()

Both in SBL and SIMPOL these func-
tions return the length of the argument
passed. One differenceisthat in SIM-
POL thisisthe length of the argument
in characters that are Unicode char-
acters, whereasin SBL these are sin-
gle-byte ASCII (OEM) characters.

LIKE

likel()

For the most part the two versions of
LIKE work the same. There are afew
more options in the SIMPOL version,
such as optional case-sensitivity, but
otherwise they should be compatible
(other than the fact that the SBL ver-
sion is an operator and the other isa
function).

LOAD

'l oadnodul efil e()

The SBL LOAD command is used to
load program filesinto memory and is
most commonly used with the, NEW
option to load a set of routines into
memory for use by the program. It
isalso used to load queries, updates,
text editor files, function key files,
and labels definitions. Almost all of
these latter items are better dealt with
in SIMPOL as methods of the asso-

148

SBL Commands and Functions
and the SIMPOL Equivalents

SBL

SIMPOL

Comments

ciated object. The function! | oad-
nmodul efil e() isaSIMPOL sys-
tem function for loading a compiled
SIMPOL library so that its exported
types and functions can be used. Al-
though it is possible to directly include
alibrary module in the resulting pro-
gram when the program is compiled, it
may be more efficient in some casesto
load the module as needed, for exam-
ple when the module may not always
be needed.

LOCK()

ppcstypelfile.locked,
ppcstypelrecord.locked,
sbmeltable.locktype,
sbmelrecord.locktype

In SBL the LOCK() servesto test
whether agiven record islocked in
adatabase file. A similar capability
existsin SIMPOL except that what
istested is the value of a property of
thefile (table) or record object. One
difference in thisis that this will on-
ly tell if the user has locked the record
or table, it will not tell if others have
done so (or even if another object in
the same program has done so).

LOCK ALL

ppcstypelfilel ock(),
sbmelfilel ock()

These two items are very similar, oth-
er than from an architectural perspec-
tive: with one being a command and
the others being methods of types. In
all casesthefileislocked. In the case
of the shmel type, it is aso necessary
to hold at least a shared lock on the ta-
blein order to create records.

. max()

The SIMPOL version of thisfunction
simply takes an unlimited number of
arguments and returns the one that is
of the highest value. The SBL version
can only be used with arrays or on re-
ports under special circumstances.

M D$()

.substr ()

These two functions are virtually iden-
tical, except that in SBL to return
everything until the end of the string,
the last parameter is left out, whereas
in SIMPOL all three parameters are al-
ways required so to return everything
the last parameter can be setto. i nf .

. n()

The SIMPOL version of this function
simply takes an unlimited number of
arguments and returns the one that is
of the lowest value. The SBL version
can only be used with arrays or on re-
ports under special circumstances.

M NS()

M NS()

Thereis essentially no difference be-

tween these two functions, other than
that in SIMPOL the parameter passed
must be atime object. In both cases

149

SBL Commands and Functions
and the SIMPOL Equivalents

SBL

SIMPOL Comments

the number of minutesin thetime are
returned as an integer.

MOD

mod These two operators do the same
thing, they return the fractional portion
of adivision operation.

MOX()

no equivalent The MOD() functionin SBL isin-
tended to indicate whether the current
record in the file passed as the argu-
ment has been modified. Sincethereis
no such thing as a current record (cur-
rent file, etc.) in SIMPOL this function
is meaningless. At some point when
data-aware forms have been added
there may be a method to indicate if
any record on the form has been mod-
ified sinceit wasread. That would be
the appropriate location for such func-
tionality.

NOT

not These two operators are essentially

the same, other than that the SBL ver-
sion operates with 0 and non-0 and the
SIMPOL version workswith . f al se
and. true.

NOTHI NG

. nul The literal value NOTHI NGin SBL

is used exclusively together with the

I S() totest whether an object vari-
ablerefersto nothing. In SIMPOL this
test can be carried out using the =@=
operator and the literal value. nul .
Thisvalueisused in many different
areas and ways within SIMPOL.

QUIT

no equivalent The SBL command QUIT allows

the program to suddenly exit, closing
down the Superbase environment af -
ter calling the OnUnload event proce-
dure of the Superbase object (if it was
set). SIMPOL programs are self-suffi-
cient so thereis no additional environ-
ment to shut down and they will ex-

it only when the reach an error condi-
tion or they exit through the end of the
mai n() function assuming that all
threads have also ended.

REM,"

/) The REM statement and the single
quote character can both be used to
indicate acomment in an SBL pro-
gram. The single quote character can
also immediately follow acommand in
SBL. In SIMPOL both the single and
double-quote characters can be used
to indicate a comment but unlike SBL,
in SIMPOL these are only considered
to be comment characters if they are
on the left side of an equation (at the

150

SBL Commands and Functions
and the SIMPOL Equivalents

SBL

SIMPOL

Comments

beginning of a statement). Also, if an-
other matching quote is found inside,
then the comment is ended and must
be followed by an end-of-line char-
acter or end of statement character (:
or ;). Using this technique a comment
can be embedded in the middle of a
line of code. The only line-level com-
ment is the double forward dlash (/).
This must be placed at the beginning
of astatement (either at the beginning
of alineor directly following an end
of statement character and separated
only by white space).

REPLI CATE
(svar$, nvar

984

nvar * svar

The REPLI CATE() is part of the
standard BASIC repertoire and SBL
includes this function to replicate a
string a given number of times. This
function is unnecessary in SIMPOL
sinceit is possible to directly multi-
ply astring by an integer and thereby
replicate the string that many times.

Rl GHT$()

.rstr()

These two functions are essentially
identical in their function: they return
the portion of the string from the last
character until the beginning of the
string or until the number of characters
backwards from the end of the string,
whichever isless.

SECS()

SECS()

Thereis essentially no difference be-
tween these two functions, other than
that in SIMPOL the parameter passed
must be atime object. In both cases
the number of seconds in the time are
returned as an integer.

SELECT FIRST
INDEX ""

dbltablevar.select(lastrecord=.false,
error=e)

One of the significant differences be-
tween SBL and SIMPOL isthe fact
that in SBL, the entire Superbase prod-
uct is always present, and thereis al-
ways a globally visible current data-
base table (or file), for each database
table (file) thereis a current index,

and each index has a current record
that may be different for each index.
Thereisaso acurrently loaded record.
When working with multiple windows
open, this gets even messier still, since
each Vi ewWW ndow may have dif-
ferent database tables open, or even
the same ones but with a different set
of current indexes and records. This
must be carefully managed using the
Set SBLW ndow() method of the
Superbase object. In SIMPOL there
are no global variables. To access a

151

SBL Commands and Functions
and the SIMPOL Equivalents

SBL

SIMPOL

Comments

record from a database table a method
of either the table, an index of the ta-
ble, or even arecord of thetableis
called. Thereis no current table, no
current index, and no current record.
Although the dataforml type provides
for a current master record for ada-
ta-aware form, this does interfere el se-
where in the system. A record object
isthe result of calling some form of
select method. There can be as many
record objects as the programmer
wishes to create. They can be stored in
lists or arrays. The logic behind how
the select methods are designed is as
follows:

« table.select() — Tables know what
is at the beginning and the end of
the sequential order of the table.

* index.select() — Indexes know
what is at the beginning and the end
of theindex order.

« index.selectkey() — Indexes know
how to find avalue in the index us-

ing akey.

« record.select() — Records know
where they are in whatever method
selected them, and can get to the
previous and next itemsin the same
selection order, so if they were se-
lected using an index, they can find
the previous and next records in the
same index, if selected using the se-
guentia order of the table, they can
find the previous and next itemsin
the sequential order of the table.

The return value of arecord selection
in SIMPOL is arecord object. If an er-
ror occurs, then the record object may
beequal to. nul . Always passan in-
teger object to these methods to trap
any error that occurs. The integer must
be pre-initialized to 0, since the er-

ror variable will only be written to if
an error occurs. If the variable is not
set to 0, then the program may incor-
rectly assume that a pre-existing value
was returned by the call to the method.
Specific to this command, by using
the double-quote " " argument for the
| NDEX parameter, Superbaseis being
told to select the first record in the se-

152

SBL Commands and Functions
and the SIMPOL Equivalents

SBL

SIMPOL

Comments

quential order of the table. Using the
sel ect () method of table object,
SIMPOL is doing the same thing.

SELECT LAST
INDEX ""

dbltablevar.select(lastrecord=.true,
error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIMPOL.
In this particular case, by using the
double-quote" " argument for the

| NDEX parameter, Superbaseis being
told to select the last record in the se-
quential order of the table. Using the
sel ect () method of the table ob-
ject, SIMPOL is doing the same thing.

SELECT
FIRST INDEX
RecNo.TEST

dblindexvar .select(lastrecor d=.false,
error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIMPOL.
Here, the RecNo index is being used
as an argument to select the first entry
in that index. In SIMPOL this can be
done using avariable that refersto the
RecNo index, or it may be done using
valid object syntax to reach the index
object. For example: dbltablevar!
RecNo.index.select(lastrecor d=.false)
uses the table variable. From the

dblt abl evar variable the mem-
ber operator (!) is used to retrieve the
field object for the RecNo field, and
then itsindex property is accessed us-
ing the dot (.) operator, and again
using the dot (.) operator, the se-

| ect () methodiscalled.

SELECT
LAST INDEX
RecNo.TEST

dblindexvar .select(lastrecord=.true,
error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIM-
POL. Seethe prior entry for SELECT
FIRST INDEX RecNo.TEST for de-
tails about how to select records using
an index in SIMPOL. The only differ-
enceto the SELECT FIRST version
isthat thel ast r ecor d parameter is
assigned thevalue. t r ue rather than
thevaue. f al se.

SELECT KEY
123 INDEX
RecNoO.TEST

dblindexvar.selectkey(123, error=e,
found=f)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIM-
POL. Seethe prior entry for SELECT
FIRST INDEX RecNo.TEST for de-
tails about how to select records using
an index in SIMPOL. In this particu-
lar case, thesel ect key() method
isbeing used. The value that is being
looked up must match the data type of
the field for which the index was cre-
ated. The only variation of that isthat

153

SBL Commands and Functions
and the SIMPOL Equivalents

SBL

SIMPOL

Comments

an integer value can be used to search
within indexes on date, time, and date-
timefields. If the record is success-
fully found, then the boolean vari-
able (which must be pre-initialized)
that was passed to the f ound para-
meter isset to . t r ue and the vari-
able passed to the er r or parameter
will be unchanged. If the f ound pa
rameter is not passed, and the record
is not found, then the return value will
be. nul and an error value will be as-
signed to the variable that was passed
totheerr or parameter.

SELECT NEXT

dblrecvar.select(previousrecord=.fal
error=e)

s8ee the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIMPOL.
As stated in that entry, the return val-
ue of aselectionisarecord object. To
select the next record (or the previous
one) thesel ect () method of the
record object is called, passing the ap-
propriate value to the pr evi ous-
recor d parameter, in this case the
value. f al se.

SELECT PRE-
VIOUS

dblrecvar.select(previousrecord=.tru
error=e)

&ee the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIMPOL.
As stated in that entry, the return val-
ue of aselection isarecord object. To
select the next record (or the previous
one) thesel ect () method of the
record object is called, passing the ap-
propriate valueto the pr evi ous-

r ecor d parameter, in this case the
value. t rue.

SET INDEX
Name.TEST

dblrecvar.selectcurrent(dblindexvar
error=e)

| TWesomgmmand is supplied by Su-
perbase to allow the programmer to
change the controlling index of an al-
ready selected record. In SIMPOL, it
isnecessary to call thesel ect cur -
r ent () method and to pass the de-
sired index object to switch to adiffer-
ent controlling index. If no index pa
rameter is passed, then the default is
to usethevalue. nul , which results
in the record being switched to having
been selected using the sequential or-
der of thetable. It isimportant to re-
member this when reselecting arecord
with alock, since otherwise the record
may be switched away from the de-

sired index without realizing it!

154

SBL Commands and Functions
and the SIMPOL Equivalents

SBL

SIMPOL

Comments

SELECT FIRST
LOCK INDEX

dbltablevar.select(lastrecord=.false,
lock=.true, error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIMPOL.
The only significant difference here
isthat in both cases the relevant lock-
ing parameter LOCK" or | ock isbe-
ing passed. In SBL if the locking oper-
ation fails, then an error occurs which
may result in acall to aglobal error
handler, or if the error has been dis-
abled, then it will simply set the value
of the ERRNO system value. In SIM-
POL thiswill result in areturn value
of . nul , and the variable passed in
theer r or parameter will be set to the
error value that was the cause of the
problem.

SELECT FIRST
LOCK INDEX
RecNo.TEST

dblindexvar .select(lastrecor d=.false,
lock=.true, error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIM-

POL. Seethe prior entry for SELECT
FIRST LOCK INDEX "" for details
about how to select records with alock
using SIMPOL..

SELECT

KEY 123
LOCK INDEX
RecNO.TEST

dblindexvar.selectkey(123,
lock=.true, error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIMPOL.
In SBL itisarisky ventureto usethe
L OCK together witha SELECT KEY
statement, since if the selection failsto
find the correct record, it will still find
arecord and will lock that one instead.
It is better practice to make sure the
record has been found and then use the
SELECT CURRENT LOCK com-
mand to lock the record. The sameis
aso true of SIMPOL, though it is pos-
sible to do this safely, simply by not
passing af ound parameter.

SELECT NEXT
LOCK

dblrecvar.select(previousrecor d=.fal;
lock=.true, error=e)

s8ee the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIM-

POL. Seethe prior entry for SELECT
FIRST LOCK INDEX "" for details
about how to select records with alock
using SIMPOL .

SELECT CUR-
RENT LOCK

dblrecvar.selectcurrent(lock=.true,
error=e)

See the prior entry for SELECT
FIRST INDEX "" for details about
how to select records using SIM-

POL. Seethe prior entry for SELECT
FIRST LOCK INDEX " " for details
about how to select records with alock
using SIMPOL. When selecting the
current record in SIMPOL it isimpor-
tant to make sure that thei ndex pa-

155

SBL Commands and Functions
and the SIMPOL Equivalents

SBL

SIMPOL

Comments

rameter is assigned an appropriate val-
ue since otherwise it will default to

. nul and potentially change the cur-
rent index (though only of the record
that isreturned). To retain the samein-
dex that was used in the original selec-
tion, it iseasiest to just pass the index
property of the record object, such as:
dblrecvar.selectcurrent(dblrecvar.in
lock=.true, error=e).

SELECT RE-
MOVE

dblrecvar.delete(error=e)

In SBL, oncetherecord isdeleted it is
simply gone. In SIMPOL, the record
object still exists and can be treated
like anew record object that is not

yet stored. This meansthat arecord
could be deleted and the record object
could then be used (perhaps modified)
to create a new record, and then that
record could be saved.

SPACE$ (nvar
%9

nvar * " "

Probably related to its BASIC her-
itage, SBL includes this function to
create a string a given number of space
charactersin length. Thisfunctionis
unnecessary in SIMPOL sinceitis
possible to multiply a string by anin-
teger and thereby replicate the string
that many times.

STR$()

.tostr() or STR()

The STR$() functionin SBL alowsa
large number of different methods for
formatting the number as a string. The
equivalent function in SIMPOL sim-
ply formulates the number as a string
and al so requires the base to be pro-
vided. When used for base ten num-
bers, it isroughly equivalent to the
command STR$(nvar% %, "."), ex-
cept that in the case of azero value the
character 0 will be output whereasin
SBL the empty string is the result. For
aversion that is directly compatible
with the SBL version (except for the
lack of support for scientific notation),
look for the STR. sl library. Itisal-
so provided in source code. One dif-
ference between these is that the SIM-
POL library function requires the user
to provide an object that includes the
numeric settings for decimal point,
thousands separator, currency sym-
bol, and whether the currency symbol
isaprefix or suffix. Thisis necessary
since there are no such global settings
in SIMPOL.

THOUSECS()

THOUSECS()

Thereis essentially no difference be-

tween these two functions, other than

156

SBL Commands and Functions
and the SIMPOL Equivalents

SBL

SIMPOL

Comments

that in SIMPOL the parameter passed
must be atime object. In both cases
the number of thousandths of a second
in the time are returned as an integer.

TI MES()

TI MESTR()

The Tl ME$() functionin SBL takes
atime value and an optional format
string and returns the time as a string
formatted using the format string
passed. The SIMPOL version requires
the format string to be passed. Sup-
ported formats are the same in both
versions. Separators can be any char-
acter, though sensible choices should
be made. The actual format string sup-
ports the following:

Table20.4.

hh Hours

mm Minutes

Ss Seconds

S Thousandths of a second

am 12 hour clock

Some typical examples of time format
strings for atime of 1:35 pm might be:

Table 20.5.

13:35
13:35:00
hh:mmam |1:35 pm
hh:mm:ss.s | 13:35:00.000

hh:mm

hh:mm:ss

TI MEVAL()

string2tine()

In SBL the TI MEVAL() function
takes either atime or a string rep-
resentation of atime. The SIMPOL
string2time() function only ac-
cepts astring and aformat string and it
returns a time object.

UCASES()

.ucase()

In SBL to convert a string to upper-
case the programmer calls the UCASE
$() function and in SIMPOL the

. ucase() function servesthe same
purpose.

VAL()

.toval ()

The VAL() functionin SBL is used

to convert a string to anumber. Itis
somewhat idiosyncratic in the way that
it works. All leading whitespace isig-
nored, as are currency symbols and
thousands separators and the number
isreturned that is found up until the
first non digit character following the

157

Differences Between
SIMPOL and SBL

SBL

SIMPOL

Comments

first decimal point or the end of the
string is reached. The SIMPOL ver-
sion of thisin keeping with its support
for multiple bases, takes the value,

the charactersto ignore, and the base
to use for interpreting the string as a
number. It might seem a bit awkward
dealing with defining the characters
toignorein SIMPOL sinceit could be
all of the Unicode character set, but

in actuality it is quite easy, sinceitis
also possible to subtract strings from
stringsin SIMPOL. To define the set
of characterstoignore, simply subtract
each of the charactersthat are desired
from the string being evaluated, like
this: n = toval(s,s-"0" -"1" -"2"
S e S A
="t - 10), which will resultin
al of the desired characters being re-
moved from the string and al of the
remaining characters being ignored.
For amore typical SBL version check
thelibrary for the VAL. sm .

WAIT FOR nvar
% %

wai t ()

These both wait for a specified amount
of time. Only the duration and inter-
vals are different.

Differences Between SIMPOL and SBL

Thingsthat you could skipin SBL arerequiredin SIMPOL, such asdeclaring variablesand initializing
them. Although that means a bit more work to get something going, the IDE is designed to make
using SIMPOL as easy as possible. Also, there are no global variables in SIMPOL, but it is quite
straightforward to create a type that contains all of the quasi-global information, initialize that type
during the start of the program, and then just pass that type around everywhere the program needsit.
Theevent objectsin SIMPOL are specifically designed to allow the optional assignment of areference
to any type of object, and that object is then passed to the event handling function as a parameter.

Tools for Converting SBL to SIMPOL

Thereareanumber of conversion tools supplied with SIMPOL Professional to convert various aspects
of Superbase packages. Some are written in SBL and some are written in SIMPOL. Hereis alist of

them:

» shf 2sbm snp — Converts Superbase SBF files to SIMPOL sbmformat (files should be unen-

crypted, reorganized, and preferably without passwords)

e shv2xm . shp — SBL program to convert Superbase formsto SIMPOL XML forms

» shvr 2xm . sbp — SBL program to convert Superbase graphical reportsinto SIMPOL XML for-
mat graphical reports (does not convert perfectly, some adjustment of the results will be needed,
primarily paper size and calculations)

e ngnengen. sbp —SBL program that converts a Superbase menu program into a SIMPOL source

codefile

158

Tools for Convert-
ing SBL to SIMPOL

e dl g2sma. shp — SBL program that converts Superbase dialogs programs (as saved from the de-
signer) into SIMPOL source code

» shd_formul a_reader. snmp — Reads Superbase SBD files and creates a source code file that
contains a function for constants, calculations, and validations for each Superbase file read where
such formulae are in use. The resulting code will need to be hand-edited to be usable, since acom-
plete formula conversion tool is not included.

The best initial approach isto convert the database tables and the forms, if there is a menu program
available, convert that, grab a copy of the Address Book example and make a new project from it.
Use the first form as an initial step and get it coming up using the Address Book code, modified
as required. Once that is happening, use the appwindow.openf or ndi r ect () method to open the
next form into the same window as a response to a menu event. From there convert any formulae
using thesbd_f or mul a_r eader . snp converter and then hand adjust the resulting source code.
Remember, there is an equivalent for LOOKUP() in SBL called | ookup() and it can be found in
theui syshel p. sm library.

From this point onward, it just depends on how the application is constructed. Fill in all the functions
and the navigational structure. Use the tool bar from the Address Book sample, or leave it out, or
design your own.

Toassign calculated values and do validations of field content before arecord is saved, assign an event
handling function to the dataforml.onsave event. The return value should be . t r ue if the record
should be saved, and . f al se if there is a problem and the record should not be saved. For further
information about working with the Application Framework, see Chapter 26, Using the SMPOL Ap-
plication Framework.

159

160

Part IX. Supplied SIMPOL-
Language Libraries

This part discusses the various libraries written in SIMPOL that are supplied with the language. Many of these
are supplied as source code, thus providing the user with the ability to understand how the libraries work, as well

as providing the ability to improve and extend them should some required functionality be missing or existing
functionality be faulty.

Table of Contents

21. SIMPOL Language Libraries INClUdeduuiiiiiiiiiiiiii e
INEFOTUCTION ...ttt ettt e e et e ettt e e et et e e e eenaaeaees
List Of SUPPHIEd LIibrariesccouuiiiiiieie et

163

164

Chapter 21. SIMPOL Language
Libraries Included

Introduction

One of the more powerful features of the SIMPOL programming language is the ability to produce li-
braries of reusable functions and types. Part of the underlying design philosophy in SIMPOL has been
to produce as much as possible using the language and to use the C programming language for imple-
menting core language and heavy-use components, and for improving the speed of SIMPOL-based
code when those areas are clearly identified as requiring such improvement.

In this chapter we will discuss briefly the supplied SIMPOL language libraries. Since the libraries
themselves occasionally go through revisionsit is a good ideato regularly look into the source direc-
tory for those libraries supplied as source (most of them) and see what is new or has changed. Itisalso
recommended to |ook at the source code to the various libraries for options, function parameters, and
also to examine how the functions and types are written. If you are having a problem with alibrary
type or function that you have the source for, you can use that source to debug your program. If there
isan error in thelibrary, please let us know.

List of Supplied Libraries

The following table contains a list of the supplied libraries, an X if they are supplied as source, and a
brief description of each one. Some of the libraries may be more fully explained in a separate section
below.

Table 21.1. Supplied SIMPOL -Language Libraries

Name Source |Description

abs. sn X Implementsthe ABS() function for compatibility with
SBL. It can also be used in general in SIMPOL, since
there is no equivalent.

appf ranewor k. sni X Implements an application framework for working with
data-aware form style applications. This framework is
used by the samples supplied with the SIMPOL Quick-

start Guide.

bool str. sm X Provides functions for converting from and to boolean
and datetime typesto strings.

bzi p2. sni X Wrapper for the BZip2 compression library.

cal ceval . sn X Containsthe cal ceval () function for evaluating a

formula contained in a string and returning the result.

codepagesl i b. snl X Provides functions for converting from and to SIMPOL
characters for various code pages.

col orpal ette. sni X Supplies types and functions for working with col-
ors and palette entries. Thisis primarily used by
i magel i b. sm for saving images to disk.

conflib.snl X Provides functions reading from and for writing to con-
figuration files that follow the standard for INI filesin
Windows. In the future other configuration file formats
may be supported in thislibrary.

dat abasef or ns. sni X Thislibrary implements data-aware, multi-page forms. It
contains the entire set of types from the dataforml fam-

165

List of Supplied Libraries

Name

Source

Description

ily. For more information on programming with these
types, see Chapter 23, Using Data-Aware Formsin S M-
POL.

datetinelib.snl

Thislibrary provides several date, time, and datetime
functions and includes other related libraries to provide a
singlelibrary for inclusion.

dbilib. sm

Implementation of a dummy group of classes based on
the dbl type tags. The purposeisto ensure that viable
inline help in the IDE is provided for variables declared
using the dbl typetags.

dblutil.sm

Provides numerous functions for working with databas-
es. Functions for copying one record to another, deter-
mining whether afield isvalid or isindexed, convert-
ing from field values to string and the reverse, and other
functions.

dbconverter. sn

Thisisthe primary data conversion library, for both im-
port and export converters. The design uses a common
record structure that is supported by import and export
converters as the medium of exchange. Any import con-
verter can be hooked up to any export converter.

errormsgs_en. sni

This error messages library provides a standard method
of returning a consistent error message for any of the
standard error valueslistediner r or s. sma. Thisli-
brary implements the English language messages.

fastset. sni

Thisimplements the fastset data type for working with
sets that allow for string-indexing of objects. Thislibrary
should be in preference to the objset library in newer
code. Itisvirtually identical inits API but is consider-
ably faster in execution. When working with sets of val-
ues or sets of objects that do not need to be string-in-
dexed, it is even faster to use the built-in set data type.

filesyslib.sn

Provides functions for working with files and directories.
Currently thisincludes afunction to retrieve the correct
directory separator character and another to parsefile
and path names into their component parts.

formib.sm

Thislibrary provides the additional functionality for
loading and saving dataforml and printform1forms. It
also provides the functionality to save dataforml forms
as program source code and to save them as awxform
source program with all the data aware aspects stripped

away.

gaugel i b. sm

Thislibrary includes two types for providing a gauge di-
alog that can be shown and updated in order to inform
the user while your program is doing long operations.

graphi creportlib.sm

Thislibrary provides the Graphic Report functionality
including saving and loading these reports.

httpclientlib.sn

Contains functions for accessing web pages on the Inter-
net. Includes functions for both the GET and POST style
access of web pages.

i mgelib.sn

Provides numerous functions for working with databas-
es. Functions for copying one record to another, deter-
mining whether afield isvalid or isindexed, convert-

166

List of Supplied Libraries

Name

Source

Description

ing from field values to string and the reverse, and other
functions.

int.sm

Implementsthe | NT() function for compatibility with
SBL. It can aso be used in general in SIMPOL, since
there is no equivalent.

j peglib.sn

Provides types and functions for working with JPEG
files. Currently the only functionality is the function
to retrieve the size of a JPEG image and a wrapper
function to allow that function to be called viathe
SMEXEC32.DLL interface.

i bxm . sni

Provides the full implementation of the XML Document
Object Model (DOM) Core Level 1 and Level 2 with
some additional capabilities from Level 3. It provides
aswell, the ability to do XSLT transforms, document
validation, and support for HTML documents. Thereis
an example program in the directory pr oj ect s\ dom
That directory also contains documentation about the
DOM in HTML format.

lists.sn

Various list and similar types. Includes: list, dlist, ring,
gueue, and stack. The dlist implementation has gone
through extensive testing and modification. Most of
these types are meant to be embedded into other types, to
provide the ability to managethemin alist.

ltrimsn

Implementsthe LTRI M) function for compatibility
with SBL. For amore flexible implementation see the
[trinm() functioninthestringlib.sm library.

mat hl i b. sm

Contains functions for working with mathematics, such
assin(),cos(),tan(),sqrt(),andothers.

nrulib.sm

Thislibrary implements a data type for managing most
recently used lists, commonly shown asitemson a
menu. To that end, it can actually manage an entire sub-
menu on its own, including showing a dialog for entries
beyond a certain number, managing the entriesin a con-
figuration (INI) file, etc.

netinfolib.smn

Thislibrary isused for providing network-specific infor-
mation, such as the currently logged-in user's name.

obj set . sm

The objset type and related types are created in this li-
brary. This provides afairly powerful and robust set im-
plementation, including differencing, intersection, and
unification of sets. The sets use a string key for sorting
the entries (and for deciding if they are the same) and an
optiona element that is declared ast ype(*) that can
contain areference to any object.

odbc2. sni

SIMPOL language support library for working with the
ODBC client support.

pad. sni

Implements the PAD() function for compatibility with
SBL. It can also be used in general in SIMPOL, since
thereis no equivalent.

printformib.smn

Contains types and functions that support printing forms
to the print architecture used in SIMPOL. Also imple-
ments a function for printing a record from a database.

167

List of Supplied Libraries

Name

Source

Description

qui ckreportlib.sm

Provides an easy to use fully functional report engine
with grouping, sorting, and aggregate values at both
group and report level. Reports are limited in the way
they can look. For a more complex and flexible report
engine, seethegr aphi creportlib.sm .

random smi

The pseudo-random number generation provided by this
library is quite useful. It uses a standard algorithm for
generating pseudo-random numbers. If the seed isre-
peated, then the sequence will be the same each time. If
adifferent sequenceis desired, then the current date and
time can be passed as the seed. The numbers generated
are between 0 and 1, so any multiplier can be used to get
the values and ranges desired.

registrylib.sm

The Windows registry is commonly used for storing
configuration data on Windows. This library can be used
to access the registry. Please be aware that user programs
cannot write to the HKEY_LOCAL_MACHI NE key on
Windows Vistaand later, these writes will be virtual-
ized.

reorglib.sm

The functionality needed to reorganize a database con-
tainer, or just individual tables within the container, in-
cluding support for the system tables provided by the
dblutil.sml library, arelocated in thislibrary.

repl ace. sni

Thisis astandard string replace function. It has been
fairly thoroughly tested and should be able to handle sit-
uations that many string replace functions fail on, such
as the replacement string or the search string being a
substring of the other.

reportlib.sn

Thislibrary provides the core reportl type family that
can be used to create custom report types. It isalso em-
bedded into the gr aphi creportlib. sm andthe
qui ckreportlib.sm libraries, each of which pro-
vide a specific style of report engine.

rsalib.sn

Provides a usable library for encrypting and decrypting
aswell as generating public and private keys.

shislib.sn

Thislibrary supplies functions that are intended to ease
the conversion of systems written for the Superbase In-
ternet Server suite for the older Superbase product.

sbl datelib.sm

Implements the DATESTR() , DAY() , DAYS() ,
DAYSTR() , MONTH() , MONTHSTR() , and YEAR()
functions for compatibility with SBL. Some of them can
also be used in general in SIMPOL, since in many cas-
esthereisno equivalent. Thislibrary also includes a

st ring2dat e() function.

sbl ext en. sn

Thislibrary isanearly 1:1 conversion of the Superbase
library of the same name and supplies a group of use-
ful functions, some implemented multiple times, one for
each supported datatype, such as Fl oor (), round(),
Bet ween(), Aver age, and others.

sbllib.sm

Thislibrary consolidates all of the SBL-specific libraries
together with a number of the FN functions, such as:

168

List of Supplied Libraries

Name

Source

Description

FN _Ext (),FN_Root (),FN_Al pha(),FN Dec(),
etc.

sbl | ocal edat ei nf 0. 3

5 ml

Thislibrary provides the SBLIocaledateinfo type that is
required by many of the SBL date functions. Thistype
holds the locale information such as the names of the
days of the week, the months, and the month abbrevia-
tions, plus the value for the century base for interpreting
2-digit years.

sbltinelib.sm

Implementsthe TI MESTR() and TI MEVAL() func-
tions for compatibility with SBL. Both of these can
also be used in general in SIMPOL, since in many
cases there is no equivalent, although see also the
snt pdat el i b. sm . Thislibrary also includes a
string2ti me() function.

sbngli b. sni

I mplements some commonly used types, such as data-
sourceinfo, thinfo, and wxformoptiongroup to provide
group management of option buttons.

sendkeys. sni

Contains a SENDKEY S implementation that works well
in Win32, including the ability to send keystrokesto a
window and not just commands. Win32-only.

sendnmi | . sni

Provides an easy-to-use sendnmai | () that
makes use of thesnt pcli entlib.sm and
snt pdat el i b. sn librariesto send simple text mes-

sages.

serialize.sm

Contains the functionality to serialize even fairly com-
plex objects to afile such that the state of the object can
be retrieved later. Obviously cannot support properties
that represent data types that cannot be instantiated with
the. new() method.

shel | execut e. sni

Supplies awrapper for the Win32 Shel | Execut e()
API call, which not only will run programs, but can also
be used to start the registered program for a specific file
type based on its file extension, such as starting the de-
fault browser for filesending in ht m

si npol packer. sni

Implements an archiving system that utilizes the BZip2
compression support fromthebzi p2. snl library,
which provides single file compression.

sntpclientlib.sn

Provides basic SMTP email sending capabilities. Thisis
awork in progress. The library does not currently sup-
port MIME, attachments, HTML email, etc. It works
fine for sending straight text messages to one or more
addresses.

snt pdatelib.sm

Provides an SMTP compliant function for creating a date
string from a datetime object.

sortlib.sm

Provides various sorting algorithm implementations, in-
cluding Insertion Sort, Quicksort (recursive), acombi-
nation of Quicksort and Insertion Sort (even faster than
Quicksort alone), and others.

soundl i b. sn

Basic sound support that currently only supports the
Windows operating system.

169

List of Supplied Libraries

Name

Source

Description

sql 1. sni

A query engine implementation including query optimiz-
er.

str.smnl

Implementsthe STR() function for compatibility with
SBL. It can also be used in general in SIMPOL, since
there is no equivalent. The only thing not supported is
scientific notation.

stringlib.sn

Contains various string parsing and manipulation func-
tions. Thislibrary is heavily used in the more complex
libraries. Some of the functions included are: par se-
token(),ltrim(),rtrim(),multiinstr(),
format!i nebreaks(), etc.

timer.sm

Thisisavery basic but usable implementation of atimer
object. Use the timer to run things that need to happen
regularly independent of the rest of program execution.
Each timer runsin a separate thread.

trimsni

Implementsthe TRI M) function for compatibility
with SBL. For a more flexible implementation see the
rtrim) functioninthestringlib.sm library.

ui syshel p. sn

Contains functions and types useful in working with the
user interface and the operating system, such as retriev-
ing the list of system colors, the default font, display
size, etc. More details on this can be found in: the sec-
tion called “Dialogs Using Standard Buttons”.

unittest.snl

A basic regression testing library that implements types
for running regression tests and which compare the re-
sult of each test with the expected result and report only
on failure.

ur | endecode. sni

Provides functions for URL -encoding and URL -decod-
ing. Thisis primarily used by web applications or pro-
grams that need to speak to aweb server.

urllib.sn

Implements atype and function for parsing a string into
aURL that has been divided into its component parts.

utf8lib.sn

Provides functions for converting to and from UTF-8
format.

uuencode. sni

Provides functions for uuencoding and uudecoding. It al-
s0 has functions for doing base64 encoding and decod-
ing. These are used by email systems for sending attach-
ments in 7-bit characters.

val . sni

Implements the VAL () function for compatibility with
SBL. It can also be used in general in SIMPOL, since
thereis no direct equivaent. The only thing not support-
ed is scientific notation.

vol at abl e. sni

Provides an complete implementation of volatile data-
base tables, including table creation, record creation,
storage, deletion and modification, locking, indexes, etc.
Worksin virtualy exactly the same manner as the sbmel
type but does not support the member operator. Written
completely in SIMPOL. The speed is not blinding, but
pefectly adequate when working with 1000 or so records
with afew indexes per table. Performance should be test-
ed for anything outside of these parameters.

List of Supplied Libraries

Name

Source

Description

wi nfiledlg.sm

Library for calling the open and save file common di-

alogs from another program, such as the older Superbase

product. Thiswill only work on a Windows NT-based
operating system when called from a Win16 program
such as classic Superbase. See the example program in
thesanpl es\ sbhl directory.

xm lib.sm

Provides afew useful functions when working with

XML but not using the facilities of the Document Object

Model that thel i bxm . sml library provides.

171

172

Part X. Programming Data-
Aware Form Programs

This part discussestechniquesfor programming applications using the dataform21 family of typesfor implementing
data-aware forms. It is expected that most applications of this nature will probably use the application framework

library as their initial point of departure, but the knowledge from this chapter will work for any program that is
working with the dataform1 type family.

Table of Contents

22. Overview of Window and Dialog Types Provided with SIMPOLc.ocooviiiiiiiiinnenes 177
WXWINITOW .ttt ettt ettt ettt e e et et e e et et e e et et e e et et e e e e eba e 177
WXOTBIOQ ettt 178
WXFOTTTY ettt et e e et ettt e et e e e et e e e eba e e eaans 178
Iterating Through wxform Elements ..o, 179
WHeEN t0 USE WXFOIM .couuiiiiii e 180
(0= 2= {01 1 1 TP PP PPPPTIN 180
Using the Various dataformL SErVIiCEScceuuuieiiiiiiieiiiiie e 182
810111 0] 1 1 4 PP U PP OPPPTTRUPPPTN 184
(1= oo 1 o R PP 185
(o[BI o: (= oo o RSO PP SUPPPTTPPPPIN 186
o] 2= 10 gl Te 1= oo g of T PSP SPPPTR 187
2ol o] [Tor= (L] H TSP PPPPTTR 189
BPPWINTOW ... et e et e et ettt e et eeaa s 190
23. Using Data-Aware FOrms in SIMPOLiiiiiiiiiii e 193
The Design of datafOrmLiiiiiieiii et 193
Graphical EIementscoooiiiii e 193
FOIM CONTIOIS ...t 193
Uy Ty PES ettt ettt 194
Iterating Through dataforml EIementscooevuiiiiiiiiiii e 195
Controlling With BVENLSuiiiii e 197
USiNg the SPeCial FEBIUIEScouuuiiiiii e e 197
The Onfi I 1 BEVENL ..o 197
The Drop List For Edit CONLrOlScovvviiiiiiiiie e 197
Using a Query to Fill aDetail BIOCKocovviiiiiiiiiiiciiii e, 198
Two Approaches to Working with dataformloveiiiiiiiiiiii e 198
AULO-TOCKING ..t 198
AULO-TOCKING ..t 199
Making Use of form i b. sml . 199
24. Using Data-Aware Print FOrms in SIMPOLooiiiiiiiiiii e 201
The Design of PrintforMILoiiiii e 201
Working With printfOrmIL ..o e 206
PrNFOrML SUMMEIY ...eeeeiee ettt et nb e e eeanns 207
25. USiNg REPOIS iN SIMPOLuuiiiiiiiei ettt ettt e et e e 209
Using the Sglgl TYPe DIr€CHY ...ccovvniiiiiii e 209
USiNG SQLO2 iN SIMPOL ...couiiiiiiii ettt 209
WOrKing With FEPOMLn it 210
The DeSigN Of FEPOMLvuniiiiii e e 210
Working With QUICKIEPDOITLoeieiiiee e 216
Enhanced QUiCk REPOIT OULPULcouvuiiiiiiiieeiiii e e 222
quickreportl Summarizing Quick Report OULPULoevvvviieeiiiiiieceeii e 223
QUICKIEPOML SUMIMBIY ...eevtieieiii e eeeeii ettt ettt et et eeeene e eeeees 223
Working With graphiCrepOrtdooeeeiieeiiii e e e 223

graphiCrePOrtl SUMIMEIYueeiiti ettt ettt e et e ettt e e ettt e e et e e e enb e e eenbn e eeees 229

26. Using the SIMPOL Application Frameworkcoouuiiiiiiiiiiieeiiie e 231
The Design of the Application Frameworkooooeiiiiiiiiiiiiii e 231
Working with appf ramewor K. S ... 233

175

176

Chapter 22. Overview of Window and
Dialog Types Provided with SIMPOL

This chapter will look at the various types and families of types supplied with SIMPOL. It will not
go into excessive detail, but it will attempt to provide a clear view of the types, the hierarchy of
types included by other types, and how each set of types was designed to be used. Types come in
two varieties, those provided as C/C++ language components and those designed in SIMPOL itself.
This section will aso concentrate mainly on the GUI elements. For other parts, it may be useful to
examine the source code to the libraries or check the Language Reference Guide. The types that will
be discussed include both those from the C/C++-language based component WXWN, and al so derived
types built in the SIMPOL programming language. These include:

* wxwindow
» wxdialog
 dataforml

* printforml
* reportl

* quickreportl
* graphicreport
» application
* appwindow

wxwindow

The wxwindow typeis used to create the main window for an application (usually), and might contain
amenu bar, tool bar, status bar and even child windows. The wxwindow type is also used to create
child windows. Here are some of the other types that are directly associated with the wxwindow:

» wxmenubar
» wxtoolbar
» wxstatusbar

In addition to these types, there are also some functions that are important to working with top level
windows:

e wxprocess()
e wxbreak()

A minimal program that presents awindow with no content can be seen in the section called “ Creating
a Single Window” .

In order to respond to events, it is necessary to place the WX system into a state to respond to events.
That is what the wxpr ocess() function does. It takes a time out value, which is typically set to
. i nf , theinterna value for infinity. That meansthat unlessit isforced to exit by some other method,
the program will sit in that statement waiting for eventsforever. In the example, thetask of exiting this
stateisfulfilled by thequi t () function, which is called when the user clicksthe close gadget for the
window, selects Close from the system menu, or presses Alt+F4 (in Windows). That resultsin a call
to thewxbr eak () function, the sole purpose of which is to terminate awxpr ocess() function.

@ Note

The program could also call thequi t () function for some other reason, such asamenu
selection, aform button press, etc. that would result in the program exiting.

177

wxdialog

wxdialog

A dialog window is very similar to a main window, but with less features. It cannot have atool bar,
menu, or status bar. Also, dialog windows are in front of their parent window. The wxdialogtype in
SIMPOL can be either modal or non-modal. Modal means that the dialog must be dealt with and
dismissed before you can continue or click on the parent window. A non-modal dialog staysin front of
the parent window, but the user can still click on the parent window. For examples of using wxdialog,
see the section called “Working with Dialogs”.

wxform

In both the wxwindow and wxdialog types, the content is provided by the wxform type. The same
form can be used in awindow, adialog, or even atoolbar (though the form should be sized and shaped
appropriately). To place aform into awindow or dialog, call the set cont ai ner () method of the
wxform object passing the target window or dialog object. The form contains aring of graphics and
aring of controls. Graphical elements are added to the form using the addgr aphi c¢() method of
the wxform type. Controls are added using theaddcont r ol () method of the wxform type. Thelist
of graphical elements supported includes:

» wxgraphicline

» wxgraphicrectangle

» wxgraphictriangle

» wxgraphicarc

» wxgraphicellipse

All of the above are type tagged as wxgraphic. This allows a variable that has been declared as
t ype(wxgr aphi c) g tothencontainareferenceto any of thewxgraphic types. Graphical elements
are always located behind controls. Thereis no method that can be used to cause them to be rendered
in front of controls. Thelist of form controls currently provided is:

» wxformbitmap

» wxformbitmapbutton

» wxformbutton

» wxformcheckbox

» wxformcombo

+ wxformedittext

» wxformgrid

o wxformlist

» wxformoption

» wxformscrollbar

» wxformsizebox

o wxformtext

178

Iterating Through wxform Elements

All of these controls are type tagged as wxformcontrol, and therefore any variable declared as
t ype(wxf orntontrol) c cancontainareferenceto any of the form control types.

@ Note
The wxformoption type has a basic problem. It does not automatically come with any
method of treating several of these buttons as a group. To overcome this, a solution was
created andwasplacedinthesbngl i b. sml library. Thissolutionisbased onthetypes:

 wxformoptiongroup
 wxformoptiongroupmember

To use it, create a wxformoptiongroup object. Then after creating each button, use the
addrenber () method of the option group object to add it to the group. If you intend to
assign an onchange event to the option button, do thisfirst, since otherwise thingswon't
work (when the option button is added to the group, its onchange event information is
replace with that of the group, and the old information is stored so that it can be called
later).

Iterating Through wxform Elements

Earlier it was said that the form controls and graphics arein aring. A ring is a specific type of data
structure. The supplied SIMPOL language library called | i st s. snl provides implementations of
singly-linked lists and rings, and doubly-linked lists and rings, as well as a queue and a stack. It is
also supplied in source code as the lists project in the si npol \ proj ect s\ | i bs directory. The
way thisworksisthat areferenceto thefirst control on the form isassigned to the wxform.firstcontrol
property. The sameistrue of the first graphic. A referenceto it is assigned to the wxform.firstgraphic
property. Each control or graphic also has a property called next, which is a reference to the next
graphic or control. The next property of the final control or graphic on the form will refer to the first
one, thus creating the ring. If there is only one control or graphic on the form, then its next property
will refer to itself. Below is a function that takes a wform type as a parameter and then returns an
array of all the control names. It could just as easily use the same technique to change the colors of
all the controls, or resize, them, etc.

Example 22.1. Iterating Through Form Controls

function getcontrol nanes(wxform f)
t ype(wxf orncontrol) c
array nanes

i nt eger i

i =0

names =@ array. new)
if f '@ .nul

c =@f.firstcontrol

while ¢ '@ . nul
i =i + 1
nanes[i] = c.nane
C =@c. next

end while ¢ =@ f.firstcontrol

end if
end function nanes

The same approach could be used for graphical elements.

179

When to Use wxform

When to Use wxform

Generally the wxform and its associated controls are a good choice for forms that will not have data
directly associated with the controls. Utility programs are a good example, as are basic dialogs that
just retrieve some user choices and then process the results.

dataform1

The dataforml type was created in the SIMPOL language library called dat abasef or ms. sm in
order to provide amulti-paged, data-aware form system that works as a set of wrappersto the wxform
types. One of the other enhancementsis the support for system colors, so the page background color,
plus the text and background colors of the controls also can take a system color identifier, which
is interpreted at run time to decide which color to use. The dataforml type family consists of the

following types:

Table22.1. dataform1

Type

Description

dataforml

This represents the entire form. The form contains a dring of
dataf orm21page objects. Each page contains the graphics and controls that
are found on that page. The form also has drings of controls, graphics,
datasources, bitmaps, fonts, tables, links, and sibling links.

dataformlarc

A basic wrapper for the wxgraphicarc type, but also includes the neces-
sary elements to be part of dataforml.

dataformlbitmap

A bitmap object that is also data-aware. Can be a static bitmap or it can
have acontrol sourcethat containsthe path name of the bitmap, which can
be afile system resource or located on the Internet using the HTTP pro-
tocol. Must be stored using the URL format: "fil e: ///c/ mystuff/

nypi c".

dataf ormZ1bitmapbutton

Provides a compatible wrapper for the wxformbitmapbutton type.

dataform21bitmapsource

Supplies the container for the bitmaps used in the form. Also contains
the path and file name for images loaded from disk. Allows easy reuse of
the same bitmap multiple times on one form (or potentially on multiple
pages of aform).

dataf ormlbutton

Compatible wrapper for a button.

dataf orm1checkbox

Supplies a data-aware check box control that can not only have on or off,
but which assign a value for the on state and another for the off state to
the underlying database field.

dataformlcombo

A very flexible data-aware combo box that can befilled with static values,
read the valuesfrom an array, or retrieve them from a database table. Can
also one set of values, but assign a different one. Finaly, it aso has the
option to befilled by the user program by assigning ahandler to the onfill
event.

dataformlcontrol source

Theinformation used to connect a database field with acontrol, including
the display format (used both to convert from dates, times, etc. to string
for display inthe control, aswell asto convert from the string value to the
target data type for storage in the field). Also contains information about
adetail block, if the control is part of one.

dataformldatagrid

The purpose of the data grid is to make it easy to show data in a grid
control from atable that is dependent on the main tablein aform. It has
restrictions on what can be done with it. The cells are read-only, since
this grid is meant for display only.

180

dataforml1

Type

Description

dataform2datagridcolumn

Thisisacolumn in adatagrid type. It contains the control source, which
itself may contain a link to another table. An example might be a form
with an ORDERS table, adatagrid of information from the ORDERDTL
table, and agrid column that islinked to the PRODUCT tableand isshow-
ing the product name.

dataf orml1datasource

This type is used to hold the information necessary to reopen a data
source, as well as areference to the opened data source itself.

dataform2detailblock

A detail block isacollection of controlsthat are arranged in asingle row,
which is then replicated into a specified number of rows and columns
and which may or may not have a scroll bar. This is a very powerful
mechanism for displaying data. It can either be linked to the master table
of aform, or it can be unlinked and filled using a SQL query.

dataformledittext

The edit control is similar to the normal edit control, but has the control
source and also has aspeical featurefor displaying adrop list based on an
indexed search using a specified number of typed characters in the edit
control. Workssimilarly to the effect seen in web browsersthat remember
previous form entries.

dataformlellipse

A basic wrapper for the wxgraphicellipse type, but a so includes the nec-
essary elementsto be part of dataforml.

dataformigrid

This is a free form grid control with which the programmer can create
any functionality they wish. It is almost identical to the wxformgrid type
but is compatible with dataforml.

dataformlline

A basic wrapper for the wxgraphicline type, but aso includes the neces-
sary elements to be part of dataforml.

dataformalink

This object contains the information necessary to create a join between
two database tables. It isincluded in the dataformlcontrol source type.

dataformllist

Thisis similar to the capabilities of the dataformlcombo, allowing vari-
ous ways to populate the list. Wraps the wxformlist type, but is limited
to single selection, since the result will be assigned toa ssingle field in a
database record.

dataformZloption

A data-aware option button implementation. The interesting thing is that
the control sourceisassociated with the group, not theindividual controls.
A selection of an option will assign the value associated with the control
to the field in the database record.

dataformZloptiongroup

Provides the host for the control source for a group of option buttons.
Also implements the functionality for grouping buttons together.

dataformlpage

This contains the controls, graphics, and the reference to the wxform ob-
ject that contains all the wxform controls and graphics that make up one

page.

dataformlrecord

Thisisacontainer for at ype(dblr ecor d) object that also containsa
flag for indicating the record has been modified, plus methods for saving
and deletion, plus eventsto call back to user program code when arecord
issaved and when it is deleted. These events are not typically used, how-
ever, instead the equivalent events of the dataforml object are favored.

dataf ormlrecordset

When working with adetail block, you may wish to retrieve the record(s)
that make up a single row on the display. The dataformldetailblock
method get r owdat a() will return arecord set with the records repre-
senting that specific row. A record set can also be used to update a row
in adetail block, by callingtheset r owdat a() method.

dataformlrectangle

A basic wrapper for the wxgraphicrectangle type, but aso includes the
necessary elementsto be part of dataform1.

181

Using the Various
dataforml Services

Type Description

dataformlscrollbar Thisis a basic wrapper for the wxformscrollbar type to make it a proper
part of dataforml.

dataformltable Thistype contains areference to a database table — type(dbltable), it also

contains an array of field information, a reference to the data source, a
reference to the form, areference to the current index, adlistnode called
parentnode which is used to traverse the tables on the form, and another
dlistnode called datasourcenode that is used to traverse the tables in the
data source. See below for information on iterating through elements on
theform. Thereisamethod called get t abl enane() that can be used
toretrievethetable name of thetableregardless of thetype of table. It also
has events for onnewrecord, onsaverecord, and ondeleterecord that can
be defined by the application programmer to take an action at that point.

dataf orm1text This type enhances the underlying wxformtext type by making it da-
taraware, so that information from arecord can be shown, but not edited.

dataformltriangle A basic wrapper for the wxgraphictriangle type, but also includes the nec-
essary elementsto be part of dataforml.

There are anumber of design concepts that are associated with the dataform1 type. Among them are:
every form has a master table and will typically have a master record. The master table is not meant
to be changed once the form has been created and isin use. Normally only the master record (from
the master table) can be modified. There are sibling links that connect to other tablesina 1:1 or n:1
relationship, like looking up a customer number in the customer table and then displaying the name
on the form. There are also links to detail blocks and data grids, which are of the type 1:n, so if the
current form contains an order, then the lines of the order might bein adatagrid or detail block. When
usingthedel et er ecor d() method, it only deletes the master record, it does not affect any linked
records. For details on working with the dataforml types see:Chapter 23, Using Data-Aware Forms
in SMPOL.

Using the Various dataform1 Services

The dataform1 type not only provides the capabilities of aform and its controls, but also adds data-
base functionality to that. It includes methods for selecting records (when using linked tables, it also
performsthe lookupsinto those tables and refreshes the form automatically), changing pages, locking,
editing, and saving records, firing off calculations and validations at the time records are saved, and
providestwo different approachesto managing data-entry. I n this section wewill discussthese various
services. Theinteresting methods are listed below:

Table 22.2. dataform1 M ethods

Method Name Description

bl ank() Clears all datafrom the data-aware controls on the form. Does not create
anew record!

check- Checks all associated records with the form and returns .true if there are

dirtyrecords() any modified records.

del eterecord() Deletes the current master record and then attempts to select the next

record for display according to the current index. Must be locked first.

di scardrecord() Marks the current record as not modified (dirty) and unlocks the master
record if it islocked. It will also call any programmer-defined ondiscard
event handler.

findcontrol () Given astring this function will search for amatching dataforml control.
If found, the return value will be a reference to the form control.

fi ndgraphic() Given astring thisfunction will search for amatching dataform1 graphic.
If found, the return value will be a reference to the graphic.

182

Using the Various
dataforml Services

Method Name Description

get fi el dand- This is passed field name and table name and if a matching ta

tabl e() ble with a field of this name is found, it returns a reference to a
dataform2control source object.

I ock() Call this method to lock the master record of the table. It also sets the

modified (dirty) stateto . t r ue.

nanei nuse()

To establish if a control nameisin use (one name space is used for con-
trols and graphics), call this function passing the name of the control. If
inuseit returns. t r ue, otherwiseit returns. f al se.

newr ecor d()

Creates anew master record for the form, also internally callsbl ank()
to clear the form. It will call any previously defined onnewrecord event
handler.

refresh()

This method re-reads the data from the records already selected and as-
sociated with the form and updates the data shown on the form.

saverecord()

Thisfunction should be called to save the newly created or modified mas-
ter record. The record will automatically be unlocked unless the | ock
parameter issetto . t r ue. Also, if an onsave event handler is defined, it
must return . t r ue if the save is meant to continue. Handling the onsave
event is how the program can handle validations and cal culations prior to
the saving of the record. It receives the dataform1 object and an optional
reference. To modify the fields of the target record, or retrieve values,
use the dat af or mL. mast errecord. record! fi el dnane type
of approach. If avalidationfails, itisthe responsibility of the programmer
to either request a replacement value, or to set focus to a specific control
andreturn . f al se, sothat the record is not saved.

sel ectcurrent ()

Thisworkssimilarly tothestandardsel ect cur r ent () method of the
ppcstypelrecord, though it works with sbmelrecord and volalrecord as
well. Also updates the form, any form links, and will call any defined
onselect event handler (for calculated form content based on the data).

selectfirst()

This works similarly to the standard sel ect fi rst () method of the
ppcstypelrecord, though it works with sbmelrecord and volalrecord as
well. Also updates the form, any form links, and will call any defined
onselect event handler (for calculated form content based on the data).

sel ect key()

This works similarly to the standard sel ect key() method of the
ppcstypelrecord, though it works with sbmelrecord and volalrecord as
well. Also updates the form, any form links, and will call any defined
onselect event handler (for calculated form content based on the data).

sel ectl ast ()

This works similarly to the standard sel ect | ast () method of the
ppcstypelrecord, though it works with sbmelrecord and volalrecord as
well. Also updates the form, any form links, and will call any defined
onselect event handler (for calculated form content based on the data).

sel ect next ()

This works similarly to the standard sel ect next () method of the
ppcstypelrecord, though it works with sbmelrecord and volalrecord as
well. Also updates the form, any form links, and will call any defined
onselect event handler (for calculated form content based on the data).

sel ect previ ous()

This works similarly to the standard sel ect pr evi ous() method of
the ppcstypelrecord, though it works with somelrecord and volalrecord
aswell. Also updates the form, any form links, and will call any defined
onselect event handler (for calculated form content based on the data).

set masterrecord()

Use this method to set a different record as the current master record of
theform. Thiswill then usethe new master record to sel ect any dependent
recordsin detail blocks, data grids, and 1:1 links followed by arefresh().

183

printform1

Method Name Description

setmastertabl e() |Thiswill change the master table of aform. It should never be used in a
normal application program. If you choose to useit, it should be used be-
fore creating any other controls, and the setmasterrecord() method should
later be used to select arecord unless the table is empty.

showpage() To change pages on a mulit-page form, use this method.
unl ock() Call this method to unlock the master record of the form if it was previ-
ously locked.

There are more methods, many of which are associated with adding data sources, tables, graphics,
controls, links, and so on, but which will not be discussed here. Since these are used by the code that
loads the form, they are not as important as the ones used to actually work with the form once it has
been loaded. If you are curious about the use of these, save aform asadataforml program and examine
the source code, or look at the source code for the project f or ml i b. sl .

printforml

The printforml type was daso created in the SIMPOL language library called
dat abasef orns. snl . It provides a set of data-aware types for creating printable forms (forms
primarily meant to be printed rather than displayed on the screen). This group of types shares
a number of types with the dataforml type group, and is type tagged as dataforml as well as
dataformllinkcontainer. For details about working with the printform2 family of types, visit Chap-
ter 24, Using Data-Aware Print Formsin SSMPOL.

Table 22.3. printforml

Type Description

printforml This represents the entire printable form. The form contains a dring of
printforml1page objects. Each page contains the graphics and controls that
arefound on that page. The form also has drings of controls, graphics, data-
sources, bitmaps, fonts, tables, links, and sibling links.

printformlarc A basic wrapper for the wxgraphicarc type, but also includes the necessary
elementsto be part of printforml.

printformlbitmap A bitmap object that is also data-aware. Can be a static bitmap or it can
have a control source that contains the path name of the bitmap, which can
be a file system resource or located on the Internet using the HTTP pro-
tocol. Must be stored using the URL format: "file:///c/ nmystuff/

mypi c".

dataform21bitmapsource | Supplies the container for the bitmaps used in the form. Also contains the
path and file name for images loaded from disk. Allows easy reuse of the
same bitmap multiple times on one form (or potentially on multiple pages
of aform).

dataformZcontrolsource | The information used to connect a database field with a control, including
the display format (used both to convert from dates, times, etc. to string
for display in the control, as well asto convert from the string value to the
target datatype for storage in the field). The detail block information is not
used when it is part of a printformlcontrol.

dataformldatasource | Thistypeisused to hold the information necessary to reopen adata source,
aswell as areference to the opened data source itself.

printformZlellipse A basic wrapper for the wxgraphicellipse type, but also includes the neces-
sary elements to be part of dataforml.

printformlline A basic wrapper for the wxgraphicline type, but al so includes the necessary

elementsto be part of dataforml.

184

reportl

Type Description

dataform2link This object contains the information necessary to create ajoin between two
database tables. It isincluded in the dataforml1control source type.

printformlpage This containsthe controls, graphics, and the reference to the wxform object
(if the form is being displayed) that contains al the wxform controls and
graphics that make up one page.

dataformZlrecord Thisisacontainer forat ype(dblr ecor d) object. Thefeaturesfor man-

aging modification are not used in printforml, since it is not designed to
allow user interaction.

printformlrectangle

A basic wrapper for the wxgraphicrectangle type, but also includes the nec-
essary elements to be part of dataforml.

dataformltable

This type contains a reference to a database table — type(dbltable), it al-
so contains an array of field information, a reference to the data source, a
reference to the form, a reference to the current index, a dlistnode called
parentnode which is used to traverse the tables on the form, and another
dlistnode called datasourcenode that is used to traverse the tables in the da-
ta source. See below for information on iterating through elements on the
form. There is a method called get t abl enane() that can be used to
retrieve the table name of the table regardiess of the type of table. It also
has events for onnewrecord, onsaverecord, and ondeleterecord that can be
defined by the application programmer to take an action at that point.

printform1text

This type enhances the underlying wxformtext type by making it da
taraware, so that information from arecord can be shown, but not edited.

printformltriangle

A basic wrapper for the wxgraphictriangle type, but also includes the nec-
essary elements to be part of dataforml.

reportl

Another SIMPOL language type is reportl, which is part of the library calledreport i b. sm . It
implements a set of functions and types to provide a basic reporting engine. The output of the reportl
type is not specified, the output is handled by the calling program. The Quick Report and Graphic
Report packages are both implemented by using the reportl type. The primary purpose in making the
reportl type available is to allow the creation of custom report types by SIMPOL programmers. For
details about working with the reportl package, visit the section called “Working with report1”.

Table22.4. reportl Types

Type Description

reportl The key element of the report system is this type. It is used to define and
then run the report.

reportlaggregate Thistypeis used for defining an aggregate calculation for a group or the
entire report.

reportlaggregatevalue | Thistypeispassed to afunction that ishandling the aggregate. Unlessyou
are implementing your own aggregate calculation, rather than using one
of the ones supplied, you will not use thistype.

reportlgroup Provides the capability of adding one or more groups to areport. Includes
events for ongroupstart and ongroupend, to alow the event handler to
process the output at the start of the group (group name, etc.) and again
at the end (totals).

reportlgroupinst Thisisthetypethat is passed to the event handling functions for ongroup-
start and ongroupend.

185

quickreportl

Type

Description

reportlinst

When areport is running, thistypeis created to contain the data about the
currently running instance of the report definition. It is passed to the events
of the report1 object.

The rest of the implementation is mainly the functions that have been pre-defined for handling the
various aggregate types. These consist of

Table 22.5. reportl Functions

Function

Description

reportl_agg getval_count()

This is the function that retrieves the value for the COUNT aggre-
gate.

reportl_agg update count()

Thisfunction is called to update the COUNT aggregate value.

reportl agg getval_mean()

Thisisthe function that retrievesthe value for the MEAN aggregate.

reportl_agg update_mean()

Thisfunction is called to update the MEAN aggregate value.

reportl_agg getval_median()

Thisisthe function that retrieves the value for the MEDIAN aggre-
gate.

reportl_agg update median()

Thisfunction is called to update the MEDIAN aggregate value.

reportl agg getval_mode()

Thisisthe function that retrievesthe value for the M ODE aggregate.

reportl_agg update mode()

Thisfunction is called to update the MODE aggregate value.

reportl_agg getval_sum()

Thisisthe function that retrieves the value for the SUM aggregate.

reportl_agg update sum()

Thisfunction is called to update the SUM aggregate value.

The reportl type is quite powerful, but unless you want to implement your own special report mode,
you may find the Quick Report and Graphic Report engines to be more suitable or easily used.

guickreportl

A much easier to use reporting type in SIMPOL is the quickreportl type, which is found in the
qui ckreportlib.sm library. Thisprovidesawrapper around the report1 type that delivers out-
put to window, printer, clipboard, HTML, CSV, and database (SBME format). Specific information
about working with the quickreport1 package, can befound in the section called “Working with quick-

reportl”.

Table 22.6. quickreportl Types

Type

Description

quickreportl

The key element of the quick report system isthistype. It isused to define
and then run the report.

quickreportlcolumninfo

For each column an element of this type is required to define the col-
umn characteristics, including: the starting horizontal position and the
width, both in micrometers, the alignment, and whether the column con-
tent should wrap onto the next line.

quickreportldatasource

This is the return value from the call to add a data source to the Quick
Report. The return value is passed to the code that adds a table, but is
otherwise not generally used externaly.

quickreportltable

The wrapper for the database table containing alink to the data source and
thereby al information required to reopen the table at another time. Thisis
primarily used internally, though it isthe return value from adding atable.

186

graphicreportl

The instance types from the reportl type are also used in the event handlers for the quickreportl. In
addition they also receive the quickreportl object. There are a number of functions associated with
the running of a Quick Report, which are listed below:

Table 22.7. quickreportl Functions

Function Description

reportl_quickreport_output_groupfooter() | This function is called at the end of a group to output
any defined group information, typically the count and/
or an aggregate value.

reportl_quickreport_output_reportfooter() | Thisfunctionis called at the end of the report to output
any defined report information, typically the count and/
or an aggregate value.

reportl_quickreport_output_reportheader() | Thisfunction is called at the start of the report to output
any report specific information. In practice thisfunction
is used to open output files or output file header infor-
mation.

reportl_quickreport_outputpageheader() |Outputs the defined header information, if any, at the
start of each new output page. It is only called once for
some output formats.

reportl_quickreport_outputrow This function is called once for each row of output. It
asoisresponsible for determining if agroup has ended,
or the end of the page has been reached.

loadquickreport() Loads a Quick Report from the XML storage format.
savequickreport() Saves a Quick Report in the XML storage format.
convert_dpi_mecm() Converts a measurement from pixels to micrometers at

the current dot per inch value of the display.

convert_mem_dpi() Converts a measurement from micrometers to pixels at
the current dot per inch value of the display.

In general, no use is made of the above-named functions by user programs, since the beauty of the
Quick Reportisitssimplicity. Oncethereport hasbeen set up, it just needsto berun. It also hasvarious
options such as displaying a progress gauge that can be enabled or not as desired. The simplicity is
an advantage but also the only real drawback of this report. For much more freedom in the design of
areport, it is necessary to use the Graphic Report.

graphicreportl

The most powerful report typein SIMPOL isencapsul ated in the graphicreport1 family of types, which
arefoundinthegr aphi creportli b. sm library. A fully banded report engineiscontained in this
set of types. The resulting output can be sent to either window or printer. The Graphic Report engine
uses the printform1 functionality to create reports that can included multiple fonts, images, graphics,
nested groups, and aggregate cal cul ations. Specific information about working with the graphicreport1
package, can be found in the section called “Working with graphicreportl”. Graphic Reports imple-
ment a banded report writer. What this means is that each section of the report is treated as a band of
information, an the various bands are put together to create pages. There are bands for page header,
page footer, report header, report footer, and for each defined group, group header and group footer,
and for the body of the report. If a band is not defined, then it will not impact the output. For each
band an area can be defined that is represented using a graphicreport1formpage, and is populated by
graphicreportlform controls and graphics.

187

graphicreportl

Table 22.8. graphicreportl Types

Type Description

graphicreportl The key element of the graphic report system is this type. It is used
to define and then run the report.

graphicreportlarc Represents an arc that can be placed on the band of the report.

graphicreportlellipse

Represents an ellipse that can be placed on the band of the report.

graphicreportlform The physical representation of the report output definition is con-
tained in thisform.

graphicreport1formbitmap A bitmap element for a graphic report form.

graphicreport1formpage Each band of the report is represented by one of these pages, and the
controls are placed on the page.

graphicreportlformtext Thisisatext control that can be placed on the band of the report.

graphicreportlformline

Represents a line that can be placed on the band of the report.

graphicreportlformrectangle

Represents a rectangle that can be placed on the band of the report.

graphicreportlformtriangle

Represents a triangle that can be placed on the band of the report.

Thereportlinst and report1groupinst typesfrom the report1 type are a so used in the event handlersfor
the graphicreport1 package and like with the Quick Report package, a graphicreport1 object is passed
to the event handling functions. The list of exported functions can be found in the following table:

Table 22.9. graphicreportl Functions

Function

Description

reportl_graphicreport_output_groupfooter(Thisfunctioniscalled at the end of a group to output any

defined group information, typically the count and/or an
aggregate vaue.

reportl_graphicreport_output_groupheadef{ihis function is called at the start of a group to output

any defined group information, typically the name of the
group and current GROUP value.

reportl_graphicreport_output_reportfooter(This function is called at the end of the report to output

any defined report information, typically the count and/
or an aggregate value.

reportl_graphicreport_output_reportheaderhis function is called at the start of the report to output

any report specific information. In practice this function
is used to open output files or output file header informa-
tion.

reportl_graphicreport_outputpagefooter()

Outputs the defined footer information, if any, at the bot-
tom of each new output page.

reportl_graphicreport_outputpageheader ()| Outputsthe defined header information, if any, at the start

of each new output page. It is only called once for some
output formats.

reportl_graphicreport_outputrow

Thisfunctioniscalled oncefor each row of output. It also
isresponsiblefor determining if agroup hasended, or the
end of the page has been reached.

loadgraphicreport()

Loads a Quick Report from the XML storage format.

savegraphicreport()

Saves a Quick Report in the XML storage format.

Aswith the Quick Report system, external programswill not likely make any use of the event handling
functions, sinceit isdesigned to "just work". Instead, a user program should define the onoutput event
of the graphicreport1formpage object.

application

application

Thebasic approach to devel oping aprogram using the application framework is: initialize the program
(create the application object and the first appwindow and display it to the user with whichever form,
menu bar, status bar, and tool bar required), call the r un() method of the application object and
respond to events with event handling code, and finally cleanup when asked to exit.

The application framework provided with SIMPOL intheappf r amewor k. sni library fileincludes
several data types and a number of functions that together with the items that are included in the
formib.snl library, such as: the dataforml and printform1 families of types, plus the numerous
functionsincluded inthelibrary for formatting types, working with databases, parsing information and
other useful tasks, makeit eay to create robust database-based applications. Thekey to thisfunctionalty
lies in the two main types: application and appwindow. Information that is universally required is
associated with the application type. Information that is specific to asingle window is associated with
the appwindow type. Some useful information about working with the application framework can be
found in Chapter 26, Using the SIMPOL Application Framework. Let's start by having alook at the
application type:

Table 22.10. application Properties

Property Description

localeinfoold SBLIocale This contains the datel ocale and the numlocale properties, that are
used in formatting dates and numbers throughout the libraries.

dring datasources Thisis aring of data source objects using the datasourceinfo type.
Data sources are stored at the application level since they need to
be used by all aspects of the program. Single-user data sources like
sbhmel cannot be opened multiple times even by the same program,
so theintiial open isused by all elements within the program. Also,
even though it is possible to open the same table more than once
using PPCS, the objects would not be compatible even on the same
tableif used from more than one opened instance.

tdisplayformats displayformats| This contains a set of string properties. One for each of the default
data types that might need conversion to or from string. The prop-
erties are: defboolean, defdate, defdatetime, definteger, defnumber,
and deftime. They are designed to work together with the functions:
bool str (), DATESTR(),datetinestr (), STR() (used by
both integer and number values), and TI MESTR() .

string inifilename This property provides a placeholder for the name of the config-
uration file that might be associated with the program. See the
conflib.sm forfunctionsthat work with configuration files.

localeinfo locale This contains a more modern set of locale information, which can
be of use in an application, though it is currently there for potential
future expansion.

event onexitrequest This event provides a mechanism whereby the application program-

mer can be called to determine if the application should close. If
the user closes the last open window theninthecl osewi ndow()
function if this event is defined, the user program will be called and
the application will only be closed if the return value is equa to
. t rue. Otherwise the window being closed will be redisplayed.
The handler function takesthe following parameter types: (appl i -
cation, wxw ndow, type(*) reference). Thefina refer-
ence parameter will only be passed if it is defined.

integer ostype These are currently defined in the application source file as:
OS_UNKNOWN 0,05 W N32 1,0S LI NUX 2. Although every

189

appwindow

Property Description

effort is made to ensure transparency between platforms, sometimes
it is necessary to detect the platform.

ppcstypel ppcs This is the place holder for a ppcstypel object that can be used
throughout the application for opening PPCS-based tables. The sys-
tem treats al tables coming from the same IP address and port as
being part of asingle data source.

boolean running This property is set to . t r ue when the system enters the r un()

method of the application object. Theexit codein various placeswill
set this property to .false so that it exits the run loop and exits the
run() method.

sysinfo systeminfo Thistype contains information about the environment and isinitial-
ized during the creation of the application object. This includes the
size of the display, thickness of scroll bars, the list of system colors
and their RGB values, and the system default font.

string title Thisisthe default caption for the windows of the application.

wxbitmap windowicon To promote efficiency, this contains the bitmap used for the window
icon in the various windows displayed by the program.

dring windows Thisring contains the appwindow objects that are created in the ap-
plication. By using thisring all of the various application windows
can be examined even if no appwindow is currently available. It al-
so allows the programmer to iterate through all of the appwindow

objectsif they have one.

The basic approach to working with the application type is to create another application type specific
to the user's program, such as myapplication, insert the application type into it as the first element
marking it asr ef er ence and r esol ve (r ef er ence because it isimportant to call the new()
method of the application type and r esol ve so that the properties of the application type appear to
be built into the myapplication type). Also type tag the myapplication type as application. There are
a number of functions that take an argument of t ype(appl i cati on) and thisis done so that a
derived application type will still work when passed to the function.

appwindow

The most used type in the application framework is the appwindow. Unlike the application type, it is
used asis, rather than having another type derived from it. Thistype is responsible for managing the
database tables, opening forms, enabling and disabling menu and tool bar elements by using call backs
viathe onmanagemenu and onmanagetool bar events and manages other window-specificinformation,
such asthelast selected unique key for the master table of the form, the current table, current directory
path (for consistency when opening filesand presenting file sel ection dial ogsto the user), and provides
a property that can hold a report so that it can be opened and retained within the window. Additional
information about working with the application framework can be found in Chapter 26, Using the
SIMPOL Application Framework. The details of the appwindow type are show below:

Table 22.11. appwindow Properties

Property Description

type(application) app Holds areference to the application object (or aderived application
object).

dlistnode appnode This is the dlistnode node that is a member of the windows dring
in the application type. It makes iteration through the appwindow
objects possible.

190

appwindow

Property

Description

string currentpath

The most recent path used to load or save afile (this starts at the
current directory and is the responsibility of the application pro-
grammer to update).

tableinfo currenttable

The atableinfo object containing the current table for the window.
Thisistypically the same as the form's master table.

boolean disablewindowresize

Normally when the openf or ndi r ect () method is called, the
window is resized to exactly fit the form. Set thisto . f al se to
disable this feature.

boolean fastsel ection

This should be set to . t r ue if in the loop for a fast forward or
rewind operation. Otherwiseitissetto. f al se.

dataforml form

A reference to the form that is currently loaded into the window.

string | astinternal uniquekey

This property is meant to be updated by the record selection
code and assumes that the database tables have been opened
such that the internal record ID is exposed (as is done in the
appwindow.opendat at abl e() method. It containsthethe most
recent internal record key. This can be useful in various situations
where a table does not have a unique index.

anyvalue lastselkeyvalue

Thisvalueisthe most recent entry into the sel ect key lookup dialog.
It will be used to pre-set the prompt, so that the most recent entry
reappears when searching, as long as the search index is the same.
It should be cleared when changing indexes.

wxmenubar mb

This contains a reference to the menu bar for the window. It isn't
necessary, since it can be reached via the wxwindow property w,
but it is convenient.

event ondel eterecord

Use this event, together with the supplied function deleterecord()
to provide any required special handling when deleting a record.

event onmanagemenu

If there are one or more entries in the menu that need to be en-
abled or disabled when any of a number of things occurs, such as
adding, modifying, saving, or deleting a record, opening or clos-
ing atable or form, then by assigning a handler for this event, the
code will be called. The function prototypeis: (appwi ndowap-

pw, wximrenubar nb, integer event t ype, string t abl enane,
type(*) reference). Theevent typesarelisted below.

event onmanagetool bar

If there are one or more entries in the tool bar that need to be en-
abled or disabled when any of a number of things occurs, such as
adding, modifying, saving, or deleting a record, opening or clos-
ing a table or form, then by assigning a handler for this event, the
code will be called. The function prototypeis. (appwi ndowap-

pw, wxt ool bar t b, integer event t ype, string t abl enane,
type(*) reference). Theeventtypesarelisted below.

type(*) report

This property provides a place holder for a report. It could be a
Quick Report, a Graphic Report, or even one of your own deriva-
tions from report1. The advantage is that the report can be present-
ed again to the user once defined.

wxstatusbar sb Contains a reference to the status bar for the window. It isn't nec-
essary, since it can be reached via the wxwindow property w, but
it is convenient.

dring tables Thisisthe parent for the ring of database tables stored as tableinfo

types.

191

appwindow

Property Description

wxtoolbar th This contains a reference to the tool bar for the window. It isn't
necessary, since it can be reached via the wxwindow property w,
but it is convenient.

type(wxcontainer) w This property holds the reference to the actual wxwindow object
displayed on the screen. It is declared as type(wxcontainer) so that
it can hold awxdialog as well as awxwindow.

Hereisthelist of parameter values and the symbolic constant names used in the application framework
source code that can be passed to the handler functions for the onmanagemenu and onmanagetool bar
events:

« (1) iEV_OPENFORM

(2) iEV_CLOSEALL

(3) iEV_CHANGECURRENTTABLE
(4) iEV_NEWRECORD

(5) iEV_SAVERECORD

(6) iEV_CLOSETABLE

(7) iEV_OPENTABLE

(8) iEV_CHANGERECORD

192

Chapter 23. Using Data-Aware Forms
in SIMPOL

This chapter will describe the general design of the dataforml family of types, as well as some tech-
niques for successful use of the set of types.

@ Note
Thischapter will not make much sense unlessyou have already read and feel comfortable
with the earlier chapters covering variables and grammar.

The Design of dataform1

Thegoal of the design of dataform1 wasto create aset of wrapper typesfor the wxWidgets-based form
controlsin order to provide amulti-page, data-aware form system similar in scope to that provided by
Superbase. To do this required managing quite a bit more information than is need to just provide the
wxform family of types. To work effectively, the data-aware forms would need to keep track of the
data sources used, the database tables used, the current master record for the form, and for efficiency
of implementation also the bitmaps used (there is no point in loading a large logo bitmap used on
every page once for each page, it is more efficient to load it once and use it on the various pages).
Also, the data-aware form would be a container of pages, where each would contain a wxform object
to actually host the controls. Also, each control would need to be enhanced to alow it to store the
information necessary to connect it to afield in the database. To finish it off, the functions would need
to exist to carry out the required actions: selecting records, reading data from the record and updating
the various controls, reading data from the controls as they are updated by the user and writing that
back to the record, locking in both single and multi-user modes, and numerous things that might not
be obvious in the first instance.

There are severa different kinds of data types used in the dataforml family. One is the wrappers of
the controls, another the wrappers for the graphics, and finally additional internal and exported types
used for the actual implementation of the public interface. Let's have a look at them here, starting
with the graphics.

Graphical Elements

Form

The graphical elements in the dataform1 family are fairly thin wrappers around the wxformgraphic
controls. What they add are the necessary components to link them together and additional informa-
tion, such as the support for named colors (colorsthat are not fixed but that are based on the operating
system settings for that user, and therefore use symbolic names such as "Button Face" or "Window
Text".

dataformlgraphicline
dataformZlgraphicrectangle
dataformlgraphictriangle
dataformZlgraphicarc

* dataformlgraphicellipse

All of the data types named above have a common type tag, called dat af or niLgr aphi c. All the
graphical elements are located in a dring property (doubly-linked ring) called graphics. Both the
dataforml and the dataformlpage have a property with this name. The form contains a ring of all
graphics from all pages. The page ring contains the graphics from that page.

Controls

Unlikethe graphical elements, theform controlsoften contain quite afew more propertiesand methods
than the original wxformcontrol objects. Thisisbecause of the requirement to store information about

193

Utility Types

their binding to a database field and table, the required display format, whether the control is part of a
detail block (aset of controlsdisplayed inrowswhere each row representsarecord in arel ated database
table), and if so in which row it is. Some controls require even more information. The dataformllist
and dataformlcombo controlsallow quite abit of flexibility in determining where the datacomesfrom
(including showing one value in the list but assigning another to the control). The dataformldatagrid
type provides a grid that has columns associated with fields from atable, and it can be linked like a
detail block to the master table of the form. Hereisthelist of form controls:

* dataformlbitmap

« dataformlbitmapbutton
 dataformlbutton
 dataformlcombo
 dataformilcheckbox
 dataformldatagrid
» dataformledittext
 dataformigrid

» dataformloption

o dataformilist
 dataformiscrollbar
o dataformitext

The form control types are all typetagged dat af or nilcont r ol . They arelocated in adring prop-
erty (doubly-linked ring) called controls. Both the dataform1 and the dataforml1page have a controls
property. The form contains aring of all controls from all pages. The page ring contains the controls
from that page.

Utility Types

There are a number of important utility types that play various roles in making the whole package
work. Hereisalist of them:

* dataformlbitmapsource
 dataformlcontrolsource
* dataformldatagridcolumn
 dataformldatasource
 dataformldetailblock

o dataformilink

« dataformloptiongroup
 dataformlpage
 dataformlrecord

» dataformitable

The dataforml1bitmapsource type was created to store the original location of abitmap that isloaded
into aform. The reason for it is simple, without that information it would be impossible to save the
form later and to know what value to store in the output file for the location of the image. For each
image used on aform, abitmap source object is created and i sthen associated with the resulting bitmap
so that it can be found later.

The same istrue of the dataformlcontrolsource type. This stores the actual field reference associated
with the control, plus the dataformltable object, and optionally a display format. Thisinformation is
necessary in order to read from and write to the database field and to correctly display and interpret
the datain the control itself.

A dataformldatagridcolumnissimilar inthat it also storesinformation about its control source, it may
also store areference to a dataformllink object if the column is not from the master table of the grid.

The dataformldatasource stores information about the data source, either itsfile name and path, or its
| P address and port number. It also contains alist of the database tables that are part of the data source.

194

Iterating Through
dataform1 Elements

One of the most complex objectsis the dataformldetailblock, which is a special type of container that
provides areplicated group of contrals, in rows and columns, that can be linked to the master table of
aform. It can work in two different ways: either as a block of rows of data (records) that are related
to the master record of the form, or else as a completely independent block of data, the content of
which isgoverned by a query. In both cases, the datais read only (from the user's perspective). There
are features in the design that allow for retrieving the database record for a given row, for updating
that record or even replacing it, and also for removing the row from the result set. It also contains
methods for scrolling the block up or down, a page or arow at atime. The detail block is currently
not optimized for reducing the records read, so if the link results in reading 100,000 records, then it
will do so, delaying everything until it is done. As such, it is important to choose the links and data
design wisdly.

The dataform2link contains the information that links two tables together, and it also storesthe record
sets that are read as aresult of using the link to read records.

The dataf ormZ1optiongroup acts as the management object for agroup of dataformloption controls. In
this special case, the data source is associated with the group object, and not with the controls. It also
ensures that if one option button in the group is selected, that the others are desel ected.

The dataf orm1record contains properties that assist it in knowing if the record has been changed, but
not yet saved, and provides a place to define events such as onsaverecord or ondel eterecord.

Similarly, the dataf orm21table object storesinformation about the current state of the table, such asthe
current index, an array of field information including display formats, and events like onnewrecord,
onsaverecord, and ondel eterecord.

The dataformlpage is the container of all items specific to a single page of the form.

Iterating Through dataform1 Elements

Thetechniquefor iterating through dataforml elementsisdightly different to that used in the wxform.
Firstly, there are many different dring properties: controls, graphics, bitmaps, tables, datasources, de-
tailblocks, links, siblinglinks, obgroups, and pages. Iterating through these dringsis fairly consistent,
but you need to know what to expect from each one, so that the varialbe used to hold the current item
is correctly defined. Below is atable showing the dring and the type that a variable must be declared
asin order to hold any given member of the dring.

Table 23.1. dataform1 dring Types

Ring Property Name |Required Type
controls type(dataformlcontrol)
graphics type(dataformlgraphic)
bitmaps dataf orm1bitmapsource
tables dataformltable
datasources dataform2ldatasource
detailblocks dataf ormldetailblock
links dataformalink
siblinglinks dataformalink
obgroups dataformZloptiongroup
pages dataformilpage

In each case the approach is the same:

Example 23.1. Iterating Through dataform1 dring Properties

195

Iterating Through
dataforml Elements

function col | ectdf 1control names(dat af ornil f)
t ype(dat af ormlcontrol) c
string nanmes

nanmes = ""
c =@f.controls.getfirst()
while ¢ '@ .nul
nanes = nanes + c.nane + "{d}{a}"
c =@c. formode. get next ()
end while ¢ =@ f.controls.getfirst()
end function names

In each case, the code tends to look very similar. It starts by getting the first item in the ring, then if
that is not null (the ring has at least one entry), it enters the loop, processes whatever it is doing (the
purpose for going through all the entries), then retrieves the next onein the ring, finishing when it has
reached the first one again. In the prior example, since any number of different control types will be
returned by the call to c. f or mode. get next () , thevariable ¢ is declared with the method used
for defining a variable that can contain a type-tagged group of types. The type tag dataform2lcontrol
is not atype, it is a type tag associated with each dataformlcontrol in its type definition, to enable
exactly this sort of functionality. For further information about type tags see the section called “Value
Types, Reference Types, and Type Tags’.

Most of the types have aformnode property, which contains the reference to the dlistnode that makes
the item part of the ring. Some items have a different name, and some have more than one node, so
selecting the correct oneis essential. For example, the form controls have aformnode and a pagenode
(the dataformloption control also has a groupnode). To iterate through al the controls in the form,
start with the dataform1 controls dring and use the formnode of each control to get the next one. To
iterate through all the controls on a given page, use the controls property of the dataformlpage and
then use the pagenode of each control to get the next one. Here is an example that iterates through all
pages on aform, and through each control on the page.

Example 23.2. Iterating Through the Controls on Each Page of a dataform1

functi on df 1pagesandcontrol s(datafornl f)
dat af or nilpage p
t ype(dat af ormicontrol) c
string info

info =""
p =@f.pages.getfirst()
while p ! @ . nul

if info >""
info =info + "{d}{a}"
end if
info = info + p.nane + "{d}{a}" + "-" * .len(p.nane) + "“{d}{a}"

C =@p.controls.getfirst()

while ¢ ! @ .nul
info =info +" " + c.name + ": type=" + c.type + "{d}{a}"
c =@c. formode. get next ()

end while ¢ =@ p.controls.getfirst()

p =@ p. f or mode. get next ()

end while p =@ f.pages.getfirst()
end function info

In the preceding program the two iteration variables are p and c. The page variable is defined to be of
one specific type: dataformlpage, since that is the only type that is managed by the ring. The other is

196

Controlling with Events

defined as type(dataformicontrol), since all of the various dataforml control typeswill bein thering
and therefore the variable needs to be able to hold a reference to any of them.

Controlling with Events

It will usually be asaresult of your program code calling the dataform1 methods. sel ect first (),
sel ectl ast (), sel ectnext(), sel ect previ ous(), etc., that will result in data changing
on the form. The onselect event can be assigned a handler so that you can run some code each time
arecord is selected. This can be used to implement cal culated form content based on the value of the
underlying record. The onsave event can be handled to implement validations and cal culations before
therecord is saved, or to refuse to saveif the validation fails. In the same way, the onnewrecord event
can be used to implement default values for the new record, and the ondiscard event can be used to
do cleanup if the user chooses not to save arecord.

Using the Special Features

There are anumber of special features that can provide more user-friendly and powerful applications
and which are included in the design of the dataform1 family. In this section we will discuss these
features.

Theonfill Event

Thelist types, dataformlcombo and dataformllist both include a special event called onf i | | . What
this event doesis that at the point where the code would normally fill the list of the combo or list box,
if this event has a handler assigned, it will instead call that handler. This gives the programmer the
ability to fill the list themselves, potentially using content that would otherwise be difficult to define
in the normal approach.

@ Note
It isimportant to note herethat theonf i | | eventisnormally only called when theform
is loaded.

The Drop List For Edit Controls

The dataformledittext control has a specia feature that may be familiar to some from the technique
in web browsers. Namely, in the edit control while typing suddenly a list will drop down containing
related content that had been typed into the box in the past. Asthe user types, it filters the content such
that the beginning of each list entry matches the content that has been typed into the box. The user
can then select an item from the list using the mouse, or in our case tab into the control and use the
arrow keysto go up and down the list. Asthey change entriesin the list, the text in the edit control is
updated to match the entry. When they tab to the next control, the list vanishes.

This sort of functionality is available to every dataformledittext control. The list content must be
retrieved from a database table. This feature cannot be stored in the form definition when it is saved,
it must be added after the form has been loaded. To use it, call the enabl edr opl i st () method.
This method takes the following parameters:

1. boolean enabl e

2. type(dblindex) i ndex

3. integer act i vat i onchar count
4. integer | i st hei ght

5. integer maxsear chentri es

197

Using a Query to Fill aDetail Block

6. integer err or

To turn on the functionality, the method must be called with the enabl e parameter setto . t r ue
and thei ndex parameter must be a valid index object for the index of the table on which to search.
The remaining parameters are optional and have usable default values. Theer r or parameter should
always be supplied and tested before making use of the functionality. The names of the parameters
should make clear what they do, but hereis abrief description anyway:

» activati onchar count —Thissetting determines how many characters must be typed into the
control beforethe search functionality isactivated. If you havealargetable, it may beworth sticking
to the default of 2 characters or even increasing it slightly.

* |i st hei ght —Thisvaluedetermineshow tall thelist box will be. It will belocated directly below
the edit control and will be the same width as the edit control. The list cannot extend beyond the
form height and any value that causes this will be automatically adjusted.

» maxsear chentri es —Thisisavery useful setting that allowsthe programmer to limit the num-
ber of successfully found matching entries. This should be set to some useful value in the range
20-100 probably. It prevents lag while the searching is carried out. Since the user can simply type
another character to search again with afiner filter it is no burden to keep the list size low.

Using a Query to Fill a Detail Block

The dataformldetailblock normally must be linked to the master table of the form. There is a new
mode that has been added to allow an unlinked detail block to be managed by the programmer. The
detail block can befilled using aquery. This can be very useful to see the current status of a selection
of the data. For example: unfulfilled jobs, uncleared bookings, completed jobs, open orders, etc. These
could then be further filtered to show only those from today, the last hour, the past week, etc.

Tousethedatagridinthisway, call theset par ans () method and assigntheusequer y parameter
to. t rue and the wher ecl ause to the WHERE clause that you wish to be applied to the master
table of the detail block. The call ther unquer y() method, passing in the error parameters (so that
you can seeif your query was valid or not). Once the query has been run, the result set will be stored
and thefirst page of the detail block will be filled. The SQL 92 syntax information can be found in the
section called “Using SQL92 in SIMPOL”.

Two Approaches to Working with dataform1

The basic approach to working with data-aware formsin systemslike SIMPOL or Superbase, istolock
arecord prior to modification, allow the user to edit the record, and then save the record (unlocking
it in the process) or to unlock the record (as a result of selecting another record). Systems that do
not implement record locking (or that can not use it efficiently) such as most SQL database systems,
take a different approach. They allow the user to make changes to a record, and then only when the
time comes to commit the changes, they lock the record, check to see if it has changed since it was
originally read, and if not, they commit the changes and unlock the record. The problems begin to
arise if the record has changed in the interim.

In this section, we will stick to the former style of working, but even that hastwo different approaches.
One is to use the auto-locking approach (the default in dataforml), the other is to use the explicit
locking approach. Sophisticated systems (and especially multi-user systems) are likely to require the
explicit approach. Let's have alook at each one in more detail.

Auto-locking

This is the easiest approach, since it just works. If the user clicks on a control that is not read-only
or disabled, the control receives focus. If the user changes the content, when the focus leaves the
control, the dataform1 system will attempt to lock the record. When the user saves, then everything
is automatically committed. If the user goes elsewhere, the changes to the record will be discard-

198

Auto-locking

Auto-I

ed, it is up to the programmer to check to see if the record needs saving. This is integrated into the
appf ramewor k. sm functionality, see the later section for more information. It is important to
note, because of a curious issue with the wxWidgets library, the SIMPOL wxform.cl ear f ocus()
method has a quirk. Even though it clears focus from the form, wxWidgets stores the control that
previously had focus. If the user then tabs away and tabs back again, the previous control to have had
focuswill haveit again. We are looking into thiswith aview to changing that behavior, but until then
it isimportant to consider what impact that may have on your application.

ocking

An dternative approach, necessary to anyone who intends to provide user-level access control meth-
ods, isexplicit locking. To use this, the dataform1 object has auto-locking turned off, and the prevent
focusfunctionality enabled. This meansthat when the user attemptsto place focuson theform, it fails,
although buttons can still be pushed. The correct approach might look like this, where the variable f
contains a dataform1 object:

/1 after opening the form usi ng appwi ndow. openf or mdi rect ()

f.autol ocking = .fal se
f.prevent focusnode = .true
f.preventfocus = .true

Once this has been set up, the appf r anmewor k. sni library and the dataform1 package will handle
the rest. When you wish to alow editing, for example viaamenu or tool bar event, calling the nod-
i fyrecord() functionwill allow the user to change the data on the form. Once the form is saved,
the dataform1 object will once again prevent focus on the form.

Making Use of form i b. sni

Theform i b. sm library containsacopy of thedat abasef or ms. sm library, and soif you add
form ib.sm toyour project, you don't need to add dat abasef or ms. s . There are quite a
few types and functionsin the library, but only afew are of any real relevance. The two most likely to
be used functions are: opendat af or niL() and savedat af or mL() . Thefirst opens a dataforml
from afile, and the second saves an existing dataforml as a file. SIMPOL forms are stored in XML
format, which is a standard text file that can edited in any editor, such as not epad. exe. When
opening adataforml using theopendat af or mL() function, there are alarge number of parameters
that can (and should) be supplied. These include the defaults for various display formats, a dring of
data sources that may be already open, and an array of database tables that are already open. Any
database table that is passed in will prevent a database table of the same name being opened using
the data source information stored with the form. This approach means that the form can be created
using the single-user engine but can be opened using a previously opened set of tables that are being
accessed using the multi-user engine.

The data sources are expected to be in a dring of datasourceinfo objects (these are not
dataf orm2ldatasource types, but they are similar). The array of tablesis expected to beginat 1 (like all
arraysin SIMPOL) and to consist of entries of type(dbltable). Both of these are easily retrieved when
using the appf r anewor k. sm library and architecture. See the next section for details.

199

200

Chapter 24. Using Data-Aware Print
Forms in SIMPOL

The printform1 family of types provides the ability to design, save, load, and print data-aware forms
with an accuracy to the nearest micrometer. This chapter discusses how to use the set of types that
implement this functionality.

@ Note
As is the case with other chapters, this chapter will hot make much sense unless you
have aready read and feel comfortable with the earlier chapters covering variables and
grammar.

The Design of printforml

The approach to printform1 was to provide a method of printing accurate forms to the print preview
window and to the printer, without needing to previously display the printed form to the user. Although
it is possible to display the printed forms, all coordinates are stored in micrometers and are then con-
verted as well as possible to pixels for display purposes. At the time of writing, no significant testing
has been done with the display of these forms. That has been reserved for the period of time when the
Print Form Designer is being devel oped.

The first step in working with the printforml family of types isto learn the members of the family
and what role they play. Hereisalist of the types:

* printforml

* printformlpage

* printformlgraphic
* printform2lcontrol
* printformlarc

e printformlellipse
* printformlline

* printformlrectangle
 printformltriangle
* printformaltext

o printformlbitmap

Understanding the list is fairly easy. The first element is the form, the second represents a page on
the form. The third is a generic type that incorporates most of the elements that the graphic controls
have in common, the same is true of the fourth item, but for controls. This was done because it turns
out that the SIMPOL IDE is able to provide context help for variables that are declared using atype
tag if that type tag name is also defined as a type. All of the graphic elements: the arc, ellipse, line,
rectangle, and triangle, are type tagged using printformlgraphic, and the text and bitmap items with
printformZ1control, which greatly eases the development in the IDE of applications that use variables
based on the type tag.

Each of the graphic typesincorporate the related wxgraphic type, for use when displayed. In addition,
they have a duplicate of the all the properties that affect the final look, prefaced in most cases with

201

The Design of printforml

theword "pri nt ". Thereason for thisis that the design required that each of the elements carry the
most accurate units, plus that it should be possible to have the entire form created without needing
access to the embedded wxWidgets control, since that would require the control to be created in some
displayable form. Since it was necessary to be able to draw the control directly into a wxprintout
object, all of the elementsthat affected that result needed to be part of the property list for the graphic
or control.

Let's go through each of the properties of the types, to see how they are constructed. The first and
most complex of these is the printform1 type. It has many similarities with the dataforml type. So
many, infact, that the original dataforml type was also type tagged with dataform, and the printform1
also carries this type tag, as well as the dataformllinkcontainer tag. Doing this allowed printforml
to reuse many of the types used in the dataform1 family of types, such as. dataformldatasource and
dataformalink. Here is the type definition:

type printforml (printforml, dataforml, dataformllinkcontainer) \

export

enbed

printformlprivate _private

bool ean valid

i nt eger def pagew dt h

i nt eger def pagehei ght

i nt eger def pagebackcol or

bool ean desi gnnode

bool ean dirty

bool ean creat edi spl ayf orm

bool ean | ocked

SBLNuntet ti ngs def nuneri cl ocal e reference
SBLI ocal edat ei nfo def dat el ocal e reference
string def nunber f or mat

string def dat ef or mat

string deftimeformat

string defdateti mef or mat

string defintegerformat

string def bool eanf or mat

string nane

string fil enane

string printpreviewmitle

dri ng dat asources
dring tabl es

dri ng bitmps
dring controls
dring graphics
dri ng pages

dring siblinglinks

event onsel ect
event onsave

reference

type(*) _

type(*) __ resolve

dat af or mlLt abl e mast ert abl e
dat af ormlrecord nast errecord
t ype(wxcont ai ner) contai ner
wxfont deffont

202

The Design of printforml

print formipage current page
array fonts

function addbit map
functi on addcontrol
function addgraphic
functi on adddat asource
function addpage
functi on addtabl e
function bl ank
function buil ddi spl ayf orm
function clearsiblinglinks
function findbitmpsource
function findcontrol
function finddatasource
function findgraphic
function findsiblinglink
function findtable
function getfiel dandt abl e
function getfont
function | ock
functi on nanei nuse
function print
function refresh
function renovedi spl ayf or m
function saverecord
function sel ect current
function sel ectfirst
function sel ect key
function sel ect!| ast
function sel ect next
function sel ect previ ous
functi on setcont ai ner
function setdirtystate
function set mastertabl e
function showpage
function unl ock

end type

Much of the type definition of printform1 is taken from that of dataforml, so let's look only at the
differences. The createdisplayform indicates if, while creating the form, it should also create a dis-
playable form using wxform and related types. There is also a printpreviewtitle property, which is
used as the caption of the print preview window if the form is printed to that destination. Although
there is an onsave event, this type was not designed for doing data-entry, and it may be removed at
a later date. Like the dataforml type, it contains numerous default properties and various rings of
controls, graphics, tables, data sources, and the like. The methods are also quite consistent with those
used in dataforml. One significant difference isthe bui | ddi spl ayf or n{) method. This can be
called after the form has been created to produce the display version of the form, by converting the
print coordinates to display versions. The other method that is new ispri nt () . This method takes
aboolean parameter called showpr i nt pr evi ewthat defaultsto. t r ue. It also takesadi al og-

dat a parameter that can contain the printer information, so that the print dialog does not need to be
shown to the user. This can be very handy for unattended printing.

The next type we wish to look at is the page. Like with the form, the page is very similar to the
dataf orm2lpage type and it has also been type tagged as dataformlpage. Here is the type definition:

type printformlpage(dat af or nipage) export

203

The Design of printforml

end type

ref erence

wxf or m wxf or npage

enbed

dring controls
dring graphics
i nt eger
string nane

i nt eger

pagenum

pri nt backgr oundr gb

[/l These are the actual values for the printout in mcroneters
i nt eger
i nt eger

ref erence
type(*) _
type(*

)

printw dth
pri nt hei ght

resol ve

dl i st node for mode
printfornl form

functi
functi
functi
functi
functi
functi
functi

on
on
on
on
on
on
on

addcont r ol

addgr aphi c

bui | ddi spl ayf orm
changenane

pri nt

resize

setactive

Thesignificant differencesare again specific to the print capabilities. The printbackgroundrgb property
contains the background color. The printwidth and printheight properties contain the paper size that
will be passed in when producing the wxprintpagetemplate. As with the form, there are also the two
methods. bui | ddi spl ayforn() and print (). Thefirst is called to create the display version
of asingle page. The second is called to transfer the page to a printout, which is passed to it by the
formversion of pri nt ().

Adding graphics and controls to the print form is very much the same as adding them to a dataform1
object. To add a graphic call the addgr aphi ¢() method, and to add a control call the addcon-

trol () method. The parameters to each are slightly different to those for the dataforml versions,
and are worth alook. Here is the parameter list for the printforml.addgr aphi c() method:

1.

2.

typegr aphi ct ype

point pri nt poi nt 1

. integer r gb

. point pri nt poi nt 2
. point pri nt poi nt 3

. point pri nt m dpoi nt

. integer bor derr gb
. integer wi dt h

. integer bor derwi dt h

204

The Design of printforml

10.boolean vi si bl e
11.boolean bor der vi si bl e
12.string pr i nt nane
13.type(printformlgraphic) next
14 printformlpage page
15.integer er r or

Aswe can seefrom the preceding description, most of the parameters have the same name, but the point
parametersdiffer. Thiswas partly becauseinthe original design it was possibleto passboth the display
and the print parameters in, until it was redesigned to always calculate the display parameters from
the print ones. The same thing is true in most ways with the printforml.addcont r ol () method.
Here are the parameters for that:

1. typecontrol type
. integer pri ntl eft
. integer pri nttop

. integer pri ntwi dth

2

3

4

5. integer pri nt hei ght
6. stringt ext

7. booleanvi si bl e
8. wxbitmap bi t map
9. stringscal i ng
10.integer backgr oundr gb
1lintegert extrgb

12.&tring pri nt al i gnment
13.wxfont f ont

14.string pr i nt name
15.boolean backgr oundvi si bl e
16.boolean under gr aphi cs
17.boolean under bi t maps
18.type(printforml1control) next
19.printformlpage page
20.type(dbifield) fi el d
21.dataformitablet abl e
22.string di spl ayf or mat
23.integer er r or

Again the mgjority of the parameters are the same as those from the dataforml.addcont r ol ()
method, but a few differences are clearly visible. All of the position parameters have the word
"print " asthefirst part of their name, as do the alignment and name parameters. For the alignment

205

Working With printform1

that is because the type of alignment control allowed on a wxprintout is more intricate than that on
a wxform. Some of the other new parameters are specific to capabilities of the wxprintbitmapitem
and wxprinttextitem types. Rather than go into each of the graphics and controls, since they are very
similar to the standard ones, it is probably better to just look at how to create and print aform. The
next section will do just that.

Working With printforml

In this section wewill create asmall program that demonstrates using each of the controls on a printed
form. Learning from an actual program is generally the best approach. The following sample creates
a print form, populates it with controls and graphics, and then prints it to the print preview window.
It does not use any of the data-aware features of the controls, but doing soistrivial, it merely requires
also creating and adding the data sources and tables, and then assigning fields and display formats to
the controls. That is identical to the way it works in normal data-aware forms, so for the purpose of
this demonstration, it will be left out. Here is the sample code:

function main()
printforml pf
printfornlpage page
type(printformigraphic) g
type(printformicontrol) c
i nteger e
wxwi ndow w
wxbi t map bnp
wxfont font
string s, url

e =0
w =@ wxwi ndow. new(1, 1, 300, 200, \

capti ont ext ="Cl ose nme when done", error=e)
if w!@ .nul

w. onvi si bi |l i tychange. function =@ qui t

pf =@ printforml. newm error=e)

page =@ pf. addpage(210000, 297000, Oxffffff, name="ptest", \
error =e)

g =@ pf . addgr aphi c(printformilline, point.new30000, 30000), \
poi nt . new(180000, 30000), w dth=100, \
rgb=0, printnane="I|1", page=page, error=e)

g =@ pf . addgr aphi c(pri ntfornlrectangle, \
poi nt . new(30000, 50000), \
poi nt . new(100000, 70000), borderw dt h=100, \
r gb=0xf f 00, borderrgb=0x0, printname="r1",\
page=page, error=e)

g =@ pf . addgr aphi c(printfornitri angle, \
poi nt . new(110000, 50000), \
poi nt . newm(140000, 50000), \
poi nt . new(125000, 80000), borderw dt h=100, \
r gb=0xff, borderrgb=0x0, printnanme="t1",\
page=page, error=e)

g =@ pf . addgr aphi c(printfornlarc, point.new 86519, 206056), \
poi nt. new(179917, 206321), \
pri nt m dpoi nt =poi nt. newm 133350, 154198), \
bor der wi dt h=100, rgh=0xff 0000, \
bor derr gb=0x0, printname="arcl", page=page, \
error =e)

g =@ pf . addgr aphi c(printforniel |ipse, \
poi nt . new(68281, 229369), \

206

printform1 Summary

poi nt. new(115113, 249213), \

print m dpoi nt =poi nt . new 68281, 249213), \

bor der wi dt h=100, rgbh=0xffOO0Off, \

bor der r gb=0x0, printnanme="ellipsel”, page=page,\

error =e)

/1 The inmage is 192x80
url = "http://ww.sinpol .con i mages/styl el/l ogo. png"
bnmp =@retrievebitmap(url, "png", error=e)
if bmp =@ . nul

bnmp =@ cr eat ebl ankbnp(192, 80, m ssing=.true, error=e)
end if
if bmp '@ . nul

c =@pf.addcontrol (printfornlbitmp, 45000, 70000, 50800, \
21167, bitmap=bnp, \
scal i ng="preserveaspect"”, page=page, \
error =e)
end if

s = "The quick brown fox junped over the |azy dog. \
Pet er Pi per picked a peck of pickled peppers. How \
many pi ckl ed peppers did Peter Piper pick?"
font =@wxfont.new"Arial", 13, "n", "n", "", error=e)
¢ =@pf.addcontrol (printfornltext, 40000, 130000, 90000, \
35000, s, backgroundrgh=0x0, \
textrgb=0xffffff, printalignment="", \
font=font, printname="text123", \
page=page, error=e)
pf.print(error=e)
wxprocess(. i nf)
end if
end function

function quit(wxw ndow ne)
wxbr eak()
end function

The preceding source code creates awindow (just to keep the print preview window open and the pro-
gram running) and then create the print form. It adds one of each of the graphic typesto it (please note
that coming up with valid coordinates for an arc or ellipse is not trivial — these were converted from
pixel values after drawing them using the SIMPOL Form Designer in SIMPOL Personal). Following
the graphics, an image is retrieved from the Internet viathe URL using ther et ri evebi t map()
function that is part of the dat abasef or ns. sml library. If it fails to retrieve a bitmap, it calls
another function from the library to create a blank image with an X through it in the same size, to
act as a missing image replacement. It then adds the bitmap to the print form. Finally it adds a text
element with static text that is centered both horizontally and vertically and display as white text on
a black background. This is then sent to the print preview window. Once the small main window is
closed, the program ends.

printforml Summary

During this chapter we have discussed the purpose and design of the printform1 family of types. We
have also learned how they are similar and how they differ from the dataform1 family of types. Using
asmall sample program we have seen how to create and print aform using program code, as well as
how to retrieve a bitmap using a URL from aweb server on the Internet or in an Intranet.

207

208

Chapter 25. Using Reports in SIMPOL

In this chapter the four report engines will be discussed: sql 1.sm , reportlib.sm,
graphi creportlib.sm ,andqui ckreportlib. sm . Thesecond makesuseof thefirst one,
and both the Quick Report and Graphic Report engines make use of the the report engine, so much of
what will be written about that engine appliesto al of them.

@ Note
This chapter only discusses using the report engines programmeatically.

Using the sqlgl Type Directly

The sglgl typeiswherethe true work for al the report engines takes place. Thisisthe SQL92 engine.
This engine supports a subset of SQL92 that is related to retrieving data from the database. It has a
selectclause and a whereclause property. To run a query, there must be at least one column named in
the selectclause. Then, the pr epar e() method must be called and assuming it did not generate an
error, the results can be retrieved by calling the get r ow() method until it returns . f al se. When
using the various report types, you do not normally cal the get r ow() method, instead you would
call therun() method. This will carry out the report, which will call the various event handling
functions to produce the desired resuilt.

The sglgl typeis not normally used directly, though it can be quite handy. Thedri | | down() func-
tionfromthedri | | down. sm aswell asthefilter functionality for unlinked dataformZldetailblock
types both use this type.

Using SQL92 in SIMPOL

The SQL92 syntax supported in the sqlgl typeis:

» [TABLE_NAME.JCOLUMN_NAME, [TABLE_NAME.]JCOLUMN_NAME AS
* AND OR

¢ =><>=<=<>

» [NOT] LIKE " ESCAPE

o unary +, unary -, +, -, *, /, || (string concatenation)

* POSITION(<string> IN <string>)

« EXTRACT(YEAR|MONTH | DAY |HOUR | MINUTE | SECOND FROM <date-time-or-date-
time>)

« CHAR[ACTER]_LENGTH(<string>)
» UPPER(<string>)

* LOWER(<string>)

* SUBSTRING(<string> FROM <start-position> [FOR <length>1])

« TRIM([[LEADING | TRAILING | BOTH] [<trim-char>] FROM] <string-to-trim>)
» CAST(<value-expression> AS <data-type>)

* ABS(<numeric-expression>)

» CURRENT_DATE

209

Working with report1

* CURRENT_TIME
* CURRENT_TIMESTAMP

The COLUMN_NAME can be surrounded by double quote characters (). This can be useful if the
field name in the table contains one or more spaces (not recommended).

Here are some additional notes about working with dates, times, and datetimes:

» Dates must be supplied in the format yyyy-mm-dd when expecting to evaluate them

e Times must be supplied in the format hh:mm:sg[.ssssss] not all decimal places required
» Datetimes must be supplied in the format yyyy-mm-dd hh:mm:ss[.ssssss]

To evaluate a date, time, or datetime, it needs to be prefaced by the appropriate operator:
» DATE('2010-01-26")

* TIME('23:21:55")

» TIMESTAMP('2010-01-26 23:21:55")

The following key words are supported: AND, AS, BOTH,
CHAR_LENGTH, CHARACTER_LENGTH, CURRENT_DATE, CURRENT_TIME,
CURRENT_TIMESTAMP, DATE, DAY, ESCAPE, EXTRACT, FOR, FROM, HOUR,
IN, LEADING, LIKE, LOWER, MINUTE, MONTH, NOT, OR, POSITION, SECOND,
SUBSTRING, TIME, TIMESTAMP, TRIM, TRAILING, UPPER, YEAR.

For more information regarding the syntax of SQL92, see the numerous resources on the In-
ternet. The following document is the most complete resource | have found to date: http://
www. contri b. andr ew. crmu. edu/ ~shadow sql / sql 1992. t xt .

Working with reportl

The reportl type is used as the basis for all three engines. In essence, the other two are variations
and enhancements to the core report engine. The quickreportl and graphicreportl types each contain
areportl type, but their implementation is primarily about different ways of dealing with the output
of the report. It is entirely possible to create other report engine wrappers that handle output in other
ways, thoughit is probably easiest to extend the quickreport1 typeto deal with them, sinceit isalready
prepared for output to CSV and HTML format aswell as sending the output to the clipboard, in addition
to print and print preview.

This section will go into some detail regarding the design and usage of the reportl core engine.

The Design of reportl

The suite of data types that make up the core report engine consists of:
* reportl

* reportlaggregate

* reportlaggregatevalue

* reportlgroup

* reportlgroupinst

* reportlinst

In practice, these represent three pairs of types. reportl and reportlinst, reportlaggregate and
reportlaggregateval ue, and reportlgroup and reportlgroupinst.

210

The Design of reportl

In each case, the first of the pair is used to define the starting information, and the second is used
during execution of the report to preserve current state information asit is updated and changes. More
on this after we have examined each of the types.

The reportl Type

Thetype definition is probably the most compact way to look at thesetypes. Hereisthetype definition
of report1:

type report1(sql ql, reportlaggregatecontainer) export
ref erence
sgl q1 query resolve readonly

enbed
string ordercl ause readonl y
bool ean di sti nct readonl y

event onreportstart
event onreportend
event onout putrow

dri ng groups
dri ng aggregates

ref erence

type(*) _

type(*) __ resolve

type(reportout puttarget) outputtarget
SBLNuntet ti ngs num ocal e

SBLI ocal edat ei nfo dat el ocal e

functi on addgroup readonl y

function renovegroup readonl y

functi on addaggregat e readonl y

functi on renoveaggragate readonly

function run readonl y

functi on setordercl ause readonl y
end type

Let's stat a the beginning. The first thing we see is two type tags. sglql, and
reportlaggregatecontainer. This allows a reportl object to be assigned to any variable that has been
declared as able to contain one of these two types. Following that, we see as the first thing, a sglql
type parameter called quer y, which ismarked asr esol ve. Sinceit is marked that way, all of the
properties and methods of the sglgl type will appear as part of the report1 type.

E Note
Column names are case-sensitive, so when using them in various parts of the report,
such as the where or order clause, make sure to use the exact name as specified in the
select clause.

The next two items are the orderclause and the distinct properties. The sglql carries out the query, but
does not handle the ordering of the output. Thisis handled by the reportl engine. The name used in
the orderclause must match the names used in the columns passed to the select clause. If afield name
has its name changed using the AS operator, then the name following the AS operator must be used
in the order clause. Sorting is done in ascending order by default. To reverse it, add the DESC key
word preceded by a space following the column name. Sorting of text currently does not support any

211

The Design of reportl

other collation order except native Unicode number, which means that lowercase letters will sort out
of sequence with uppercase characters. The second property, distinct, if set ensures that if an entire
output line is duplicated, that duplicates do not appear in the output. This can happen under certain
circumstances with various filters and joins between tables.

Following on from there, three events are listed: onreportstart, onreportend, and onoutputrow. If de-
fined, these events will be called at the appropriate times, as can be inferred from their names. When
implementing some code that makes use of the report engine, at the very least you would want to
create a handler for the onoutputrow event. Thiswill get called each time arow isread. The function
is passed the following parameters:

1. reportl

2. reportlinst

3. array of column information

4. array containing the current column values
5. * optional referenceif defined for the event

Thefirst two are the report itself and the current running instance. The details about the instance will
be found below. The third parameter is a 2-dimensional array that starts at 1, and in the n,0 position
isthe data type, and in the n,1 position is the display format for that column. The columns are in the
same order as when they are passed in to the select clause of the query (these are not necessarily 1:1
with fields, since the select clause allows the use of SQL 92 functions to create calculated columns).
Thenumber of columns can beretrieved using thereportl.get col unmcount () method. Thefourth
parameter is a 1-dimensional array starting at 1 that contains the values for the current row for each
of the columns. The values will be of the same data type (or a compatible one) as that of the column.

For completeness, the parameter lists of the other two events are:
reportl

reportlinst

w N

* optional referenceif defined for the event
1. reportl

2. reportlinst

3. * optional referenceif defined for the event

The next parameter is a dring called groups. This contains the ring of reportlgroup objects that will
be processed by the report. Groups are processed in the order they are added, so the outermost group
will be the first one added, and the innermost group will be the last one added. For example, if you
are reporting on name and address data, and grouping on city and then by surname, the city group
should be added first, and then the surname group. Also, the sort order should be "city,surname” in
order to get the results that are expected.

The aggregates property isalso adring that contains the report-level aggregate values to be computed,
each of which is of type reportlaggregate. All aggregates only work with numeric columns, except
for the count aggregate which is not associated with acolumn at all (the column number should be set
to 0). The supported aggregates currently are: sum, mean, median, mode, and count.

The outputtarget property is not used by the reportl type, sinceit is not actually concerned with the
output at al. It isthere to be used by types that deal with output.

Thenumlocal e and datel ocal e properties should be passed in so asto ensure that the output isformatted
correctly. If the application is using the appf r amewor k. sni library, then the application object
will make these available using the exact same types, so that consistency can be assured across the
application.

212

The Design of reportl

The usage of the methods should be pretty clear from their names. They provide a method for adding
and removing groups and aggregates, setting the order clause, and running the report. There will be a
large number of additional methods exposed that are part of the sqlql type. These include:

» adddblt abl e() —Usethisto add database tables to the report

» setsel ectcl ause() —Call thisto set the string representing the select clause

» setwher ecl ause() — Thisestablishesthefilter and joins for the report

» setdefaul tfornmats() —Itisimportant to add the default formats for the various data types
» prepare() —Preparesthereport to be run and checks the select and where clauses

The other methods are used while the report is running but are used by the report engine itself, so
you shouldn't need to use them unless you are trying to use the sglgl type on its own, which is an
advanced topic.

The reportlaggregate Type

Aggregate values can be calculated at the report or group level. In each case they make use of the same
types:. reportlaggregate and reportlaggregateinst. The creation of an aggregate for aqualified column
is quite simple, and is done the same for both report-level and group-level aggregates. The key isthe
first parameter to thenew() method of the type. Here are the parameters to the method:

1. type(reportlaggregatecontainer) cont ai ner
2. function get val ue

3. integer col no

4. typedat at ype

5. integer t ypei d

6. integer err or

The first two parameters must be passed, or the creation of the object will fail. In the case of the count
aggregate, the col no parameter is not required (but in the quick report and graphic report versionsis
setto 0). Inall other casesthecol no parameter will also be needed, aswill thedat at ype parameter.
Thet ypei d parameter isused by both the quick report and graphic report libraries, but is not used by
thisone. Thefina parameter isasusual, theer r or parameter, and should be apre-initialized integer
in order to get the value back should the object fail to be created.

The only other thing that needs to be done to use the aggregate in the report is to assign the onupdate
event handler. Each time arow isread, the aggregate val ues need to be updated. The function assigned
to this event for the specific aggregate handles doing the appropriate type of update.

The report library contains ten functions that are used together with the aggregates, five of them for
providing the getval functionality and five for providing the update functionality. These are:

e reportl agg getval count ()
* report1l_agg _update_count ()
e reportl _agg getval nean()

* reportl1l_agg_update_mean()
 reportl agg getval median()
e reportl_agg_update_medi an()
* reportl _agg getval node()

e reportl _agg update_node()

213

The Design of reportl

e reportl _agg getval sum()

e reportl _agg update_sum()

The reportlaggregatevalue Type

The only place that you might encounter thistype, isif you decide to implement your own aggregate
value type and handler. This type is one of the parameters passed to the getval and update functions
of an aggregate implementation. Unless you need to do that, you don't really need to worry about this
type. Doing thisis an advanced topic.

The reportlgroup Type

In order to provide a grouping functionality within the report, we implemented the reportlgroup type.
Thistype contains the static definition of agroup that isused in areport. Thisincludesthe two events:
ongroupstart and ongroupend, the column number (colno), the name of the group (typically the column
name), its data type, and if defined, any aggregate values. Aggregates work exactly the same way as
with the report, and use the same type. When adding agroup to areport, theaddgr oup() method of
thereport iscalled. To add an aggregate to agroup, call theaddaggr egat e() method of the group.

The reportlgroupinst Type

Thistypeisonly used by event handlersthat are dealing with the ongroupstart and ongroupend events.
The reportlgroupinst type contains the current information about thisinstance of the group, including
its value and in the ongroupend event also the various aggregates that may have been defined for the

group.

Creating a Report in Source Code

Creating areport is not particularly complicated. Using the address.sbm from the Address Book ex-
ample (see the SIMPOL Quick Start Guide), a sample report can be seen in the code below. This
report outputs a tab-delimited carriage-return and linefeed delimited file of the data from the selected
columns.

function nain()
reportl report
sbnel sbnfile
sbnelt abl e address
i nteger e, erridx
string s, errnsg
f sfil eout put stream f po

e =0
sbnfile =@ sbnmel. new(" addr ess. shni', error=e)
if sbnfile =@ . nul
s = "Error nunmber " + .tostr(e, 10) + \
' opening ""address.sbni'"{d}{a}"

el se
address =@ sbnfil e. opent abl e(" Address", \
recordi dfi el dnane="recid ro_internal", error=e)

i f address =@ . nul

s = "Error number " + .tostr(e, 10) + " opening the \

""Address"" table{d}{a}"

el se

errnsg =

erridx =0

report =@reportl. new)
report. setsel ectcl ause("Addressl D, FirstNanes, Surnane, \

214

The Design of reportl

City, CountryCode", errnsg, erridx)
report.setwherecl ause("", errnsg, erridx)
report . adddblt abl e(addr ess)
report. setordercl ause(" Surnane")
fpo =@fsfil eout putstream new "addresslist.txt", error=e)
if fpo =@ . nul
s = "Error number " + .tostr(e, 10) + " openi ng out put \
file "addresslist.txt'{d}{a}"
el se
report.onreportstart.function =@\
report1_t abbed out put reportheader
report.onreportstart.reference =@f po
report. onout putrow. functi on =@report1l_tabbed output row
report. onout putrow. ref erence =@f po

report.run(errnmsg, erridx, error=e)
if not (errnsg > "" or e != 0)
s = "Success!{d}{a}"
el se
if errmsg >
s = errmsg + "{d}{a}"

el se
s = "Error number " + .tostr(e, 10) + " running \
report{d}{a}"

end if

end if

end if
end if
end if

end function s

function reportl tabbed output reportheader(reportl report, \
report linst reportinst, fsfileoutputstream fpo)

i nteger cnt, i
string title, outline, ensg

ensg =
outline = ""

cnt = report.getcol unmcount ()
i =1

while i <= cnt
title = report.getcolumtitle(i, ensg)

if title > ""
outline = outline + .if(i > 1, '{9}', '') + title
el se
outline = outline + .if(i > 1, "{9', ") + ""
end if
i =i +1
end while

outline = outline + "{d}{a}"
f po. putstring(outline, 1)
end function

function reportl tabbed output rowreportl report, reportlinst \

215

Working with quickreportl

reportinst, array columms, array currcolvals, \
fsfil eout put st ream f po)

i nteger cnt, i
anyval ue val ue
string sval ue
string outline
string displayformat
type dat at ype
outline = ""
val ue =@ anyval ue. new()
cnt = report.getcol unmcount ()
i =1
while i <= cnt

val ue = currcolval s[i]

dat at ype =@ col uimsJi, 0]

di spl ayformat = col ummsJi, 1]

sval ue = val 2string(datatype, value, report.datelocale, \

report. num ocal e, displayformt, .false)
if svalue > ""

outline = outline + .if(i > 1, "{9}', '') + svalue
el se

outline = outline + .if(i > 1, "{9', ") + ""
end if

i =i +1
end while

outline = outline + "{d}{a}"
f po. putstring(outline, 1)
end function

The previous sample program demonstrates the use of two events to handle the initial output of the
header, and then to output the data for each row. It also sorts the results according to the Sur nane
column. As can be seen from the source code, there isn't much required to create a report using code,
especially once the event handlers have been written. The two event handlers here are not specific to
the data, so they can be used to output any result in tab-delimited format.

reportl Summary

In this section we have learned about the design of and how to work with the report1 type. We have
also discovered that although it doesn't take much codeto create areport thisway, that it doesn't actual
produce output unless we write it ourselves. In the next two sections, we will have no more effort, but
we can get output to awindow or the printer.

Working with quickreportl

Working with the quickreportl type is similar to working with the report1 discussed in the previous
section. One of the main differencesisthat this report handles output to various targets, and therefore
needs to know more about the content. It a so hasthe concept of atitle, page numbering, and showing
the current date at the top of each page (all optional), plus displaying column headings and coping with
columns where the datais too long. It is limited to one font that it uses for the entire report and has
the advantage that it is quite simple to define. The Quick Report also supports grouping, sorting, and
output of group and report aggregate values, such as the count of rows plus the sum, mean, medium,
or mode for a column in the report and groups. To begin, let's have a look at the definition of the
quickreportl type:

216

Working with quickreportl

type qui ckreportl export
enbed
bool ean dirty

i nt eger out puttarget

bool ean valid

string fil enane

event onpagechange

event onout put header

event onout put f oot er

event onbef or er ow

event onafterrow

event onbef oregroup

event onaftergroup

event onout putreport header
event onout putreportfooter

/[l flag indicating if the report header has been output yet,
/! so people can suppress the page header out put

bool ean report header out put

/1 allows people to suppress row output and just out put

/1 totals of groups or the whole report

bool ean suppr essr owout put

/1 Properties for output to w ndow or printer
nt eger paperw dth

nt eger paper hei ght

nt eger marginl eft

nt eger margi nt op

nt eger margi nri ght

nt eger mar gi nbott om

nt eger dpi x

nt eger dpiy

bool ean showpagenunber

bool ean showdat e

bool ean showtitle

string title

string di al ogdat a

nunber w apchar count kl udgeval ue

i nt eger curr pagenunber

i nt eger currrownunber

i nt eger currtopof page

i nt eger rowhei ght

nunber rowhei ght adj ust nment readonl y
i nteger | astreportedpagenunber

/] used to reserve an area for a footer
/[l to throw an early end of page

i nteger footerlinecount

string def nunberf or mat
string def dat ef or mat
string deftimeformat
string defdateti mef or mat
string defintegerformat
string def bool eanf or mat

dri ng col umi nfo

217

Working with quickreportl

dri ng dat asources
dring tables

bool ean usegauge
gaugedi al og gauge reference

reference

wxfont italicfont

wxfont underlinefont
wxfont bol ditalicfont
wxfont bol dunderl i nef ont
wxfont italicunderlinefont
wxfont bol ditalicunderlinefont
wxfont headerf ont

wxf ont pagef ont

wxfont ori gf ont

reportl report resolve

/I The follow ng are for output types 1 and 2 (w ndow and printer)
WXprintout printout

WXpri nt paget enpl ate currtenpl ate

WXpri nt page currpage

GDl gdi

W NSPOOL wi nspool

enbed

nunmber fontw dthratio
nunber fontheightratio
bool ean usewr aphei ght 2

[/ This is only for output type 1
bool ean cent eroverdi spl ay
bool ean st artat 100per cent

/1 For clipboard out put
bool ean suppressout put messages

ref erence
/[l This is for the clipboard target (tab separated and crlf separated)
array cli pout put

/[l This one is for the HTM. out put
fsfil eout putstream fpo

string outputfil enane enbed
string stylefil ename enbed

bool ean t bodyout put enbed

bool ean out put r owodd enbed

/[l This is for the CSV out put
dbQRI mport qri nportconverter
dbCSVExport csvexportconverter
bool ean header out put enbed

/[l And this is for the SBME out put
dbSBMEEXport sbneexportconverter
string targettabl ename enbed

array columms; // This is assigned after a call back has happened from

218

Working with quickreportl

/[l the report engine, it contains the columm information

functi on addaggregate readonl y
function addcol umi nf o readonl y
function adddat asource readonl y
function addtabl e readonl y
function finddatasource readonl y
function findtable readonl y
function getw aphei ght readonl y
function getw aphei ght 2 readonl y
function getprinttextextent readonl y
function run readonl y
function outputextraline readonl y

function setrowhei ght adj ust nent readonly
function addgroup readonl y

function getcol umi nf obycol no readonl y
end type

As we can see, this type definition is considerably more complex than the one for the reportl type.
In fact, if you look closely you will find that it actually contains the reportl type in addition to all
of its extensions. The good news is, you don't need to worry about most of it, since it just works.
The important bits to be aware of are the paperwidth, paperheight, and margin properties. Virtually
everything is handled in the call to the quickreportl.new() method. Below is some sample code that
demonstrates how to create a Quick Report:

i ncl ude "qui ckreporthdr.sm"

function main()
i nteger e, erridx
string s, errmsg
sbnel sbnfile
sbnelt abl e address
qui ckreportl gr
wxf ont font
reportlgroup group
qui ckr eport 1dat asource dsl

e =0
sbnfile =@ sbmel. new("addr ess. sbni', error=e)
if sbnfile =@ . nul
s = "Error numnber + .tostr(e, 10) + " opening \
""address.sbni"{d}{a}"

el se
address =@sbnfil e. opent abl e(" Address", \
recordi dfi el dnane="recid ro_internal", error=e)

i f address =@ . nul
s = "Error numnber + .tostr(e, 10) + " opening the \
""Address"" table{d}{a}"

el se
errnsg = ""
erridx =0
font =@wxfont.new"Arial Narrow', 10, "n", "n", "", \

error =e)
gr =@ qui ckreportl. new out puttarget =QrR_OUTPUTW NDOW \

219

Working with quickreportl

title="Address List", pagefont=font, error=e)
gr.setsel ectcl ause(" AddressI D, FirstNanes, Surnane, \
Cty, CountryCode", errnsg, erridx)
gr.setwherecl ause("", errnsg, erridx)
dsl =@qr. adddat asource(sbnfile.type, "address.sbn, \
sbnfile, error=e)
gr . addt abl e(addr ess, dsl1, error=e)
gr.setorderclause("City, Surnane")
group =@qr.addgroup("CGty", 4, string, error=e)
if group !'@ .nul
gr . addaggr egat e(group, QR _AGG COUNT, .nul, integer, \
error =e)
end if

gr . addcol umi nf o(20000, 12000, "right,top", error=e)
gr . addcol umi nf o(34000, 30000, error=e)
gr . addcol umi nf o(66000, 40000, error=e)
gr . addcol umi nf 0(108000, 65000, error=e)
gr . addcol umi nf 0(175000, 6000, error=e)

gr.showdate = .true
gr . showpagenunber = .true
gr.showtitle = .true
gr . usew apheight2 = .true

gr . addaggregat e(. nul, QR _AGG COUNT, .nul, integer, error=e)

/[l The follow ng conmented out |ines show how to save
/1 and |l oad a Quick Report using the XM f or mat

/| savequi ckreport (qr, "addresslist.sxq", error=e)
/1 qr =@ | oadqui ckreport ("addresslist.sxq", error=e, \

/1 errortext=errnsg)
gr.startat 100percent = .true
gr.centeroverdi splay = .true

gr.run(errnsg, erridx, error=e)

if not (errnsg > "" or e != 0)

wxpr ocess(20000000)

s = "Success!{d}{a}
el se

if errmsg >

s = errmsg + "{d}{a}"

el se
s = "Error number " + .tostr(e, 10) + \
" running report{d}{a}"
end if
end if
end if
end if

end function s

The preceding program code should be fairly self-explanatory, but we will go through it briefly touch-
ing on the interesting points. In this program we decidedtouse Ari al Narrow 10 poi nts for
our report. The font is created first and passed to the new() method. Thisisimportant! For various
reasons, the Quick Report code makes variants of the font, so it is necessary to pass in the font when
the object is created. Thereisno provision for changing it later. The outputtarget should be one of the
valid output targets. There are six different valid target types, including: window, printer, CSV file,

220

Working with quickreportl

HTML file, clipboard, and database (SBME). The HTML target is similar to the window and printer
targets, inthat it produces aformatted report, albeit in one long page. The other three targets are well-
suited to exporting data in their respective formats (clipboard produces a tab separated, newline sep-
arated output that can be directly pasted into programs like MS Excel). In the case of the data export
targets, the aggregates, grouping, and other formatting information is ignored. The various constants
for output and aggregate types can be found in the qui ckr epor t hdr. sna.

Once the quickreport1 object has been created, the select clause, where clause, and order clause are
defined, and the data source and tables are added (just as in reportl). Then we add a group, and an
aggregate for the group. Finally we define the column information. Thisis required to be defined in
the same order as the list of columns in the select clause. The addcol umi nf o() method takes
the following parameters:

1. integer col ummst art
2. integer col utmwi dt h
3. stringal i gnnent

4. booleanwr ap

5. integer er r or

Thefirst two parameters are the horizontal starting position (from the left edge of the paper — the left
and right margin values are ignored currently) and the width of the column. These are measured in
micrometers (millionths of a meter). The next is the alignment. This can be one of:

« "left,top" (thedefault)
e "top" (centered horizontally)
e "right,top"

o "left" (centered vertically)

. (centered vertically and horizontally)
* "right" (centered verticaly)

* "left, bottont

e "bhott o' (centered horizontally)

e "right, bottont

The fourth parameter iswr ap. Thiswill attempt to ensure that the content is wrapped around within
the confines of the column and extends the line down the page until the content has been output. If the
content istoo largetofit on the page, it will be moved to the next page. If itistoo largetofit on apage, it
will betruncated. Using this feature will slow down the report, since for every row the content of each
column with this feature will need to be tested to seeif it fitsand if not, how much space it requires.
Also, there are two a gorithms, one is much faster than the other, but isless precise. To use the faster
algorithm, as shown in the preceding sample, the usewrapheight? property must be setto. t r ue.

Once the column information has been added, the program sets the switchesto . t r ue to enable the
page title to be output, the date, and the page count. It then adds an aggregate for the overall count
of rows in the report. Following that are two commented out program statements, that demonstrate
how to save the report to disk, and how to load the report from disk. The default file extension for
SIMPOL Quick Reportsis . sxq. Finaly, there are two options, one called startat100percent and
centeroverdisplay, both of which currently only work on Windows (they are implemented by calling
functionsin the Windows API that do not have equivalents elsewhere). Once everything is prepared,
ther un() methodiscalled. Sincethisprogram isjust asample, it then entersawxpr ocess() cal
for 20 seconds, so that thereistimeto look at the output in the window. Without this call, the program

221

Enhanced Quick Report Output

would simply exit and the output window would immediately close. In a normal application that has
awindow open and which is sittingin awxpr ocess() loop anyway, thiswould not be an issue.

Enhanced Quick Report Output

With the 1.8 release of SIMPOL Professional, a number of new capabilities were added. There are
now the following events for formatting output to the print preview window or the printer:

« onoutputheader — Called after thetitle, date, and page number lineisoutput (if it isoutput) and before
the column titles are output. The prototype for a function that handles this event is. f uncname
(quickreportl qui ckr eport,reportlr eport ,reportlinstr eporti nst,type(*)r ef erence

).

* onoutputfooter - Called just before caling the function
reportl qui ckreport_ out put pageheader (). Thereisno standard footer output by the
Quick Report. The prototype for a function that handles this event is. f uncnane (quickreportl
qui ckreport,reportlreport,reportlinstr eporti nst,type(*) r ef erence).

« onbeforerow — Called just before calling the code that outputs the row data. This call is not sup-
pressed even if the property supressrowoutput is set to . t r ue. The prototype for a function that
handles this event is: f uncnane (quickreportl qui ckr eport, reportl r eport, reportlinst
reportinst,type(*) reference).

 onafterrow — Called just after calling the code that outputs the row data. Thiscall is not suppressed
even if the property supressrowoutputissetto. t r ue. The prototypefor afunction that handlesthis
eventis: f uncnane (quickreportl qui ckr eport ,reportlr eport ,reportlinstr eporti nst,
array col umtms, array cur r col val s, type(*) r ef er ence).

 onbeforegroup — Called as the group changes. No group header is output by the Quick Report,
so the user can use this as they wish. The prototype for a function that handles this event is:
f uncnane (quickreportl qui ckr eport , reportlgroup gr oup, reportlgroupinst gr oupi nst
type(*) r ef erence).

« onaftergroup — Called just after calling the code that outputs the the aggregate values and the count
(if any are defined). The prototype for a function that handles this event is: f uncnane (quickre-
portlqui ckr eport, reportlgroup gr oup, reportlgroupinst gr oupi nst ,type(*) r ef erence
).

« onoutputreportheader — Called just after calling the code that outputs the page header, including
the columns headings. This may be modified in alater version, or as an alternative, a method of
suppressing the column headings at the start of the report may be added. The prototypefor afunction
that handlesthiseventis: f uncnane (quickreportl qui ckr eport ,reportlr eport , reportlinst
reportinst,type(*) reference).

« onoutputreportfooter — Called just after calling the code that outputs the the aggregate values and
the count (if any are defined). No page footer is currently output on the final page. This may be
corrected in a future release. If it is, it will be made optional. The prototype for a function that
handles this event is: f uncname (quickreportl qui ckreport, reportl r eport, reportlinst
reportinst,type(*) reference).

In all of these events, to output anything to the window or printer, it is necessary to create an instance
of aquickreportextraoutputinfo type. Thiscontainsall of theinformation required to print this content,
including the position, alignment, name (this is the name given to the template item and must be
different from the printname), printname (this is the name given to the string data and if not supplied
it will be derived from the name), and the text (the actual string data that should be output).

Thisis passed to theout put ext r al i ne method of the quickreportl object. The prototype for this
functionis: quickreportl.out put ext r al i ne (quickreportl me, quickreportextraoutputinfo out -
puti nfo, stringf ont characteristics="",booleani ncr enentt opof page=. true,in-
teger error). Thef ont charact eri sti cs should contain either nothing, or any of: bi u, bi ,
bu,iu,i,u,orb,wherebisbold,i isunderline, andi isitalic.

222

quickreportl Summariz-
ing Quick Report Output

By setting the value of the i ncr ement t opof page parameter to . f al se it is possible to output
multiplevaluesonthe sameline. It isimportant that in thefinal call to thisfunction (if making multiple
calls) that this parameter issetto. t r ue.

quickreportl Summarizing Quick Report Output

Another new feature added in the 1.8 release of SIMPOL Professional was the suppressrowoutput of
the quickreportl type. If thisisset to . t r ue, then only the report and group aggregate values will be
output. Thisfeatureis only available to the window and printer output targets.

guickreportl Summary

Aswe havediscovered in this section, creating a Quick Report in codeis not very difficult. Itissimilar
to the code used for areportl report, but with the extra requirement of selecting a font and defining
the column information. It is quick and easy, but it has the down side that everything on the report is
in onefont, and thereislittle flexibility over the layout and none regarding group headers and footers.
This latest version does support some additional enhancements, such as summarizing the output by
suppressing the row output, and offers the new events and the new method out put ext ral i ne()
which can be used to output additional content. For more complex reports, where al of the items
in headers and footers can be defined, and images can be incorporated, we need to use the Graphic
Report, which is the subject of the next section.

Working with graphicreportl

The Graphic Report is extremely flexible in its design. The actual report is separate from the physical
representation of its output. The graphicreportl type contains a graphicreportlform type, which in
turn contains a dring of graphicreportlformpage objects. The graphicreportl type also incorporates
the reportl type and is therefore similar to working with reportl as discussed previously. Unlike the
quickreportl type, however, this type is considerably more powerful and therefore also considerably
more complex. It uses the printforml type to provide templates for each area of the report. Each band
of the report is defined as a page in the graphi creportlform. See Chapter 24, Using Data-Aware Print
Formsin SMPOL for more information about printforml.

The Graphic Report is a banded report system. That means that the components are broken up into
bands, each the width of the page. The bands that are provided include:

 Page header

» Pagefooter

» Body

* Report header
* Report footer
» Group header
» Group footer

None, some or al of these bands may be used (the group bands are for each group defined). When
the report is run, it assembles the page from these bands. At the start of the report it will output the
report header if it has been defined and at the beginning of each page it outputs the page header if that
has been defined. Since it may be messy to have both on the same page, there is an option to suppress
output of the page header on the first page. Following that, if there are any groups defined and thereis
agroup header for the group, that will be output, then the body section of the report will be output until
agroup change, or the bottom of the page, (allowing for the page footer if it has been defined). Each
pageisthen assembled asrequired until the end of thereport isreached, at which point the report footer
will be output followed by the page footer (this can aso be suppressed on the last page). Each band is
defined as a graphicreport1formpage that contains a printformlpage object. Each of these pageshasa

223

Working with graphicreportl

specific naming format so that the engine will recognize them. These are also stored as constantsin an
includable SIMPOL source codefile called gr aphi cr epor t hdr . sma, but the list isas follows:

* "pageheader”

» "pagefooter"”

* "body"

* "reportheader"
 "reportfooter"

e "groupheader”

e "groupfooter”

In turn, each page can contain any of the following content elements:
* graphicreportlarc

* graphicreportlellipse

* graphicreportlline

* graphicreportlrectangle
* graphicreportltriangle

* graphicreport1formtext

» graphicreport1lformbitmap

Each of these contains a printforml graphic or control of equivalent type. In the case of the graphics,
thereis little difference between them. The bitmap and text objects are different however, since they
can be associated with a column value in the body page. In addition, the text objects can also be
associated with an aggregate value in the group and report footers, or defined as a calculation using a
system variablein the group header (for the GROUP items below), otherwise any of them can be used
anywhere, though page headers and footers would be the most logical choice for most. The supported
system variables include:

* PAGE - (returns the page number in the report formatted using the minimum characters (pure
.tostr() cdl

» TODAY — (returns the current date formatted using the default date format and date locale infor-
mation as provided to the report

* NOW — (returns the current time formatted using the default time format information as provided
to the report

* TIMESTAMP — (returns the current date and time formatted using the default datetime format and
date locale information as provided to the report

» COUNT - (returns either the count of rows in the report or the group, depending on the page)
* GROUP — (returns the value of the current group)
* GROUPNAME — (returns the name of the column for the current group)

* GROUPINFO — (returns the name of the current group, followed by a colon and a space, and then
the group's current value

Each item is placed on the page using print coordinates (to the nearest micrometer). Positioning is
absolute, so if something is too close to an edge to be printed without being cropped, then it will be
cropped.

224

Working with graphicreportl

When creating any of these controls, one of the argumentsto each is an appropriate printformlcontrol
or printformigraphic object. In the case of the two form objects, they can each take a column number
(which is based on the order of the select clause), in the col no parameter. Furthermore, the text
control can also be assigned an aggregate type, or instead of acolumn number it can have acalculation
assigned. Both of the form controls can also be assigned static values, a fixed bitmap or text value.
All of thisis handled in the graphicreportlform.addcont r ol () method.

The easiest way to understand how to use the report is to make one:

i ncl ude "graphicreport hdr.sm"

function main()
i nteger e, erridx, stdtexthgt
string s, errmsg
sbnel sbnfile
sbnelt abl e address
graphi creport1 gr
wxfont font, font2, font3, font4
reportlgroup group
dat af or nildat asour ce dsl
gr aphi creport 1f or npage page
gr aphi creport 1f or nt ext pt xt
SBLI ocal edat ei nf o dat el ocal e
SBLNuntet ti ngs num ocal e

e =0
sbnfile =@ sbmel. new(" addr ess. sbni, error=e)
if sbnfile =@ . nul
s = "Error nunber + .tostr(e, 10) + " opening \
""address.sbni"{d}{a}"

el se
address =@sbnfil e. opent abl e(" Address”, \
recordi dfi el dnane="recid _ro_internal”, error=e)

i f address =@ . nul
s = "Error nunber + .tostr(e, 10) + " opening the \
""Address"" table{d}{a}"

el se
dat el ocal e =@ SBLI ocal edat ei nf 0. new f or mat =" dd/ nm yy")
num ocal e =@ SBLNunetti ngs. nem("£", ",", ".", .false)
st dt ext hgt = 4900
errmseg = ""
erridx =0
font =@wxfont.new"Arial Narrow', 10, "n", "n", "", error=e)
font2 =@wxfont.new("Arial Narrow', 10, "n", "b", "",error=e)
font4 =@wxfont.new("Arial Narrow', 13, "n", "b", "",error=e)
font3 =@wxfont.new("Arial", 14, "n", "b", "", error=e)

gr =@ gr aphi creport 1. newm paperw dt h=210000, \
paper hei ght =297000, out putt ar get =GR_OUTPUTW NDOW \
title="Address List", datel ocal e=datel ocal e, \
num ocal e=num ocal e, error=e)

gr.reportformw apkl udgeval ue = .toval ("1.15", .nul, 10)
gr.reportformfontresi zekl udgeval ue = .toval ("0.7", .nul, 10)
gr.reportformw apchar count kl udgeval ue = .toval ("1", .nul, 10)
gr.usew apheight2 = .true

gr.setsel ectcl ause("AddressI D, FirstNanes, Surnane, City, \

225

Working with graphicreportl

Count ryCode", errnsg, erridx)
gr.setwherecl ause("", errnsg, erridx)
gr.setorderclause("City, Surnane")
dsl =@gr. adddat asource(sbnfil e, "address.sbni, error=e)
gr . addt abl e(address, dsl1, error=e)

/1 Body Page
page =@ gr . addpage(210000, 600 + stdtexthgt, Oxffffff, \
nane=sCGR _BODY, error=e)
gr.addcontrol (graphi creport 1forntext, printleft=20000, \
printtop=300, printw dt h=12000, \
print hei ght =st dt ext hgt, printalignnment="right,top", \
font=font, printname="tbAddressl D', page=page, \
col no=1, error=e)
gr.addcontrol (graphi creport 1forntext, printleft=34000, \
printtop=300, printw dt h=50000, \
print hei ght =st dt ext hgt, font=font, \
print nane="t bFi r st Nanes", page=page, col no=2, error=e)
gr.addcontrol (graphi creport 1forntext, printleft=86000, \
printtop=300, printw dt h=50000, \
print hei ght =st dt ext hgt, font=font, \
print nane="t bSur nane", page=page, col no=3, error=e)
gr.addcontrol (graphi creport1forntext, printleft=138000, \
printtop=300, printw dt h=50000, \
print hei ght =st dt ext hgt, font=font, \
printnane="tbCity", page=page, col no=4, error=e)
gr.addcontrol (graphi creport1forntext, printleft=190000, \
printtop=300, printw dth=12000, \
print hei ght =st dt ext hgt, font=font, \
print nane="t bCount r yCode", page=page, col no=5, error=e)

/| Page Header
page =@ gr . addpage(210000, 16320 + stdtexthgt, Oxffffff, \
nane=sGR _PAGEHEADER, error=e)
gr.addcontrol (graphi creport 1forntext, printleft=50000, \
printtop=6000, printw dth=110000, printhei ght=8200, \
printalignnent="", text="Address List", font=font3, \
print nane="1| PageTitl e", page=page, error=e)
gr.addcontrol (graphi creport 1forntext, printleft=20000, \
printtop=16000, printw dt h=12000, \
print hei ght =st dt ext hgt, printalignnment="right,top", \
text="Addr ID', font=font2, printnane="|AddressiD', \
page=page, error=e)
gr.addcontrol (graphi creport1forntext, printleft=34000, \
printtop=16000, printw dt h=50000, \
print hei ght =st dt ext hgt, text="First Nanmes", \
font=font2, printnane="1FirstNanmes", page=page, \
error =e)
gr.addcontrol (graphi creport 1forntext, printleft=86000, \
printtop=16000, printw dt h=50000, \
print hei ght =st dt ext hgt, text="Surnanme", font=font2, \
print nane="1| Sur name", page=page, error=e)
gr.addcontrol (graphi creport 1forntext, printleft=138000, \
printtop=16000, printw dt h=50000, \
print hei ght =st dt ext hgt, text="City", font=font2, \
printnane="1Ci ty", page=page, error=e)
gr.addcontrol (graphi creport1forntext, printleft=190000, \
printtop=16000, printw dt h=12000, \

226

Working with graphicreportl

I/
I/

print hei ght =st dt ext hgt, text="Ctry",
print nane="1 Count r yCode", page=page,

error =e)

/| Page Foot er

font =font 2, \
error =e)
gr . addgr aphi c(graphi creport1line, point.new 20000, \
16300 + stdtexthgt), point.new 202000, 16300 + \
stdtext hgt), w dth=100, printname="I|Border", page=page,

page =@ gr . addpage(210000, 9000 + STDTEXTHGI, Oxffffff, \

nane=sGR _PAGEFOOTER, error=e)

gr . addgr aphi c(gr aphi creport 1l i ne, point.new 20000, 1000), \

poi nt. new(190000, 1000), wi dth=100,
print nane="1 Bor der Foot er", page=page

\

error =e)

pt xt =@ gr . addcontrol (graphicreport 1f or nt ext,
printleft=98000, printtop=3000, printw dt h=14000, \

print hei ght =st dt ext hgt, printalignnent=

\

nn , t eXt —nn , \

font=font2, printnane="|PageNo", page=page, error=e)

if ptxt '@ .nul
pt xt . cal cul ati on = " PAGE"
end if

group =@ gr.addgroup("CGty", 4, string, error=e)

if group !'@ .nul
gr . addaggr egat e(group, GR_AGG COUNT, . nu
end if

[/l Goup Header
page =@ gr . addpage(210000, 12000, Oxffffff

\

i nt eger, error=e)

nane=sGR_GROUPHEADER, group=group, error=e)

if page '@ .nul

pt xt =@ gr . addcontrol (graphi creport 1f or nt ext, \
printleft=20000, printtop=5000, printw dt h=30000, \

pri nt hei ght =i nt eger . new(st dt ext h
printalignnent="left,top", text=
print nane="| G oupnane", page=pag
if ptxt '@ .nul
pt xt . cal cul ati on = " GROUPI NFO'
end if
end if

[/l Group Footer

page =@ gr . addpage(210000, 8500, Oxffffff,
name=sGR_GROUPFOOTER, gr oup=gr oup

if page '@ .nul

gt

e,

\

* (135/100)), \
font =font 4, \
error =e)

error =e)

pt xt =@ gr. addcontrol (graphi creport 1f ornt ext, \
printleft=20000, printtop=2000, printw dt h=30000, \
pri nt hei ght =i nt eger . new(st dt ext hgt * (135/100)), \
font =font 4, \
error =e)

printalignnent="1eft,top", text="",
print nane="1 G oupcount ", page=page
if ptxt '@ .nul
pt xt . cal cul ati on = "COUNT entries”
end if
end if

gr . addaggregat e(. nul , GR_AGG COUNT, . nul

savegr aphi creport (gr, "addresslist.sxr"
gr =@/ oadgr aphi creport ("addresslist.sxr

i nteger, error=e)

error =e)

error=e, \\

227

\

Working with graphicreportl

/1 errortext=errnsg)
gr.startat 100percent = .true
gr.centeroverdi splay = .true

e =0
gr.run(errnsg, erridx, error=e)
if not (errnsg > "" or e != 0)
wxpr ocess(20000000)
s = "Success!{d}{a}"
el se
if errmsg >
s = errmsg + "{d}{a}"

el se
s = "Error number " + .tostr(e, 10) + \
" running report{d}{a}"
end if
end if
end if
end if

end function s

As can be seen from the preceding code, thereisalot more involved in creating a Graphic Report than
thereisfor a Quick Report, but the difference isin the amount of control over the resulting ook of the
report. Just aswith the Quick Report, theinitial stages of creating a Graphic Report consists of opening
the data source(s) and table(s), creating the graphicreport1 object, and setting the select, where, and
order clauses. In addition, the fonts that will be used are created, and there is a set of properties that
are related to the "wrap” functionality that can be set. These occasionally need tweaking to get the
best results. Like with the Quick Report, only add the "wrap" capability if it isrequired, since it adds
considerable processing overhead to each time a control that uses it is output. Two of the arguments
passed to thenew() method of the graphicreportl arethe pagewi dt h andthepagehei ght para-
meters. The ones used in the example are for A4 paper. The US Letter paper sizeis: 215900 x 279400.

Once the standard tasks have been dealt with, the various page bands are added, each with the controls
that are required. Interestingly, just because a column is in the select statement does not mean that it
will appear in the report. Unlessiit is associated with a control in the body page, there will no output
for that column. This is useful when it is necessary to retrieve extra column information for use in
report or group footers. Also, to do a summarization, it is only necessary to not define the body page.

If the level of control that is available in the basic design is still not enough, at the point of out-
putting a page chunk onto the final output page, there is an onoutput event for each page that can be
used to call the programmer's code. A different function should be assigned for each unique band or
graphicreport1formpage object. The various function prototypes for the types of pages are asfollows.

Table 25.1. onoutput Function Prototypes

Band Type Function Prototype

Body band onout put _handl er (page, pagechunk, report, reportinst,
col umms, currcol val ues, reference);

gr aphi creport 1f or npage page;
printformlpage pagechunk;
reportl report;

reportlinst reportinst;
array col umms;

array currcol val ues;

type(*) reference;

228

graphicreportl Summary

Band Type Function Prototype

Page header and|onout put handl er (page, pagechunk, report, reportinst,
footer, report head- |r ef er ence) ;

er and footer
gr aphi creport 1f or npage page;
printfornlpage pagechunk;
reportl report;

reportlinst reportinst;
type(*) reference;

Group header and{onout put handl er (page, pagechunk, group, groupinst,
footer ref erence);

gr aphi creport 1f or npage page;
printformlpage pagechunk;
reportlgroup group;

report 1groupi nst groupi nst;
type(*) reference;

At the point where thisis called, all of the data and calculations have been done, and the resulting
output can still be manipulated by the programmer. For example, in the body, if the total of arow is
negative, the foreground color could be changed to red. This change only affects the current output
chunk, not the template, so it needn't be reversed for rows that are positive. The names of the controls
on the pagechunk will be the same as on the template, making it easy to address thae various controls.
Aswas the case with the Quick Report example, there are two commented lines of code that save and
then load the Graphic Report. The default file extension for SIMPOL Graphic Reportsis. sxr .

graphicreportl Summary

In this section we have learned about the use of the graphicreportl type. Aswe have discovered, these
are much more powerful than any of the other methods of reporting we have previously explored,
but the price is that they are more complex to create. When choosing which method to use, it is best
to remember that each has its strengths and weaknesses. The basic reportl is meant for specialized
purposes such asimplementing a custom report style that may not even generate output to the screen.
The quickreport1 typeisuseful for creating reportsto window or printer (and eventually other targets),
with few more requirements than those of the basic report1 aside from defining column information
and which also allows grouping and aggregate calculations. Finally, if the report requires agreat deal
of control in thefinal result or needs to incorporate images (or acompany letterhead), then the graphi-
creportl type is the best report for the job.

229

230

Chapter 26. Using the SIMPOL
Application Framework

This chapter will describe the general design of the SIMPOL Application Framework.
The appframewor k. sm library provides a complete application framework that uses
dat abaseforns. sm ,form i b.sm ,dblutil.sm , uisyshel p.snl,andotherlibraries
to allow the quick and easy creation of powerful database-oriented applications. It implements an ap-
plication and appwindow data type, which together with various functions and helper types, assists
the programmer to produce a reliable database-oriented application with very little effort. Typically
aprogram based on the framework will create its own application object type that includes the appli-
cation object from the framework, and which is type-tagged as appl i cat i on. To see the code for
thisin detail, look at the chapters in the Quickstart Guide that cover the Address Book and Ordering
System samples. These samples are also included as part of the distribution, so all the source code
isthereto explait.

The Design of the Application Framework

The basic premise behind the application framework isthat most applicationsthat work with adatabase
will have numerous aspects in common. These include:

Displaying forms

Switching forms

Managing data sources

Managing tables

Creating, locking, unlocking, modifying, and deleting of records

Placing the cursor in the first viable control on aform when entering data-entry

Testing to seeif arecord has been modified, and prompting the user to save or discard it
Browsing through records

To that end, the application framework provided with SIMPOL does an excellent job. It contains a
basi c application type, that can be used asis, or which can be embedded into a more sophisticated ap-
plication type. The appwindow type provides the necessary management for the one or more windows
used by the application, provides a container for the database tables used by the window, and various
services for setting the current table, record, index, etc. for the window.

Thislibrary includesthef or m i b. s , and therefore hasall of the features of that library including
all of thelower level included libraries. Thisincludesall of the dataform1, printform1, and DOM type
families, plus most of the important functions for lists, formatting types as strings, and the support
librariesfor the Ul and the file system. In this section we will specifically discuss the features specific
tothe appf r amewor k. s .

Table 26.1. The Functionsin the Application Framework

Function name Description

checkneedsave() Checksto seeif the record has been modified. If it has, it prompts the user
to save or discard and handles the result. After calling this function, the
programmer must check the return value. If itis. t r ue, they can continue
whatever they are doing that would lose the current unsaved changes, oth-
erwise they should abort the operation.

clearstatusbar() This clears the status bar after a specified delay (has a default value).

closewindow() This function is intended to be attached to the onvisibilitychange event of
the embedded wxwindow object in an appwindow type. To handle the clos-
ing of the final window the programmer creates an event handler for the
onexitrequest event of the application. If defined, it will be called from

231

The Design of the Ap-
plication Framework

Function name

Description

this function if the user is attempting to close the last visible window. Re-
turn .false to prevent the window closing.

defer()

Thisfunction istypically called from any menu item or tool bar item event
handler, in order to ensure that any changed data in the current control
with focus has been written to the underlying field. The defer mechanism
is necessary since menu and tool bar events take place before the onlostfo-
cus event of aform control. Without the defer mechanism, the call to save
changesto arecord would fail to record any changesto the control that cur-
rently has focus. By using defer, the focus is cleared and the onlostfocus
event is called to write the datawhile the def er () function in a separate
thread waits a very short period and then re-calls the original function.

deleterecord()

This function is designed to be assigned to both menu items and tool bar
items as the onselect event handler. It expects the application object to be
passed (or the derived application object aslong asit istagged application).
It can also be called directly passing the appwindow object as the first ar-
gument. It will handle locking and deletion of the current record on the
form, and will call the ondelete event handler if it has been assigned. This
function is particularly tuned to cope with both auto-locking and explicit
locking systems. It will usethe status bar, if available, when telling the user
if arecord is unable to be locked, which is very important since in an au-
to-locking environment, when the dialog window vanishes it automatically
attemptsto place focus back on the form, which then triesto lock therecord,
leading to an uninterruptible cycle that will only frustrate the users.

duplicaterecord()

This function is designed to be assigned to both menu items and tool bar
items as the onselect event handler. It expects the application object to be
passed (or the derived application object aslong asit istagged application).
It can also be called directly passing the appwindow object as the first ar-
gument. It creates a new record and copies the current record into it. To
make changes for unique indexes, assign a handler function to the onchan-
gerecord event and test the record to seeif it has been stored. If not, then it
isanew record that has been duplicated.

findfirstfocusablecon-
trol()

This function does exactly what it says. It retrieves the first focusable con-
trol on aform. This would be used in conjunction with placing the user in
data-entry, in order to set focus to the first appropriate control in the tab
order.

getappwin-
dowfromwindow()

Use thisfunction to return the appwindow object from awxwindow object.
Thissituation occurswhen amenu event takes place, since the object passed
to the function is of type wxmenuitem, and not appwindow. This function
needs to be paired with the next one.

getmenuitemwindow()

With this function it is possible to retrieve the wxwindow object from a
wxmenuitem object. When a menu event occurs, the object that causes the
eventisaniteminthemenu, sothat isthetype passed astheinitial parameter
to the function. Together with the previous function you can retrieve both
the wxwindow and the appwindow objects.

gettableformatstrings()

Use this function to retrieve an array of the field display format strings for
atablethat is part of the appwindow ring of tables. The array isin the order
of the fieldsin the database table.

gettablesarray()

Retrieves an array of thinfo objects, one for each table opened in the
appwindow's ring of tables. These objects are not specific to a parent ob-
ject and can be used for transferring a set of tables from one component
to another, so that both sections use the exact same set of objects. That is
important so that any record objects selected are compatible to each other.

232

Working with
appf ramewor k. smi

Function name Description

lookup() Call this function to look up a value in a database table against a specific
index and if found, to return the record. If no matching record isfound, then
thereturn valueis. nul .

maodifyrecord() This function is designed to be assigned to both menu items and tool bar
items as the onselect event handler. It expects the application object to be
passed (or the derived application object aslong asit istagged application).
It can also be called directly passing the appwindow object as the first ar-
gument. It will lock and modify the record that is currently displayed in the
form. It will also placethe user into data-entry in the first focusabl e control
on the form.

newrecord() This function is designed to be assigned to both menu items and tool bar
items as the onselect event handler. It expects the application object to be
passed (or the derived application object aslong asit istagged application).
It can also be called directly passing the appwindow object as the first ar-
gument. It will create anew record for the master table of the currently dis-
played form. It will also place the user into data-entry in the first focusable
control on the form.

saverecord() This function is designed to be assigned to both menu items and tool bar
items as the onselect event handler. It expects the application object to be
passed (or the derived application object aslong asit istagged application).
It can also be called directly passing the appwindow object as the first ar-
gument. It will save the record correctly and reset various state flags. It is
important that this function be used for saving the record if the program is
caling either thenewr ecor d() or modi f yrecor d() functions..

Working with appf r amewor k. sni

The framework includes al the basic features that are required to produce a working, distributable,
database-oriented program that just needs a menu, atool bar (both of which are available in the sam-
ples), plus the code that is specific to that program's functionality (switching forms, calculating field
values, running reports, etc.). It aso includes support for both approaches to the user-interface, au-
to-locking and explicit locking. The functions for selecting records are not currently included in the
framework, but are available in the sample programs and work with the framework. All the code for
creating new records, modifying, saving, and deleting them, plus numerous utility functions and the
implementation of the appwindow data type are also part of the library. The appwindow typeis aso
suitable for building programs that have either only one main window, or applications with multiple
top-level windows.

Some of the more useful utility functions, examples of which can be seen in the Address Book sample
program, are:

e checkneedsave()
e get appwi ndowf r ommi ndow()

* get menui t emwi ndow()

defer()

e findfirstfocusabl econtrol ()

| ookup()

gettabl eformat strings()

This next list contains the functions that are used specificaly as part of the data-entry process and
which are meant to be directly associated with menu and tool bar items:

233

Working with
appf ramewor k. smi

e new ecord()

e duplicaterecord()
* nodi fyrecord()

e saverecord()

» del eterecord()

The two main data types that are provided by the application framework are the appwindow and
the application. The application type is meant to provide a container for all of the things that might
be needed throughout the application. This includes locale information, default format strings for
data type conversion, the operating system type, aring of data sources, information about the system
(display size, named system color values, etc.), aplaceholder for the window icon bitmap, and thetitle
of the application. This type is meant to be incorporated in a user program's application type, if the
needs of the user program exceed what is provided in the standard type.

The appwindow type is meant to contain information specific to the window. That includes the tables
that are opened as part of it. It also contains a reference to the application object (or your own applica-
tion object). It stores some state information, such as the current table, the last selected value accord-
ing to the current index, the last value of the internal unique key for identifying records, whether the
window is currently in fast selection mode (either fast forward or rewind), areference to the physical
window that it wraps, as well as references to the menu bar, tool bar, and status bar objects, for fast
access. It also includes a number of very useful methods, such asf i ndt abl e(), cl oseal | (),
opendat at abl e(),andopenforndirect ().

For full implementation details of these two types, aswell asthe others that are included, examine the
source code to the application framework library, which is provided as part of the distribution and see
the section called “application” and the section called “appwindow” .

O Warning
Do not change the source code to the appframework or the other libraries unless ab-
solutely necessary! They have been carefully designed to work correctly and to permit
extensions to be added using the event mechanism. If you need to make a change to a
library to fix abug, it is best to report it to Superbase Software Limited via email or on
the forum and have us assess the problem. If you just want use adifferent function, then
add it to the application or create alibrary of your own.

In summary, atypical application framework program will initialize the application object, create an
initial appwindow object, and as part of that produce a menu, tool bar, and status bar. At that point,
the program will call the application.r un() method and it will remain there until the application is
closed down. Whileinther un() method, it will respond to events, such as menu and tool bar events,
or form button events. These events may result in new forms being loaded into one standard window,
or it may result in multiple windows being opened, each potentially with its own menu and tool bar.
The design is up to you.

234

	Superbase NG Programmer's Guide
	Table of Contents
	Chapter 1. Introduction
	Copyright Information
	Disclaimer
	New Versions of this Document
	Software Used

	Part I. Quick Start With SIMPOL
	Chapter 2. Introduction
	Local Variables, Objects, and Values
	Constants
	Function Parameters
	Statements
	Intrinsic Functions
	Operators
	Complex Object Types
	Flow Control
	File Types
	Source Files
	Compiled Files
	Debug Information

	Part II. SIMPOL Language Basics
	Chapter 3. Basic SIMPOL Grammatical Stucture
	End of Statement Characters
	Line Continuation Character
	Line Breaks and White Space
	Comments
	Literals
	Case-sensitivity
	Identifiers
	Reserved Words

	Chapter 4. Data Types, Values, and Ranges
	Blobs
	Booleans
	Integers
	Numbers
	Strings
	Pre-Defined Values
	Functions
	Supplied Types
	A Word About Arrays
	User-Defined Types

	Chapter 5. Operators and Expressions
	Operator Overview
	Assignment Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Object Operators
	Expressions and Statements

	Chapter 6. Statements and Flow Control
	function
	if
	while

	Chapter 7. Variables
	Variable Typing
	Declaring Variables
	Variable and Type Scope and Visibility
	Value Types, Reference Types, and Type Tags
	Variable and Object Persistence

	Chapter 8. Intrinsic Functions
	The Nature of Intrinsic Functions
	Compression Functions
	Conversion Functions
	Numeric Functions
	Selection Functions
	Blob Functions
	String Functions

	Chapter 9. System Functions
	The Nature of System Functions
	The !beginthread() Function
	The !loadmodule() Function
	The !wait() Function

	Chapter 10. User-Defined Functions
	Defining and Calling Functions
	Function Scope
	Function References (Pointers)

	Part III. Web Server Applications — CGI, ISAPI, and FastCGI for Dynamic Web Content
	Chapter 11. SIMPOL Web Server Applications
	Introduction
	How it Works
	Other Features
	Web Server Application Tutorial
	CGI Samples

	Part IV. Using Databases
	Chapter 12. Using Databases in SIMPOL
	Terminology
	Traditional File-Oriented Databases
	Introduction
	SBL Database Commands
	Common Database Programming Problems

	Object-Oriented Database Access in SIMPOL
	Introduction
	Database Type Tags for Generic Database Functionality
	A Comparison of SBL Commands and SIMPOL Methods
	Summary

	Chapter 13. Using PPCS in SIMPOL
	What is PPCS?
	Setting Up a PPCS Server Using Superbase
	Object-Oriented Database Access

	Chapter 14. Using SBME Databases in SIMPOL
	Introduction
	Difference Between SBME and SBF's
	Programming with SBME Databases

	Part V. Calling SIMPOL Functions as DLL Calls
	Chapter 15. Calling SIMPOL Functions as DLL Calls
	Introduction
	Using SMEXEC
	SMEXEC Example Using SBL
	SMEXEC-Compatible Function In SIMPOL

	Part VI. Working with Sockets
	Chapter 16. Client Applications Using TCP/IP
	Introduction
	The tcpsocket Type
	To Block, or not to Block …
	Practical Example — URLDump
	In the Beginning …
	The Main Event

	Chapter 17. Server Applications Using TCP/IP
	Introduction
	The tcpsocketserver Type
	When a Connection Occurs
	Exiting the listen() Method

	Part VII. User-Interface Components
	Chapter 18. Using the wxWidgets Component in SIMPOL
	Windows and Dialogs
	Introduction to Windows and Dialogs
	Creating a Single Window
	Creating Multiple Windows
	Working with Dialogs
	Modal Dialogs
	Non-Modal Dialogs
	Dialogs Using Standard Buttons

	Menu Bars, Menus, and Menu Items
	Forms and Form Controls
	Introduction to Forms
	Creating Simple Forms
	Working with Form Controls
	The Grid Control
	Summary

	Common Dialogs
	Parting Notes

	Chapter 19. Common Dialogs and Other UI Utilities in SIMPOL
	Common Dialogs in SIMPOL
	Message Boxes in SIMPOL

	Part VIII. Converting From SBL
	Chapter 20. Moving from SBL to SIMPOL
	The Basics
	Comparison Between Language Primitives in SIMPOL and SBL
	SBL Commands and Functions and the SIMPOL Equivalents
	Differences Between SIMPOL and SBL
	Tools for Converting SBL to SIMPOL

	Part IX. Supplied SIMPOL-Language Libraries
	Chapter 21. SIMPOL Language Libraries Included
	Introduction
	List of Supplied Libraries

	Part X. Programming Data-Aware Form Programs
	Chapter 22. Overview of Window and Dialog Types Provided with SIMPOL
	wxwindow
	wxdialog
	wxform
	Iterating Through wxform Elements
	When to Use wxform

	dataform1
	Using the Various dataform1 Services

	printform1
	report1
	quickreport1
	graphicreport1
	application
	appwindow

	Chapter 23. Using Data-Aware Forms in SIMPOL
	The Design of dataform1
	Graphical Elements
	Form Controls
	Utility Types

	Iterating Through dataform1 Elements
	Controlling with Events
	Using the Special Features
	The onfill Event
	The Drop List For Edit Controls
	Using a Query to Fill a Detail Block

	Two Approaches to Working with dataform1
	Auto-locking
	Auto-locking

	Making Use of formlib.sml

	Chapter 24. Using Data-Aware Print Forms in SIMPOL
	The Design of printform1
	Working With printform1
	printform1 Summary

	Chapter 25. Using Reports in SIMPOL
	Using the sqlq1 Type Directly
	Using SQL92 in SIMPOL

	Working with report1
	The Design of report1
	The report1 Type
	The report1aggregate Type
	The report1aggregatevalue Type
	The report1group Type
	The report1groupinst Type
	Creating a Report in Source Code
	report1 Summary

	Working with quickreport1
	Enhanced Quick Report Output
	quickreport1 Summarizing Quick Report Output
	quickreport1 Summary

	Working with graphicreport1
	graphicreport1 Summary

	Chapter 26. Using the SIMPOL Application Framework
	The Design of the Application Framework
	Working with appframework.sml

