
Superbase NG IDE Users Guide

Building Projects in the SIMPOL Language

Manuel Franco
Neil Robinson
Duncan Jones

Superbase NG IDE Users Guide: Building Projects in the SIMPOL
Language
by Manuel Franco, Neil Robinson, and Duncan Jones
Copyright © 2001-2017 Superbase Software Limited

iii

Table of Contents
1. Copyright and Disclaimer .. 1

Copyright Information .. 1
Disclaimer .. 1

2. Introduction .. 3
3. The Superbase NG Project .. 5

Introduction .. 5
The Organization of Files in a Project ... 6
SIMPOL Server Pages .. 7

Description ... 7
Server Page Directives ... 9

4. The Superbase NG IDE Environment .. 11
Starting the IDE .. 11
Editing Documents ... 12

The Help Valet .. 12
Control Bars ... 14

The Project Space Control Bar ... 14
The Output Windows Control Bar .. 19
The Call Stack Control Bar ... 19
The Variables Control Bar ... 19

Menus .. 19
File Menu ... 20
Edit Menu .. 20
View Menu ... 21
Project Menu ... 22
Debug Menu ... 22
Document Menu .. 23
Window Menu .. 24
Tools Menu .. 24
Help Menu ... 26

Tool Bars ... 26
Standard Toolbar ... 26
Edit Toolbar .. 27
Debug Toolbar .. 27

Important Dialogs .. 27
Breakpoint Manager ... 28
Expression evaluation help .. 28
Call Analyzer .. 32
Check Project File ... 32
Application Options ... 32
Languages .. 34
New Project Options .. 35
Debug Execution Profile ... 35
Project Settings .. 36
Target Manager ... 38
Watch Window .. 38
Thread Manager .. 39

Keyboard Shortcuts .. 39
Edit Shortcut Keys ... 39
File Shortcut Keys ... 41
Project Shortcut Keys ... 41
Intellisense Shortcut Keys ... 42
Call Graph Shortcut Keys .. 42
Debugger Shortcut Keys ... 42

iv

v

List of Tables
4.1. Menu Options ... 15
4.2. Menu Options ... 16
4.3. Menu Options ... 16
4.4. Menu Options ... 16
4.5. Menu Options ... 17
4.6. Menu Options ... 17
4.7. Menu Options ... 17
4.8. File Menu Items .. 20
4.9. Edit Menu Items .. 20
4.10. View Menu Items .. 21
4.11. Project Menu Items .. 22
4.12. Debug Menu Items ... 22
4.13. Document Menu Items .. 23
4.14. Window Menu Items .. 24
4.15. Tool Menu Items ... 24
4.16. Help Menu Items ... 26
4.17. Breakpoint Manager Dialog Box ... 28
4.18. Expression operators ... 28
4.19. Breakpoint Expression Examples .. 31

vi

vii

List of Examples
3.1. SIMPOL Server Page Code ... 7
3.2. Compiled SIMPOL Server Page ... 8
4.1. Data Type Help ... 12
4.2. Function Prototype Help ... 13
4.3. OnMouseOver Variable Contents Help (Debugging) .. 13
4.4. OnMouseOver Function Prototype Help ... 14
4.5. Code block limits .. 21

viii

1

Chapter 1. Copyright and Disclaimer
Copyright Information

This document is copyrighted © 2003-2016 Superbase Software Limited and is not permitted to be
distributed by anyone other than Superbase Software Limited and its licencees.

All translations, derivative works, or aggregate works incorporating any of the information in this
document must be cleared with the copyright holder except as provided for under normal copyright
law.

If you have any questions, please contact <info@simpol.com>

Disclaimer
No liability for the contents of this document can be accepted. Use the concepts, examples and other
content at your own risk.

All copyrights are held by their respective owners, unless specifically noted otherwise. Use of a term
in this document should not be regarded as affecting the validity of any trademark or service mark.

Naming of particular products or brands should not be seen as endorsements.

You are strongly recommended to take a backup of your system before a major installation and backups
at regular intervals.

2

3

Chapter 2. Introduction
This application is an Integrated Development Environment (IDE) to write, execute and debug Super-
base NG applications. There is only one Superbase NG IDE release version, one that runs on Windows
XP and later operating systems. The older releases also included a version for Windows 9x operating
systems. This is no longer the case.

The application is mainly an editor to write documents in the SIMPOL language. This editor provides
a color-coding engine that makes it very easy to program in SIMPOL. There are many features that
help the user to write code. For example, a Find in files tool, copy and paste, full screen view, and
most recently-used file and project lists. It also supports working with different languages in the same
Superbase NG application in that other languages can be correctly color-coded, such as XML, HTML,
JavaScript, and others. The editor is very flexible and can be easily personalized. The editor supports
other languages as XML, HTML, JavaScript, Visual Basic, ….

The objective is to write a complex Superbase NG application quickly and be able to maintain it easily.
The IDE manages the dependences among Superbase NG files and compiles, executes and allows
debugging of Superbase NG projects, even CGI projects! It also provides project documentation tools
to easily document the various components of a project.

4

5

Chapter 3. The Superbase NG Project
This chapter briefly covers what a Superbase NG project is and what are its components.

Introduction
Source code files in SIMPOL are stored with one of two file extensions: sma or smu. The first exten-
sion indicates that the file content is stored in an ASCII format (1 byte per character) and the second
one indicates that the file content is stored in Unicode format. Unicode can be stored in a number of
different formats. SIMPOL Unicode source files currently must be stored in UCS-2 and should begin
with what is known as a byte-order mark (BOM). UCS-2 format stores characters using two bytes per
character. It is considered good form to also use the byte order mark (0xFEFF) as the first character.
This allows the reading program to determine whether the characters are stored with the least signif-
icant byte or with the most significant byte first.

Here is an example of SIMPOL source code:

function main()
 string s
 s = "Hello"
end function s

After compiling a SIMPOL source code file the result is a byte-code file. SIMPOL byte-code files
come in two flavors: programs and libraries. These are distinguished by the file extensions smp and
sml respectively. The only difference between them is that the program files are produced from
projects that contain a main() function. That is the entry point for a SIMPOL program. Compiled
programs that do not include a main() function can not be executed but can be linked to other pro-
grams to provide functions and data types that can be called or used. They can also be loaded dynam-
ically.

Here are two examples of the compilation process:

1. MySIMPOLFile1.sma —> MySIMPOLFile1.smp

2. MySIMPOLFile2.sma —> MySIMPOLFile2.sml

After the compilation process, if multiple source files are used to produce the resulting program, the
smp file is joined with each of the sml files in a linking type of process in order to produce the final
program.

Here is an example of the linking process:

1. MySIMPOLFile1.smp + MySIMPOLFile2.sml —> MyProgram.smp

Following the linking process, we can execute the SIMPOL program file in the IDE or depending
on the type of program from the command line or as the result of entering a URL in a web browser.
The IDE will call the SIMPOL virtual machine (SVM)and pass it the program and any command
line arguments that have been defined. The SVM then executes the program file. SIMPOL programs
usually return a result string, which will be displayed in the IDE or if called from the command line
will be sent to standard out. In the case of a web server program, the result is normally a web page.

A SIMPOL project is a group of sma and/or smu files and the description of how the compilation
and link is to be done. It also includes a definition of which directories to search in for included files
and potentially one or more targets to be created from the final result. It also includes the list of pre-
compiled libraries to link with, in addition to any library modules that are produced as part of the
project itself. SIMPOL source code files can also include any number of other SIMPOL source code
files which themselves may include yet others. Typically a project may consist of a main source code

The Organization
of Files in a Project

6

file that then includes other source code files, which may then include others. This results in a tree
of files below the main file and this is shown in the project window to the left of the area where the
source files are edited. For each module in the project, there is a main source file. Each main source
code file is the top of a tree of included source code files. The SIMPOL language statement to include
a file is include followed by the file name as a string.

It is not possible to simply compile and execute any source code file (if it has a main() function)
using the IDE. Changes that were made to dynamically load the required components mean that the
component information is added to the project by the IDE build process. Whether for a simple or
complex project, the Superbase NG IDE's real strength is in compiling and linking complex projects.
The normal approach to working with the IDE is to create a project and then to build it. This results
in either a program or library that can be either executed or loaded into the SVM.

The following is an example of building a project:

1. Project's main source code files: MyFile1.sma, MyFile2.sma

2. MyFile1.sma — includes —> MyFile1a.sma, MyFile1b.sma

3. MyFile2.sma — includes —> MyFile2a.sma

4. MyFile1.sma — compiles to —> MyFile1.smp

5. MyFile2.sma — compiles to —> MyFile2.sml

6. MyFile1.smp + MyFile2.sml — links to —> MyFile1.smp located in the bin directory
of the project.

The SIMPOL IDE manages the time dependencies between SIMPOL files, so if in the previous ex-
ample, we update the file MyFile2a.sma, the only file that is going to be compiled when we do a
build, is MyFile2.sma, because it is the only main source code file affected.

The project description is stored in a file with the extension smj. For example, in the previous example
the project file name would have been MyFile2.smj.

The Organization of Files in a Project
A SIMPOL project is stored on the hard disk as a group of files with the following extensions smj,
sma, smu, smp, sml, and smz with an appropiate folder structure. I will explain the folder structure
using the above project example.

The basis of every project is a directory. All of the files that are directly part of the project are stored in
the project directory or in subdirectories below that. The name of the directory is the same as the name
of the project. If the project name is MyFile1, the directory name will be MyFile1. The project
description is stored in this directory; in this example it is named MyFile1.smj. Inside the project
directory we will have a directory for each main source code file. These are called modules or module
directories. Each module contains its main source code file and the rest of the source code files that are
implemented as part of the module. Any source code files that are in the module directory besides the
main source code file of the module, must be included in the main or other included source code files
in this module in order to be compiled and considered part of the module during the build process. It is
also possible to include, as part of the code of the module, files from other modules or other projects,
for example source code files with standard functions, etc. When the project is built, the resulting byte-
code file (either library or program) will also be found in the module's directory.

The name of the module directory will be the name of the main source code file without the extension.
In the previous example we have two modules: "MyFile1" and "MyFile2". The first module "My-
File1" contains the files MyFile1a.sma, MyFile1b.sma and after it is compiled the first time,
MyFile1.smp. The second module "MyFile2" contains the files MyFile2.sma and after it has
been compiled the first time, MyFile2.sml".

SIMPOL Server Pages

7

When the project is built the result is stored in the directory called bin, which is a subdirectory of the
project directory. In the example, the final result of the building the project is the file MyFile1.smp.

SIMPOL Server Pages

Description
A SIMPOL server page is a file with the extension smz, the contents of which is HTML but which also
includes blocks of SIMPOL source code. The blocks of source code are inside server page comment
blocks (in between <% and %> tags), so if we launch the HTML viewer component of the SIMPOL
IDE, we will see just the HTML page as if it did not contain any SIMPOL source code.

A project with smz files is a CGI project. This means that the final SIMPOL program is intended to be
executed on the server side as a CGI, ISAPI or Fast-CGI program. Typically, a CGI program is called
from a web server, for example the Apache web server. The entry point of a CGI or ISAPI program
is the main() function, but in this case, the function has only one argument: function main(cgicall
cgi). cgi is a cgicall object, and it contains all of the information the web server received from a
browser call.

Building a CGI project adds another process to the normal build. First, the smz files are compiled into
sma or smu files, and then the normal build follows. When a SIMPOL server page is compiled into
SIMPOL source code, the SIMPOL source code in the server page block comments are passed through
without change and the HTML is converted into string arguments of cgi.output() statements.

Here is an example of the process followed when building a CGI project:

1. Project's main server page files: MySPFile1.smz, MySPFile2.smz

2. MySPFile1.smz — includes —> MySPFile1a.txt

3. MySPFile1.smz — compiles to —> MySPFile1.sma

4. MySPFile2.smz — compiles to —> MySPFile2.sma

5. Project's main source code files: MyFile1.sma, MyFile2.sma

6. MyFile1.sma — includes —> MyFile1a.sma, MyFile1b.sma and MySPFile1.sma

7. MyFile2.sma — includes —> MyFile2a.sma and MySPFile2.sma

8. MyFile1.sma — compiles to —> MyFile1.smp

9. MyFile2.sma — compiles to —> MyFile2.sml

10.MyFile1.smp + MyFile2.sml — link to —> MyFile1.smp

The following is an example of SIMPOL server page code:

Example 3.1. SIMPOL Server Page Code

<%'-------------------------- begin code --------------------------
function ShowHelloOrNothing(cgicall cgi, integer i)
'-------------------------- end code --------------------------%>
<HTML>
 <HEAD><META http-equiv="pragma"
 content="no-cache"></HEAD>
 <TITLE>SIMPOL Hello Page</TITLE>

Description

8

<%'-------------------------- begin code --------------------------
 if(i == 1)
'-------------------------- end code --------------------------%>
 <BODY>Hello</BODY>
<%'-------------------------- begin code --------------------------
 end if
'-------------------------- end code --------------------------%>
</HTML>
<%'-------------------------- begin code --------------------------
end function

Results after compiling the server page:

Example 3.2. Compiled SIMPOL Server Page

'-------------------------- begin code --------------------------
function ShowHelloOrNothing(CGICall cgi, integer i)
'-------------------------- end code --------------------------
 cgi.output("<HTML>" + "{0D}{0A}", 1)
 cgi.output(" <HEAD><META http-equiv=""pragma""" + "{0D}{0A}", 1)
 cgi.output(" content=""no-cache""></HEAD>" + "{0D}{0A}", 1)
 cgi.output(" <TITLE>SIMPOL Hello Page</TITLE>" + "{0D}{0A}", 1)
'-------------------------- begin code --------------------------
 if(i == 1)
'-------------------------- end code --------------------------
 cgi.output(" <BODY>Hello</BODY>" + "{0D}{0A}", 1)
'-------------------------- begin code --------------------------
 end if
'-------------------------- end code --------------------------
 cgi.output("</HTML>" + "{0D}{0A}", 1)
'-------------------------- begin code --------------------------
end function
'-------------------------- end code --------------------------

The advantage of doing this, is that we can create HTML in a dynamic way using the power of the
SIMPOL programming language and we can also visualize the HTML in the HTML viewer that is
part of the IDE whenever we need it. So it is very easy to embed HTML (what a final user will see
in his browser) in a SIMPOL CGI-style program.

The way that SIMPOL server pages work is different to that of ASP, JSP, or PHP. In each of these
cases, the source code is also embedded into the HTML but unlike with SIMPOL these mixed-mode
pages are then interpreted by the web server (which must be especially designed to be aware of them)
and then the code portions are passed to the language interpreters for execution. With SIMPOL server
pages, the design style is similar but the results are compiled rather than interpreted, which is faster
and also does not require any special capabilities on the part of the web server.

A CGI project can contain any number of server pages. The server pages follow the same pattern as
SIMPOL source code files when including files. Each main server page is the root node of a tree of
other included files. The Superbase NG IDE manages the file time-dependencies when a build is done,
as in the case of source code SIMPOL files.

The Superbase NG IDE provides a way to compile SIMPOL server pages into SIMPOL source code,
and a way to regenerate a SIMPOL server page after manipulating the associated (compiled) SIMPOL
source code; this allows the programmer to use the color coding capabilities of the IDE for the HTML
source when working on the server page and then after compiling, it is possible to work on the SIMPOL
program source in the resulting compiled page. After the changes are done to the compiled source, the
option to regenerate the server page from the right mouse button popup menu should be used to send
the changes back to the server page source code.

Server Page Directives

9

Tip

It is always a good idea to propogate the changes back to the server page source right
after making them, since the server page is the reference source code in the project. If you
forget, during the next build you will be prompted that the code has changed. If you say
okay, your changes will be lost as the compilation of the server page overwrites them.
Also, only change code in the blocks between the begin code and end code comments.
If you change anything else, it won't successfully regenerate the server page!

Server Page Directives
This section covers the syntax of the server page and the specific directives provided.

Multiline Comments

A multiline comment can consist of any piece of text between the start tag <%-- and the end tag --
%>. The comment can cover multiple lines and since it is a comment in the server page it will not be
transferred to the source code when that is compiled. Only white space (spaces and tab characters) may
precede the begin comment tag on the same line, and only white space may follow the end comment
tag on the same line.

Server Page Comment Blocks

These comment blocks are similar to the previous type, except that the contents are passed through
to the resulting compiled SIMPOL source code file as source code statements. This is the method by
which the embedded source code is extracted into the target program source file. Any text between
the start tag <% and the end tag %> will be transferred as SIMPOL source code to the target source
code file. As in the previous case, the start tag may only be preceded on the same line by white space
and the end tag may only be followed on the same line by white space.

include

Include the content of a file when the server page is compiled. Example:

<%@ include = ".\folder\MyHTMLChunk.txt" %>

outputcall

By default a line of HTML code in the server page file is converted into a line in the SIMPOL source
code file after compilation. The HTML text is embedded in a SIMPOL string that is an argument to the
output method of the cgicall object. It means that if we have a large server page file, after compilation,
lots of output calls are generated. We can optimize this using the outputcall = chunk directive. It can
be located at any line in the server page file. To reverse this behaviour we have to use the outputcall
= line directive. For example:

<%@ outputcall = chunk %>
<%@ outputcall = line %>

SIMPOL Source Code in an HTML Argument Value

In a line of a server page that holds an HTML argument value in between double quotes, we can add
a small piece of SIMPOL source code in between back tick (`) character marks. For example:

Hello

Server Page Directives

10

Typically it is used to embed a SIMPOL string variable. In this example, after compilation we will
get something like this:

cgi.output("Hello" + "{0D}{0A}", 1)

So, we can see that the value of the HTML argument that the browser will receive is the value of the
SIMPOL variable. It is also possible to embed short chunks of inline code.

11

Chapter 4. The Superbase NG IDE
Environment

This chapter covers the various components that make up the Superbase NG Integrated Development
Environment (IDE).

Starting the IDE
The IDE can be started from the command line or another program in various ways that will be outlined
below:

Command Line Parameters Description

sbngide.exe None The application is launched.

sbngide.exe filename First, the application is launched. After that, if
the file is a project description file (*smj), the
project will be loaded into the application. If the
file is of any other type of file, it will be opened
in the application editor.

sbngide.exe /o filename.smj This is intended to be used to directly load a
project description file (*smj). The application
is launched and the project is loaded.

sbngide.exe /b filename.smj This is intended to be used to directly load a
project description file (*smj). The applica-
tion is launched and the project is loaded. It then
builds the project and the application closes
again. Any output from the build process is di-
rected to the shell.

sbngide.exe /r filename.smj This is intended to be used to directly load a
project description file (*smj). The applica-
tion is launched and the project is loaded. It then
rebuilds the project and the application closes
again. Any output from the rebuild process is di-
rected to the shell.

sbngide.exe /e filename.smj This is intended to be used to directly load a
project description file (*smj). The applica-
tion is launched and the project is loaded. It then
executes the project and the application closes
again. Any output from the program execution is
directed to the shell.

sbngide.exe /x filename.smj
outfile.xml

This is intended to be used to directly load a
project description file (*smj). The application
is launched and the project is loaded. It then pro-
duces the project information as an XML file
and saves it to the filename passed in the second
argument and then the application closes again.
Any output from the documentation generation
process is directed to the shell.

sbngide.exe /d filename.smp This is used for callback debugging purposes
primarily associated with CGI debugging. The
IDE is launched and the associated project for
the byte-code file is loaded. The program is then

Editing Documents

12

Command Line Parameters Description

placed into debug mode with a break at the first
code statement inside the function main().

Editing Documents
Editing documents is the primary objective of the Superbase NG IDE. As in any editor, a user can
create a document and store it in a file, open an existing file, update the content before saving it, etc.
There are many features in the IDE that make it easy to write and debug SIMPOL program code. Also
because it is quite common today to need to work in several different languages, the IDE supports
basic color coding for a number of languages, including Microsoft's Visual Basic, Visual Basic Script,
JScript, and C#. Also supported are HTML, XML XSL, IDL (Interface Description Language —
used for defining CORBA interfaces) and of special interest to Superbase programmers, it supports
both tokenized and text format Superbase programs. This can also be extended by the user as needed
simply by creating a configuration file based on one of those supplied and then adding it to the list of
supported languages. A language is associated with a list of file extensions, so if we open in the editor
a file with an extension associated with a language, the editor will apply the color-coding syntax rules
to the document. That will show the text in the document coloring keywords, operators, etc, which
greatly enhances the ability to read it accurately. The language settings can be personalized through
the language settings dialog box.

The primary language used in the Superbase NG IDE is of course the SIMPOL language. There are
many built-in features in the editor to handle the specific SIMPOL syntax.

The Help Valet
Many people are familiar with a technology popularized by Microsoft known as IntelliSense®. The
Superbase NG IDE has a comparable technology specifically tailored to the needs of the SIMPOL
programmer that we call the Help Valet. It is activated whenever there is a project loaded in the IDE
and the active document is a SIMPOL document that belongs to the project. In this case the editor
will take the information that the IDE retrieves from the project, in order to make it easier for the user
to understand their own program. There are several Help Valet features, including: data type help,
function prototype help, OnMouseOver help, and language items help. Some of the items will not
provide complete functionality until after the program has been successfully built at least once. For
example, it is not possible to show the members of a user-defined type until that type has been part of
a build cycle of the project being edited. The same is true of user-defined functions.

Data Type Help

This is activated whenever the we append the SIMPOL property (dot) operator after an object name
in the code. A list is then displayed with the properties of the object. We can use the up and down
arrow keys to move through the list, or the mouse cursor to select another list property name. Another
way is to begin to write the name of the property so that the property name closest to what has been
written will be shown selected in the list. If we press the tab key on the keyboard, the whole property
name will be appended after the dot operator.

This feature works with types nested at any level within other types. See the example below:

Example 4.1. Data Type Help

type MyType
 embed
 string s1
 integer i1
end type

The Help Valet

13

function main()
 MyType t

 t.

end function "OK"

After pressing the dot key, a list will display the s1 and i1 property names.

Function Prototype Help

Function prototype help is activated when the open parenthesis character is appended after a function
name in the code. A list is then displayed with the parameters of the function. Each entry in the list
shows the parameter data type, its name, and even its default value (if it has one). As we add parameters
to the function, the list entry selected will be moved one position down, so that the parameter that is
selected in the list is the same as the one that we are currently typing. The list will be closed when we
type the close parenthesis, that means that the function is not going to receive any more parameters.
If the parameter list is still active, we can use the the left and right arrow keys to move to another
parameter position. The parameter selected in the list will be the parameter the caret is over in that
moment. If we are in a function and one of the parameters we type is another function call, the editor
will show the new function parameter list, and after typing all the parameters the new function needs,
the editor will show the previous function parameter list in order to continue to support the entering
of parameters.

There is another way this feature can be used. If we set the cursor at any position inside a function
parameter list in our program and press at the same time the keys Ctrl+Tab, a list with the parameters
of the function will be displayed. The parameter entry selected will be the parameter that the cursor
points to in the text. This can be very useful if there is a line in the program with many nested functions.
For example:

Example 4.2. Function Prototype Help

function MyFunction(string s1, integer i1)
end function "OK"

function main()

 MyFunction(

end function "OK"

After pressing the open parenthesis key, a list will display the s1 and i1 parameters.

OnMouseOver Help

This functionality is always active. If the mouse cursor is positioned over an item in the function body
of the source code, a tooltip will be shown, containing information relevant to the item below the
mouse pointer if the item is a function, a type, or a variable. It is a very powerful feature and when
debugging the SIMPOL program, if the mouse cursor is positioned over a variable, the value of the
variable will be shown.

Example 4.3. OnMouseOver Variable Contents Help (Debugging)

function main()
 string s1, s2

 s1 = "Hello"

Control Bars

14

 s2 = s1

end function "OK"

If we move the mouse cursor over the s1 variable in this line, a tooltip will be displayed showing:
string s1 = "Hello".

Example 4.4. OnMouseOver Function Prototype Help

function MyFunction(string sArg, integer iArg)
end function "OK"

function main()
 string s

 s = MyFunction("Hi", 1)

end function

If we move the cursor over the function MyFunction in this line, then a tooltip will be displayed
showing: MyFunction(string sArg, integer iArg).

Language Items Help

A list is displayed of either functions or types at the current cursor position when the appropiate keys
are pressed.

List Type Key Commands Description

Intrinsic types Ctrl+F7 Shows the SIMPOL language internal types.

User-defined types Ctrl+Shift+F7 Shows the types specific to the project.

Internal functions Ctrl+F8 Shows the internal functions of the SIMPOL lan-
guage.

User-defined functions Ctrl+Shift+F8 Shows the functions specific to the project.

Control Bars
Control bars are a set of windows that share a common level of functionality. At the bottom of any
control bar there is a tab control that allows easy selection of any window owned by the control bar.
There are four different control bars in the Superbase NG IDE: the Project Space control bar, the
Output Windows control bar, the Call Stack control bar, and the Variables control bar. The Project
Space control bar is the most complex and that will be covered first.

The Project Space Control Bar
This control bar has two windows. They show information for the project that is currently loaded into
the IDE. The content of both windows is updated after any project is built.

Project View

In this window the files that make up a project are shown as a tree. The root node is always the project
node. The name of the node is the name of the file that contains the information for the project. The
extension of the project file is always smj, for example: MyProject.smj.

The child nodes are the modules. There is one module node for each module directory in the project file
structure. The name of the module node is the module directory name. There are two types of modules,

The Project Space Control Bar

15

project modules and imported modules. Project modules are modules that belong to the project and
that are built as part of the process of building the project. Imported modules are modules that belong
to other projects. When we add a module to the project a new module directory is created in the project
file structure and a new main source code file is created for the module. When we import a module,
what the IDE does is add a link to a module that is located in another project.

In the example used in the previous chapter, we had two module nodes: MyFile1 and MyFile2. A
module node always has a child node, which is the main source code node. The name of this node is
the same as the name of the main source code node file. This node will have as many child nodes as
it has included files. And each of the child nodes will have as many child nodes as they have included
files and so on.

In a CGI project we will have the Server Pages node as a child node of each module. This node
looks like a folder and it will contain all the server pages of the module. The Server Page nodes
have the name of the server page file (a file with a smz extension). Each Server Page node will have
as many child nodes as there are files included in each server page and so on as in the case of the
SIMPOL source code files. Server page child nodes are normally files with any extension and that
contain chunks of html code.

Project Tree View Nodes

Double-clicking on a source code node or server page node, causes the associated file to be opened
in the editor. Right mouse button clicks on any node displays a menu of options specific to the type
of node that was clicked on.

The Project Node

This is the root node and it represents the entire project.

Table 4.1. Menu Options

Menu Item Description

Add New Module Opens a dialog box to create a module in the active project.

Import Module from
Project

Opens a dialog box to select another project. This is done by selecting the
smj file. This will add a link to the active project for each module in the
external project. The files of an imported project are be read only, since
the active project is not the owner. An imported module node has a differ-
ent color than the project nodes.

Build This launches the Build process. The messages generated by the process
will be displayed in the output window.

Rebuild All This launches the Rebuild All process. This will rebuild all portions of a
project even if normally they would not need to be built. The messages
generated by the process will be displayed in the output window.

Execute This executes the project. If it needs to be built first, then it will be built
prior to execution. The messages generated by the process will be dis-
played in the output window.

Settings Opens the Project Settings dialog box.

Properties Opens the Properties dialog box. In this case, the description of the
project file path, the date of last modification of the file, and the path
of the byte-code file that is generated as a result of the project build are
shown.

The Module Node

There are two types of module nodes, project nodes and imported module nodes. They are shown in
different colors.

The Project Space Control Bar

16

Table 4.2. Menu Options

Menu Item Description

Rename Module Available only for the project modules. This opens a dialog box to change
the name of the module and the name of its main source code file.

Remove Module If the node is an imported module, the link to the module from another
project will be removed. If the node is a project node, a dialog box to re-
move the module will be opened. The dialog box includes an option to re-
move the module folder and all of its contents.

Create SIMPOL File Available only for the project modules. This opens a dialog box to create
an empty source code file within the module.

Properties Opens the Properties dialog box. In this case, the module folder path and
the date of last modification of the module are shown.

The Main Source Code Node

This represents the main source code file. It is the root of the source code files of the module.

Table 4.3. Menu Options

Menu Item Description

Open File Opens the file in the editor.

Compile File The file is compiled.

Execute File The compiled file associated with the main source code file is executed. If
necessary, the source will be compiled first.

Properties Opens the Properties dialog box. There are two tabs. The first one dis-
plays the file path, the date of last modification of the file, and the loca-
tion of the byte-code file after compilation. In the second tab we can see a
list with all of the files that are included in the module. If is there a circu-
lar path when including files, then the wrong path is shown in this tab.

An example of a circular path might be: file A includes file B. File B in-
cludes file C and file C includes File A.

Source Code Nodes

This represents a source code file. These are all of the sma or smu files that are not the main source
code file of a module.

Table 4.4. Menu Options

Menu Item Description

Open File Opens the file in the editor.

Delete Shows a dialog box and asks for confirmation to delete the file and re-
move the reference to it in the project.

Properties Opens the Properties dialog box. This dialog box displays the file path
and the date of last modification of the file.

Regenerate Server
Page

This is available only for the source code files that are the output file of a
server page file compilation. If the source code file has been modified, the
regenerate process regenerates the associated server page, so that the out-
put of the process is the server page file.

For example: MySPFile.smu — regenerates to —> MySPFile.smz.
This is useful when in a server page there is a large block of SIMPOL
code. A server page is essentialy a HTML page with blocks of embed

The Project Space Control Bar

17

Menu Item Description

SIMPOL code. So the editor applies the HTML color coding rules to the
document. If we want to have the advantage of the Help Valet with the
SIMPOL language portion of the server page, then we have to work with
the SIMPOL source code document generated after the compilation of the
server page. We can modify the SIMPOL source code in the source code
document and take advantage of the help of the SIMPOL color coding
rules and the context-sensitive Help Valet, and then we can regenerate the
server page and continue working in the server page on the HTML.

Server Pages Node

This node represents the group of all the server page files in the module. These files are located in
the module directory.

Table 4.5. Menu Options

Menu Item Description

Create New Server
Page

Opens a dialog box to add a new server page file to the module.

Reload Server Pages Load all of the module server pages as child nodes of the Server Page
nodes.

Server Page Node

This represents a server page file.

Table 4.6. Menu Options

Menu Item Description

Open File Opens the file in the editor.

Compile File The server page is compiled.

Delete Shows a dialog box and asks for confirmation to delete the file and re-
move the reference to it in the project.

HTML Viewer Opens the HTML viewer and loads the server page into it.

Properties Opens the Properties dialog box. There are two tabs. The first one dis-
plays the file path, the date of last modification of the file, and the loca-
tion of the byte-code file after compilation. In the second tab we can see
a list with all of the files that are included in the server page. If is there a
circular path when including files, then the wrong path is shown in this
tab.

An example of a circular path might be: file A includes file B. File B in-
cludes file C and file C includes File A.

Other Nodes

This node represents any node related to a file with an extension other than smj, smu, sma, or smz.
Typically, it is a file with a block of HTML that is included in a server page.

Table 4.7. Menu Options

Menu Item Description

Open File Opens the file in the editor.

Delete Shows a dialog box and asks for confirmation to delete the file and re-
move the reference to it in the project.

The Project Space Control Bar

18

Menu Item Description

Properties Opens the Properties dialog box. This dialog box displays the file path
and the date of last modification of the file.

Type View

This window displays the content of the project library files in a hierarchical or tree layout. A library
file or library is the byte-code file generated after compilation of a modules main source code file or
after the build of a project. So a library is always a file with the extension smp or sml. In the type
view tree there is a library node for each library in the project. Each library node has a child node for
each function and for each type that is in the library. Each function node also has a child node for
each argument of the function. The first child node is the first argument, the second child node is the
second argument and so on. Each type node has a child node for each property and method. As with
the functions, each method has a child node per argument.

Type View Nodes

Library Node

A library node represents a link to a library file.

There are three types of libraries:

• SIMPOL language library

• Project module library

• External linked library

SIMPOL Language Node

This node contains the internal type and function information for the SIMPOL language. For example,
function .toval or type cgicall. The label for this node is <smpol>.

Project Module Nodes

There is one node of this type for each module in the project or imported module. These libraries
contain the information about all of the exported and non-exported functions and types. The name of
the node is the name of the library file, for example: MyLibrary.sml. If the right mouse button is
clicked on this type of node then the library file path and date of the last modification will be displayed.

External Module Nodes

This contains the information about all of the exported functions and types from an external library.
The external library is linked to the project output file, when the project is built. The name of the node
is the name of the library file and is shown between angular brackets. If the right mouse button is
clicked on this type of node then the library file path and date of the last modification will be displayed.

Function Node

A function node represents a link to a function description. It also represents a library function if
it is a library child node, or a type method, if it is a type child node.

Type Node

A type node represents a link to a type description.

Element Node

An element node represents a link to an element description. An element can be a type property, a
function or method parameter, or a type tag.

The Output Windows Control Bar

19

The Output Windows Control Bar
This is the location where the IDE communicates results to the user.

Output Window

This window displays information generated by the application in general. For example, the messages
generated by a build, or the results of an executed SIMPOL program are shown in this window.

Debug Window

This window displays information generated by the debugger.

Find in Files Window

This window displays information generated by the Find in files process. It displays a line
for each match found. In each of those lines is shown the file path and the line where the match was
found. If we double-click on a line, the file will be opened in the editor and the line where the match
was found will be shown.

The Call Stack Control Bar
This is active only when the debugger is running and the thread with the focus is suspended. This
is a read-only window that displays the stack of function calls of the thread that is suspended. The
bottom function is always the first function the thread began to execute. If the thread is the main thread
("Thread 1"), this function will be main. The top function is always the function where the execution
pointer is currently located. Double-clicking on a line in the Call Stack window will cause the
source code line that is displayed to be executed. That source code belongs to the function selected
in the Call Stack window.

The Variables Control Bar
This is active only when the debugger is running and the thread with the focus is suspended.

The Locals Window

This window is a table with two columns. The first column is Name and the second Value. This
table shows the name and the current value of the local variables for the function selected in the Call
Stack window. The function can be changed if we double-click on another function in the Call
Stack window. By default the local variables that are shown are from the function in which the
execution pointer is currently located.

The Me Window

This window is also a table with two columns. The first column is Name and the second Value. This
table shows the name and the current value of the properties of a type if the function currently selected
in the Call Stack window is a method of a type. The method can be changed if we double-click
on another method in the Call Stack window. By default the type properties that are shown are
from the method of a type in which the execution pointer is currently located.

Menus
These menus are located at the top of the application. Any menu when selected displays an options
list. Each option performs a specific task.

File Menu

20

File Menu

Table 4.8. File Menu Items

Menu Item Description

New Creates a new document. A list with the active language extensions is dis-
played. This list can be changed in the editor/settings menu entry.

Open Opens an existing document.

Close Closes the active document.

New Project Creates a new project.

Open Project Opens a project. If there is a project already active, it is closed before the
new one is opened.

Close Project Closes the active project.

Save Project As... Allows user to save the active document with another name in another lo-
cation.

Save All Saves all the open documents.

Print... Prints the active document.

Print Preview Displays how the active document would look like if it were printed.

Print Setup... Opens the Print dialog box. The print options can be changed there.

Recent Files Displays a list of the last files opened.

Recent Projects Displays a list of the last projects opened.

Exit Quits the application. Prompts to save any modified documents.

Edit Menu

Table 4.9. Edit Menu Items

Menu Item Description

Undo Undoes the last action.

Redo Redoes the previously undone action.

Cut Cuts the selection and puts it on the Clipboard.

Copy Copies the selection and puts it on the Clipboard.

Paste Inserts contents of the Clipboard.

Comment This menu option is only available if the active document is a SIMPOL
source code document (*sma; or smu). It comments the lines selected in
the active document. It prefixes the beginning of each line with a double
slash string: "//".

Uncomment This menu option is only available if the active document is a SIMPOL
source code document (*sma; or smu). It uncomments the lines selected
in the active document. It removes the double slash comment prefix ("//")
from the beginning of each line.

Find Searches for a string in the active document.

The Find dialog box contains the following input boxes:

1. Match whole word only: If it is checked, the Find what entry will have
to match a whole word in the document text to be found.

2. Match case: If this is checked, the search will be case sensitive.

View Menu

21

Menu Item Description

3. Regular Expression: If it is checked, the Find what entry will be treat-
ed as an standard regular expression.

The direction of the search can be "up" or "down". It can be changed us-
ing the appropriate radio buttons.

There is also the button "Mark All". If this is pressed, a bookmark will be
added to each line that contains the search string.

Find In Files Searches for a string in multiple files. This is a very powerful search tool
that can find the search string in multiple files and folders.

The Find in Files dialog contains the following input boxes:

1. Find what: Enter the search text here.

2. In files/file types: Here you must enter the names of the target files you
wish to be searched. The names of the files have to be separated by
semicolons. The wildchar "*" can be used. Example: *sma;*smu

3. In folder: Enter the name of the search folder here.

The Find in Files dialog box also contains the following check boxes:

1. Match case: If this is checked, the search will be case sensitive.

2. Regular Expression: If this is checked, the Find what entry will be
treated as a standard regular expression.

3. Look in subfolders: If this is checked, files in the subfolders of the tar-
get folder will also be included in the search.

4. Look in project: If this is checked, the In files/file types and In fold-
er values will be discarded and the search will only take place in the
"sma", "smu" and "smz" files that belongs to the project.

Replace... It opens the Replace dialog box. It looks similar to the Find dialog box,
but it has another entry to introduce the text that should replace the search
text.

Insert Code Block This is only active if the active document is a SIMPOL server page
(smz). It inserts a new empty code block in the document before the line
with the caret. A code block is a place to write SIMPOL language in a
SIMPOL server page; see Example 4.5, “Code block limits”.

Example 4.5. Code block limits

<%'-------------------------- begin code --------------------------
'-------------------------- end code --------------------------%>

View Menu

Table 4.10. View Menu Items

Menu Item Description

Standard Toolbar Shows the standard toolbar.

Edit Toolbar Shows the edit toolbar.

Project Menu

22

Menu Item Description

Debug Toolbar Shows the debug toolbar.

Status Bar Shows the status bar. The status bar is a thin bar at the bottom of the ap-
plication frame. On the left, the bar displays small pieces of information
when the mouse cursor is moved over a toolbar button, menu item, etc.
On the right it displays the line and column where the caret is located in
the active document.

Full Screen Expands the document editor to the whole screen.

Projectspace Adds the "Project Space" control bar to the application frame. Typically,
the bar is located at the left of the application frame.

Output Adds the "Output" control bar to the application frame. Typically, the bar
is located at the bottom of the application frame.

Call Stack Adds the "Call Stack" control bar to the application frame. Typically, the
bar is located at the bottom of the application frame.

Variables Adds the "Variables" control bar to the application frame. Typically, the
bar is located at the bottom of the application frame.

Project Menu

Table 4.11. Project Menu Items

Menu Item Description

Build Builds the active project. Will only compile files modified since the last
build.

Rebuild All Rebuilds the whole active project. This causes all the files of the project
to be compiled.

Execute Executes the active project. If any files belonging to the project have been
modified since the last build, the project will be rebuilt before being exe-
cuted. The execution result will be displayed in the output window.

Stop building Stops the current build.

Stop executing Stops the currently executing program.

Refresh documents Reloads all the documents opened in the editor.

Settings Opens the Project Settings dialog box.

Debug Menu

Table 4.12. Debug Menu Items

Menu Item Description

Start debugging Starts debugging the SIMPOL project. The debugger is launched and the
execution is stopped just before the first line in the "main" function code.

Stop debugging Stops debugging the SIMPOL project.

Continue thread execu-
tion

Continues the execution of the thread that is the focus of the debugger.

Break thread execution Breaks the execution of the thread that is the focus of the debugger. The
debugger displays the source code line for the current instruction.

Show Next Statement Displays the statement that will be executed next.

Document Menu

23

Menu Item Description

Step Into Runs the next statement. If the next statement is a function call, and the
source code for the called function is available, the debugger will stop just
before the execution of the first statement in the called function.

Step Over Runs next statement.

Step Out Runs the program to the end of the current function and steps out to the
caller function. Execution will break upon return to the caller.

Run to Cursor Runs the program to the line containing the cursor.

Insert/Remove Break-
point

Inserts or removes a breakpoint at the source code line containing the cur-
sor.

Set Next Statement Changes the execution pointer to another position. The new position is al-
ways the beginning of a code line in the function that is being executed.

Thread Manager Opens the Thread Manager dialog box. This option is only available
when debugging a program.

Breakpoint Manager Opens the Breakpoint Manager dialog box.

Watch Opens the Watch Window dialog box. This option is only available when
debugging a program.

Profile Opens the Profile dialog box. This option is only available when debug-
ging a program.

Document Menu

Table 4.13. Document Menu Items

Menu Item Description

Compile File Compiles the active document file if it is a SIMPOL source code file, or a
SIMPOL server page file.

Execute File Executes the byte-code file associated with the active document if it is a
SIMPOL source code file. The execution will produce an error if the file
doesn't have a "main" function.

Command Line... Opens a dialog box for the user to add parameters. These parameters will
be passed to the "main" function when we execute a SIMPOL file using
the Execute File option. The parameters are separated by one or more
whitespaces. If a parameter contains whitespaces, it should come between
a pair of double or single quotes.

Example:

function main prototype: main(string s, string s2)
command line: "hi bye" 123

DOS Newline This means that the lines in the file are separated by "\r\n". It can be
changed to Unix or Mac style.

Unix Newline This means that the lines in the file are separated by "\n". It can be
changed to DOS or Mac style.

Mac Newline This means that the lines in the file are separated by "\r". It can be
changed to DOS or Unix style.

Unicode format This is option is designed to allow the user to change the ASCII/Unicode
format of a file. If it is checked it means that the file content is unicode, if
it is not checked then the content is ASCII. Unicode files have a byte or-

Window Menu

24

Menu Item Description

der mark at the beginning of the file and each character is stored in two
bytes. ASCII files do not have a byte order mark, and each character is
stored in a single byte.

Trim Trailing White
Spaces on Lines

Removes all the whitespaces and tabulator characters at the end of each
line in the active document.

HTML Viewer Launches the HTML viewer. This option is only available when the active
document is an HTML file or a SIMPOL server page.

Window Menu

Table 4.14. Window Menu Items

Menu Item Description

New Window This is only available when there is at least one active document. It cre-
ates a duplicate copy of the currently opened window.

Cascade This is only available when there is at least one active document. It
arranges the windows in the editor frame as overlapping tiles.

Tile This is only available when there is at least one active document. It
arranges the windows in the editor frame as non-overlapping tiles.

Arrange Icons This is only available when there is at least one active document. It
arranges icons at the bottom of the window.

Close All Closes all open documents.

Tools Menu

Table 4.15. Tool Menu Items

Menu Item Description

Project Report This is only available if there is an active project open. It opens a dialog
box where there are five options to generate documentation from the ac-
tive project. The options are as follows:

Project summary in TEXT format

Creates a text document briefely describing the active project. It contains
the project file paths, the project settings and the project functions and
types prototypes.

Project summary in HTML format

Same as the first option but in HTML format.

Project description in XML format

Creates a XML document with all the active project information.

Project library information in HTML format

Creates a HTML document describing the functions and types that belong
to the active project.

SIMPOL library information in HTML format

Tools Menu

25

Menu Item Description

Creates a HTML document describing the functions and types that belong
to the SIMPOL internal library.

Projects Report Opens a dialog box to generate documentation for multiple projects.
There are two entries in the dialog box. One to enter an input folder. The
projects report process will make a report per each project found in this
folder or in any subfolders within the input folder. The second entry is
the output folder. This is the place where the process will leave all the
reports. All the reports are HTML files and an "index.html" file is cre-
ated with the report list. A report for the SIMPOL internal library is al-
so created. A "logfile.txt" is created with the incidences that happen in
the process. Any report contains all the function and type information of
each project. The powerful issue is that the process creates a HTML link
in every library, function, type, method, property, parameter, tag, etc., so
from any report we can go to another report were the description is locat-
ed. The process also adds the code lines just above a function or type dec-
laration that start with a double slash mark ("//" SIMPOL comment mark).

In the example below, the file "MyFile.sma" contains these two functions:

// This function returns a string
// The string is "Hello"
function f1()
end "Hello"

// This function returns a string
// The string is "Bye"
function f2()
end "Bye"

In the documentation generated for the function f1 we will find this piece
of text: 'This function returns a string. The string is "Hello" '.

And in the documentation generated for f2 we will find the equivalent
piece of text: 'This function returns a string. The string is "Bye" '.

Call Graph This is only available if there is an active project. It opens the Call Ana-
lyzer dialog box. The dialog box shows a tree diagram of the calls among
functions in the project. In this case the parent function calls the child
function. .

Caller Graph This is only available if there is an active project. It opens the Call Ana-
lyzer dialog box. The dialog box shows a tree diagram of the calls among
functions in the project. In this case the child function calls the parent
function. .

Check Project File This is only available if there is no active project. It opens the Check
Project File dialog box.

Open file as binary Opens a dialog box that allows the user to open a file as binary. This
means that a document will be created with the data of the file selected.
This document contains two lines for each 32 bytes read in the file. The
first line shows the value of each byte in hexadecimal format, and the sec-
ond shows the ASCII translation of each byte. The address of the byte in
the file is shown on the left side of the first line, so it is easy to follow the
binary representation.

Help Menu

26

Menu Item Description

The document created will have a "bin" file extension and the appropiate
color coding syntax. This makes it very easy to read the document.

The searching function becomes quite a powerful tool in the binary doc-
ument. If the "Find" menu option is pressed, a modified Find dialog box
opens to search the information in this type of document.

This dialog box has a "Find what" entry to enter the search text. Any
text entered will be translated into ASCII, and searched for in the docu-
ment. There is a "Unicode" checkbox which, when checked, will instruct
the application to translate the search text into unicode before searching
the document, i.e. it will allow two bytes per character rather than one.
In such a case, the rightmost byte is zero. There is also a "Match case"
checkbox. If this is checked, the search will only return results where the
case exactly matches that of the search text. Users can also use regular ex-
pressions to find information in the binary file by checking the "Regular
expression" checkbox.

Options Opens the Application Options dialog box.

Help Menu

Table 4.16. Help Menu Items

Menu Item Description

About SIMPOL IDE... Displays program information, version number and copyright.

Keyboard Map... Shows the application keyboard map.

Tool Bars
There are three toolbars available in the application. Almost all of the buttons have an associated entry
in the menus, so for help regarding the use of a button, please refer to the help for the associated menu
command.

Standard Toolbar
This is the standard toolbar, similar to that found in many applications. It contains the following but-
tons:

• New

• Open

• Save

• Save All

• Cut

• Copy

• Paste

• Print

• About

• Find in Files

Edit Toolbar

27

• HTML viewer

• Close All

Edit Toolbar
This toolbar contains the following buttons:

• Undo

• Redo

• Find

• Previous Text Found - Moves to previous text found.

• Next Text Found - Moves to next found.

• Toggle Bookmark - Toggles a bookmark for the current line on and off.

• Next Bookmark - Moves to the line containing the next bookmark.

• Previous Bookmark - Moves to the line containing the previous bookmark.

• Clear All Bookmarks - Clear all bookmarks in the active window.

Debug Toolbar
This toolbar contains the following buttons:

• Start Debugging

• Stop Debugging

• Continue Thread Execution

• Break Thread Execution

• Show Next Statement

• Step Into

• Step Over

• Step Out

• Run To Cursor

• Insert/Remove Breakpoint

• Set Next Statement

• Threads

• Call Stack

• Variables

• Watch

Important Dialogs
The following is a description of the main application dialog boxes.

Breakpoint Manager

28

Breakpoint Manager
This dialog box manages the active project breakpoints status. A breakpoint is a mark added to aid
debugging. When the application reaches that line, it will interrupt the execution of the program. The
line containing the breakpoint will not be executed.

To add or remove a breakpoint in the active document, move the caret to the line and press the "Inserts/
Remove Breakpoint" button. The breakpoint is displayed in the editor as a maroon circle on the left
of the line. When a breakpoint is added, it is active for all the threads of the program. By default there
is no condition for the break, i.e. the execution will break in all cases. It is possible to add a break
condition, using the "Condition to stop execution", field, which is explained below.

The Breakpoint Manager dialog box shows a table with information on all the project breakpoints.
There is a row for each breakpoint. The following table explains each component of the Breakpoint
Manager dialog box:

Table 4.17. Breakpoint Manager Dialog Box

Menu Item Description

'Enabled' column Shows if the breakpoint is active or not. It can be toggled.

'File path' column Full file path of the file that contains the breakpoint.

'File line' column The line in the source code file were the breakpoint is.

'Thread ID' column Thread that will "see" the breakpoint. Valid data includes: 'all', '1', '2', '3',
'4', etc.

'Condition to stop exe-
cution' column

Condition that will be evaluated when the execution get the breakpoint. If
the condition evaluates to be true, the execution will be interrupted. If the
condition evaluate to be false, the execution will continue uninterrupted.
This is a powerful feature and is fully explained in the section called “Ex-
pression evaluation help”

'Show source code for
selected breakpoint'
button

When this button is pressed, the editor opens the file and shows the line
where the selected breakpoint is located.

Expression evaluation help

Expression data types

• boolean

• integer

• string

Expression operators

The following is a list of the expression operators available in SIMPOL

Table 4.18. Expression operators

Operator Syntax Return Type

+ integer + integer integer

- integer - integer integer

* integer * integer integer

/ integer / integer integer

< integer < integer boolean

Expression evaluation help

29

Operator Syntax Return Type

> integer > integer boolean

<= integer <= integer boolean

>= integer >= integer boolean

== integer == integer boolean

!= integer != integer boolean

<> integer <> integer boolean

+ string + string string

== string == string boolean

!= string != string boolean

<> string <> string boolean

and boolean and boolean boolean

or boolean or boolean boolean

() Used to group
sub-operations

none

NB: != and <> are equivalent

Constant Values

Data Type Accepted Values

boolean .true or .false

integer Any integer >= -2147483647 and <= 2147483647

string Any array of characters in between quotes: "....." or '.....'

Variable Values

• A variable value is a function local variable or a type property value

Breakpoint Condition

• Must be a boolean expression

Watch Window Expression

• Can be any expression or object reference

Built In Functions

The following is a list of the built-in functions in the SIMPOL language:

Syntax Return Type Example Returned Value

#StrAscii
(string input)

string #StrAscii
("Hello")

68 65 6C 6C 6F

#StrUnicode
(string input)

string #StrUnicode
("Hello")

0068 0065
006C 006C 006F

#StrLength
(string input)

integer #StrLength
("He{d}{a}llo")

11

#StrLengthEx
(string input)

integer #StrLengthEx
("He{d}{a}llo")

7

Expression evaluation help

30

Syntax Return Type Example Returned Value

#Trace
(string text)

.false Example: #Trace
("Hello")

.false (the text
goes to the de-
bug window)

#BoolToStr
(boolean input)

string #BoolToStr (.true) ".true"

#IntToStr (in-
teger input)

string #IntToStr (123) "123"

#StrUCase
(string input)

string #StrUCase
("Hello")

"HELLO"

#StrLCase
(string input)

string #StrLCase
("Hello")

"hello"

#StrTrim
(string input)

string #StrLCase
(" Hello ")

"Hello"

#StrRight (string
input, inte-
ger length)

string #StrRight
("Hello", 2)

"lo"

#StrLeft (string
input, inte-
ger length)

string #StrLeft
("Hello", 2)

"He"

#StrMid (string
input, inte-
ger from, in-
teger length)

string #StrMid ("Hel-
lo", 3, 2)

"lo"

- - #StrMid ("Hel-
lo", 3, -2)

"el"

#StrFindF (string
input, in-
teger from,
string match)

integer #StrFindF ("Hel-
lo", 0, "el")

1

- - #StrFindF ("Hel-
lo", 0, "bye")

-1 (not found)

#StrFindB (string
input, in-
teger from,
string match)

integer #StrFindB ("Hel-
lo", 5, "el")

1

- - #StrFindB ("Hel-
lo", 5, "bye")

-1 (not found)

#FileTrace (string
path, string text)

.false #FileTrace ("c:
\temp\log.txt",

"Hello")

.false (The text
is appended to
the file "c:
\temp\log.txt")

#StrHextToInt
(string input)

integer #StrHext-
ToInt ("FFFE")

65534

#IntToStrHext
(integer input)

string #IntToStrHext
(65534)

"FFFE"

#StrRepeat (string
input, inte-
ger repeat)

string #StrRepeat
("Hello", 3)

"HelloHelloHello"

Expression evaluation help

31

Syntax Return Type Example Returned Value

#VarContentToFile
(string path,

string variable)

.false #VarContent-
ToFile ("c:

\temp\log.txt",
"MyObject.property1")

.false (Useful
for analyzing
the content of
large variables)

#VarContentLength
(string variable)

integer #VarContentLength
("MyObject.property1")

12000

#VarStructToFile
(string path,

string variable)

.false #VarStruct-
ToFile ("c:

\temp\log.txt",
"MyObject")

.false (The ob-
ject structure and
content is saved
in XML format)

#GetCurrent-
Directory()

string #GetCurrent-
Directory()

"c:\temp\"

Breakpoint Expression Examples

Below are some sample code fragments and some example breakpoint expressions. Breakpoint ex-
pressions can only be evaluated on lines of executable code.

type TA
 bool m1
 integer m2
 string m3
end type

type TB
 string m4
 TA m5
end type

function example()
 bool b
 integer i
 string s
 TB tb

end function

Table 4.19. Breakpoint Expression Examples

Sample Return Type

1 < i and s == "Hi" boolean

(1 + 3) * 2 + i >= 3 boolean

b and .false or tb.m5.m1 boolean

tb.m5.m1 boolean

s string

tb object reference

(b or tb.m5.m1) and tb.m4 == s boolean

(i * 3 + 2) + 2 - 14 / tb.m5.m2 integer

Call Analyzer

32

Call Analyzer
This is only available if there is an active project. This dialog box represents a tree view of all the
calls among functions in the project. Each node represents a function. If the dialog box is opened from
"Menu/Tools/CallGraph", the parent function calls the child one. If the dialog box is opened frome
"Menu/Tools/CallerGraph", the parent function is called by the child one.

The dialog box has a combo box for the user to select the project function that will be the root of
the tree. Once this is selected, the tree will be created with the functions that call or get called by the
parent node and so on.

Each node displays the name of the function that it represents. At the bottom of the dialog box the file
path of the function is displayed and the function prototype. If the user double clicks on a node, the
editor will open the source code file where the function is located and show the function definition.
This will happen only if the source code file is available.

Check Project File
This is only allowed if there is no active project. Using this dialog box, the user can check if the
structure of a project definition file (a smj file) is valid or not.

The dialog box has an entry for the project definition file path. After entering the file path, the button
"Check consistency" becomes active. This button will check the consistency of the file and will display
the result in the box below the button. There are two buttons below the result box. The first button
edits the project file definition. The second button loads the project that will be active if the project
definition file is OK. If there are problems with the project definition file, the user has to edit it, make
the appropiate changes and save the modified file. After that the user must check the consistency again
repeat the process until the project description file is valid.

This dialog box will always show up if the user tries to load a project with an invalid project desciption
file.

Application Options
This dialog box stores general application properties. This information is stored in the windows
registry.The following properties can be modified:

Property Description

SIMPOL compiler file
path

Shows the SIMPOL compiler file path. It is a smp file with the function-
ality to compile a source code file (sma or smu) into a byte-code file
(smp or sml). The SIMPOL compiler is a byte-code file that is executed
in the SIMPOL virtual machine as any other smp or sml file.

If the application cannot find the compiler file at the path you specify, it
will search in the root directory of the application.

Working Directory Use this text box to enter the path of the folder you wish to contain your
Superbase NG projects. This information will be used by the application
to make it easier for the user to handle project information.

MultiLanguage If this checkbox is checked, the user will be able to work with several dif-
ferent languages in the application. This means the user will be able to ed-
it different types of files, and different color-codig syntax rules will be
applied in the IDE. If MultiLanguage is not checked, the application will
work only with the SIMPOL language.

Optimize Linker Output This checkbox affects the project link process. If it is not checked, the ap-
plication will concatinate all the smp and sml files. This set of files in-
cludes the result of compiling all the project modules, plus all the files
that are in the list of files to link. Any of the files to link is the result of
an external project build, so it is quite common that the files to link share

Application Options

33

Property Description

part of its content among them. If we check this option, the application
will analyze all the files to concatenate and it will remove all the repeated
information in the final project byte-code file result of the project build.

Create application Icon
File associations

If this button is pressed, a process will be launched to create the applica-
tion icon file associations. This process makes appropriate changes to the
registery, that allow the operating system to associate an icon for each of
the following file extensions: sma, smu, smz and smj. Hence, if the user
double-clicks on any of these files (in windows explorer etc.) the file will
be opened with the SIMPOLIDE application. Options to build, rebuild or
execute are displayed in a popup menu if the user right-clicks on the icon
of a smj file.

Languages In this area, the user can add, remove or change the properties of all the
languages the application can handle. The description of each language is
stored in a diferent .ini" file. By default the application handles the fol-
lowing languages: Binary, C++, C#, HTML, IDL, JScript, SIMPOL, Su-
perbase, Text, Visual Basic, VBScript and XML.

A language can be activated or deactivated with the "active" checkbox.
On the left of this area there is a list of languages. On the right, the path
to the selected language description file is displayed and the file exten-
sions associated to the language. If there is more than one, they have to
be separated by semicolons. There is also a short description of the select-
ed language.To edit the selected language settings, click on the "Edit Lan-
guage..." button.

Help There is a checkbox to activate the help system. The help system is called
by pressing "F1" button from any place in the application.

There are two entries in the help area. In the first entry, the user enters the
program that will be opened when the help is invoked. The second entry
is the file to open with that program. Example: "Exe File: C:\Program
Files\Internet Explorer\iexplore.exe", "Command Line:
C:\SIMPOL\docs\index.html".

Autosave If this is selected, the application will save anu active project files and
folders to the windows temporary folder.In this area, there are two entries.
The first is to indicate how many minutes to wait between autosaves. The
second entry is to indicate the maximun number of different copies to be
stored in the temporay folder.

For example, if the number of minutes is set to 15 and the maximun
number of copies is set to 4, after working with "MyProject" for
two hours, there will be 4 copies of the project in the windows tem-
porary folder. The names will be: MyProject_AutoSave_1,
MyProject_AutoSave_2, MyProject_AutoSave_3
and MyProject_AutoSave_4, with the most recent being
MyProject_AutoSave_1.

Save project documents
before build...

If this box is checked and the user is working in a project, the documents
that belong to the project will be saved just before a project build, rebuild,
execute or debug start, .

SMA source code file
default preference

If this box is checked, the default source code file for new projects be-
comes the sma type. Any new projects opened will now, by default, use
only sma files. If this box is unchecked, new projects will, by default, on-
ly use smu files. These settings can be changed once the project is created
by using the Project Settings dialog box (Project/Project Settings...).

Languages

34

Property Description

This property will not take effect if the user has the ASCII-only applica-
tion build.

Languages
This dialog box allows the user to change the settings for a language. The language settings are stored
in a .ini file. For example, the language settings file of the XML language is XML.ini.

This dialog box has the following tabs:

Editor

In this area the user can change the basic aspects of a specific language.

We can personalize the following properties:

Property Description

Tab size This changes how far the caret jumps when the user presses tab.

Auto indent If the user hits the return button with auto indent turned on, the caret will
be automatically indented to the same position as the text begins on the
line above. Until the user types some text, the indentation is temporary,
so if the user opens another active window, the caret will be left aligned
when he or she returns.

Show whitespace If this is checked, the tabulators and whitespaces in the document will be
displayed with special characters.(a floating decimal place for whitespace
and a ">>" character for tabulators).

Virtual whitespace If this box is unchecked, the user cannot position the caret after the last
blank space or character that has been typed in a line. If it is checked, the
user can position the caret anywhere in the editing window and begin typ-
ing. The application will fill empty spaces in the line with tablators as
necessary.

Replace tabs If this is checked, all tabulators in the document are replaced by equive-
lant whitespaces. This will have no visual effect on the document unless
you have the "Show whitespace" box checked.

Match case If it is checked, the editor parser will work in a case sensitive mode, if
not, the editor parser works in a non-case sensitive mode.

Font face name Displays the name of the font that is used in the document.

Font size Displays the size of the font. The "Font Settings" button can be used to
change these options.

Parser

The parser is in charge of recognizing the keywords, string patterns, operators, etc throughout the
document text. This information is used by the editor to color the text, following the rules of the spe-
cific language. These settings are very important, as they effect how the color-coding of the language
functions, so the user has to be completely sure before making a change, especially with the SIMPOL
language.

The following properties can be edited:

Property Description

Operators Characters that are operators in the language. For example: + - *

Delimiters Characters that are delimiters in the language.

New Project Options

35

Property Description

KWStartChars Special characters that can be the first character of a keyword.

KWMiddleChars Special characters that can be in the middle of a keyword.

KWEndChars Special characters that can be at the end of a keyword.

Keywords

Keywords are special reserved words in a language. For example, in SIMPOL language, kewords
include: for, if, function and while.

On the left there is a list with all the language keywords. Above the list there are buttons to add and
remove keywords. On the right side there is a combobox. The combobox list contains the names of the
all the different color groups that can be selected. The user can then choose a color group per keyword.

Colors

Each language has a different set of color groups. SIMPOL, for example, has the following groups:
Comment, Keyword, Number, Operator, String, SystemFunction, SystemType,
Text, TextSelection and UserType.

Each color group has a foreground color and a background color. These two colors can be changed
using the appropiate buttons on the right side of the color area.

Property Description

Operators Characters that are operators in the language. For example: + - *

New Project Options
This dialog box is used to create a new Superbase NG project. It is used to set the properties of the
new project.

These are the options:

Property Description

Project output type This is the type of file that the build of a project will generate. It can be
smp or sml. Both are byte-code files that will be run in the SIMPOL vir-
tual machine.

Project source code
type

This is the type of source code file that will be used in the project. It can
be sma, which is an ASCII file, or smu, which is a Unicode file.

Project location The folder where the new project will be created.

Project name The name of the new project.

Wrapper over SIMPOL
code file

This means that the project will be created wrapping the SIMPOL source
code file selected. A project with one module will be created, and the
SIMPOL source code file will be the module's main source code file.

Get properties from
project

If this box is checked, the user has the opportunity to select a project. The
new project will inherit the project properties of selected project.

Debug Execution Profile
This option is only available if there is an active project and the user is not debugging it. The infor-
mation recorded from a debug session is displayed here. It is a very powerful feature that shows the
developer the bottle-necks of his SIMPOL program and, as a result, he can remove them and improve
the program's performance. At the top left of the dialog box there is a checkbox to enable or disable

Project Settings

36

this feature. If it is enabled, execution in debug mode will go a bit slower in order to record the function
calls, time spent in each function, and so on.

There is a box at the top where the user can enter a number of microseconds. This is the maximum
amount of time that will be recorded for a statement being executed. The reason behind introducing
this cutoff is that a multitasking operating system can pause the execution of a process in the middle of
an statement. In this case the time the statement takes to be executed is actually its own time plus the
time the microprocessor doing other things. So if we know, for example, that a part of our statement is
going to last less than 500 microseconds, we can set this time as a cutoff. This will probably remove
all the time the microprocessor is out of our process in the profile report, or at least, the majority of it.

The most important thing in the dialog box is the table, where the recorded information will be dis-
played after a debug sesion. There is a row per function. The columns of the table are explained below:

Column Description

Library The library file name where the function is.

Function The name of the function. It can be a global function or an object method.

Call count The number of times the function is called.

Full time (milliseconds) The time spent in the function for all the calls. It takes into account the
time spent executing the function statement, plus any time spent in func-
tions that were called from within it.

Truncate time (millisec-
onds)

The "Full time" minus the time spent for each statement bigger that the
cutoff.

Error time (millisec-
onds)

This is an indication of the +/- error in the timing of the function. The
actual time taken will be somewhere between "Full time" minus "Error
time" and "Full time" plus "Error time".

Block time (millisec-
onds)

The amount of time for which the execution was blocked. This happens,
for example, when the SIMPOL program uses sockets, tables in a data
base, etc.

Project Settings
This is only available if there is an active project. It displays the project properties, and allows the
user to edit them. The project settings are stored always in a file with smj extension. The name of
this file is the name of the project.

The dialog box shows the following information:

File Folders

This is a list of the folders that the SIMPOL compiler will use to find the included files. There are two
types of included path: absolute file paths and relative file paths.

For example, in a lamda source code file, there could be a line like this:

include "c:\projects\myproject\includes\MyFile1.sma"

Or a line like this:

include "MyFile1.sma"

The advantage in the second example is that the path in the source code is not made explicit. Note that
the path can have the slash or back slash character depending on the operating system.

If the path is absolute, the compiler will use it and nothing more. If the path is relative, for example
MyFile1.sma, the compiler will firstly use the folder where the file is being compiled to search
for the included file. If the included file is not there, it will search for it in each of the "File folders"
folders until it is found.

Project Settings

37

*sml Files to link

A list with the sml files that will be included in the output project file.

Targets

A target is a copy of the output project file plus a shebang line that is added at the beginning of the
file. A target is typically the output of a CGI Project, and the shebang line is the path to the SIMPOL
virtual machine program that will execute the byte-code file. The target file is typically called from
the web server, and the web server will take the information from the shebang line to execute the file.
The targets are created in the project build process.

Targets is a table with a row per target. There are buttons to add, edit and remove a target. The add
and edit target buttons will open the target manager dialog box, where the user can add or modify a
target. The Targets table has the following colums:

Column Description

Activate A checkbox to activate or deactivate the target creation in a project build.

Target The target file path. E.g. c:\Apache\bin\MyProject.smp.

Shebang Line The shebang line. E.g. #!c:\SIMPOL\smpcgi32.exe{d}{a}.

Command line The parameters that will be passed to the "main" function when the
project is executed. The parameters are separated by one or more white-
spaces. If a parameter contains whitespaces, they should be entered within
double quotes or between single quotes.

Example:

function main prototype: main(string s, string s2)
command line: "hi bye" 123

Output file (*smp,
*sml)

The byte-code file that is generated as a result of a project build. If the
project has a "main" function, this output file will have a smp exten-
sion and could be executed alone in the SIMPOL virtual machine. If the
project does not have a "main" function, the output file will have sml ex-
tension. In this case, the byte-code file acts as a library to be linked to by
other projects at design-time, or as a library to be loaded dynamically by a
running SIMPOL program.

Source code file prefer-
ence

The default file extension that the application will use for this project
when the user creates a new file or opens a file etc.

Make file If this box is checked, the application will create two make files
in the project build process. One is to be used over Windows
platforms' (NMAKE facility) and the other is to be used over the Linux
platform's (MAKE facility). This make file has the information to make
a project build. The file time dependencies are taken into account when
making a project build.

CGI Project This contains a checkbox and an area to enter information. It is provided
in the case the user wishes work with a CGI Project. If the box is checked,
the project changes from a normal project to a CGI project. A CGI SIM-
POL program is pretended to be called from a web server. These pro-
grams have a main function but with an special parameter. This parame-
ter is a reference to a CGICall object that will transport all the informa-
tion that the web server received from a browser call. The CGI SIMPOL
program will perform an action depending on the brower request and will
output HTML code embedded in SIMPOL strings to the CGICall ob-
ject. This HTML code will be returned to the browser that made the call
through the web server and will be displayed in the customer's browser as

Target Manager

38

Column Description

a HTML web page. So in the end, what the CGI programer needs is a way
to build HTML web pages quickly and a way to modify the web page dy-
namically, depending on the specific browser request.

Instead of working directly with the SIMPOL code and trying to imag-
ine how the HTML code embedded in SIMPOL strings will turn out, the
programmer can create SIMPOL server pages and work in them. A SIM-
POL server page is a HTML page with blocks of SIMPOL code embed.
The advantage of working with SIMPOL server pages is that they can
be displayed in the HTML viewer of the SIMPOL application. The build
process will create the SIMPOL source code associated, and it will be
compiled as any other SIMPOL source code file.

If the CGI Project checkbox is checked, a new folder entitled "Server
Pages" is created as a child of every module folder in the Project View
Tree. All the SIMPOL server pages that belong to the specific module
will be displayed in the folder. A SIMPOL server page is a file with smz
extension.

In the CGI Project area the user can set the extension of the source code
file that will be generated when compiling a server page. It can be sma or
smu. There is an entry to set the output call format - the "CGICall.output"
method that will output an string to the standard output. By default the
format is: cgi.output(%s + "{0D}{0A}",

An example is shown below. It is assumed here that the CGICall object
is named "cgi". The "%s" are placeholders for the HTML embedded as a
string.

Output CGI format:
 cgi.output(%s + "{0D}{0A}", 1)
Line in a SIMPOL server page file:
 <TH>Hello </TH>
Line in the source code file associated
 cgi.output("<TH>Hello </TH>" + "{0D}{0A}", 1)

Target Manager
This dialog box is opened when the "add/edit target" button in the Project Manager dialog box is
pressed.

On the left there is a list of target folders and on the right there is a list of shebang lines. Below each
list is an edit box where the user can modify the information (target folder or shebang line). There are
buttons to add the content of the edit box to the appropiate list, remove an entry in the list or add the
content of the entry in the list to the edit box. The list entries are stored in the windows registry. There
is also a checkbox to activate or deactivate the target. Finally, there is an entry in the target area to enter
the target file name. Note: This is usually the name of the project output, but it can be overwritten.

Watch Window
This is only available when a project is being debugged. It is a very powerful feature that allows the
user to evaluate expressions and to display the runtime object content.

The dialog box has an expression entry at the top. At the center of the dialog box there is the object
viewer, which displays the result of the expression evaluation in a tree view. If the user enters the

Thread Manager

39

name of a function variable that contains an object as an expression, it will be displayed in the object
viewer. The object tree root node represents the object in the variable. There will be a child node per
object contained in the root object, and each of these nodes will have a child node per object it contains
and so on. This allows the user to inspect the object completely.

The object viewer has two sides. The left side is where the tree nodes are located, and the right side
is where the value of the object, if applicable, is displayed. Typically the objects with values are the
basic types: boolean, integer, string, number and blob. But each object has an internal value that can
or cannot be used. For example, the standard object "date" has an integer as internal value to store
the date value.

On each node the name of the variable or type property that holds an object, the type of the variable or
type property holder and an internal ID of the current object is displayed. If there are two nodes with
the same internal ID in a tree, it means that they refer to the same physical object. All the objects have
a child type object. This type object transports information about the structure of the parent object.
So the value of the type object will be the type the parent object has at runtime. For example, if the
type of a variable is a tag type "type(MyType)" then the object held in the variable can or cannot be
a "MyType" object. It is displayed in the child type object.

If an expression is not a variable or a type propery, result will be displayed in the object viewer as a
tree with just one node and of another color.

The expressions can contain variables and type property names with boolean, integer and string con-
stants. There are many operators that can be used in an expression, so we can evaluate very complex
ones at runtime and retrieve interesting pieces of information. (The expression rules are described in
the the section called “Expression evaluation help”)

There is an edit box at the botton of the dialog box. When a node of the object tree that holds a basic
object is selected, the value will be displayed in the box, and the user can modify it. After a value
modification, the user has to press the "Set Value" button if he wants to update the object tree with
this new value. After editing and changing several values in the object tree, the user must press the
"Save new values" button to save all the changes in the physical objects.

When editing a blob value, a new window appears at the bottom of the dialog. This new window will
display the ASCII translation of the binary content of the blob. This is quite useful if the blob contains
ASCII information, e.g. ASCII text.

Thread Manager
The Thread Manager is the place to modify the running status of a thread whilst debugging a SIMPOL
program.

The debugger enumerates the threads sequentially as they are created by the program, with the first
one created being known as "Thread 1"

The Thread Manager displays the running status of all the threads in the program and the functions
that they are executing at the time the thread manager is opened. The user can also suspend or resume
any thread and change the debugger focus to another thread. This means that Step Into, Step Out, Run
to Cursor etc. will affect this new thread.

Keyboard Shortcuts
Below is a list of the keyboard shortcuts available in the IDE. This list can also be viewed by choosing
"Keyboard Map..." from the help menu.

Edit Shortcut Keys
Keys Description

Ctrl+Shift+8 Toggle view whitespace

Edit Shortcut Keys

40

Keys Description

Ctrl+A Select all

Ctrl+C Copy

Ctrl+F Opens "Find" Dialog

Ctrl+H Opens "Replace" Dialog

Ctrl+J Comment

Ctrl+Shift+J Uncomment

Ctrl+K Inserts a code block in a server page before the current line

Ctrl+L Cut line

Ctrl+Shift+L Delete Line

Ctrl+U Make selection lowercase

Ctrl+Shift+U Make selection uppercase

Ctrl+V Paste

Ctrl+Shift+W Select word

Ctrl+X Cut

Ctrl+Y Redo

Ctrl+Z Undo

Back Delete previous character

Ctrl+Back Delete word to start

Alt+Back Undo

Alt+Shift+Back Redo

Delete Delete next character

Ctrl+Delete Delete word to end

Shift+Delete Cut selection

Down Line down

Ctrl+Down Scroll window one line down

Shift+Down Select up to line end

End Go to line end

Ctrl+End Go to document end

Shift+End Select up to line end

Ctrl+Shift+End Select up to document end

Escape Clear selection

F1 Help

F2 Bookmark next

Ctrl+F2 Bookmark toggle

Shift+F2 Bookmark previous

Ctrl+Shift+F2 Bookmark delete all

F3 Find next

Ctrl+F3 Find next word

Shift+F3 Find previous

trl+Shift+F3 Find previous word

Ctrl+F6 Next pane

File Shortcut Keys

41

Keys Description

Ctrl+Shift+F6 Previous pane

F9 Break point toggle

Home Beginning of line

Ctrl+Home Document start

Shift+Home Select back to line start

Ctrl+Shift+Home Select back to document start

Insert Indicator OVR

Ctrl+Insert Copy

Shift+Insert Paste

Left Character left

Ctrl+Left Word left

Shift+Left Select character left

Ctrl+Shift+Left Select back to word start

Next Page down

Shift+Next Select page down

Prior Page up

Shift+Prior Select page back

Return New line

Right Character right

Ctrl+Right Word right

Shift+Right Select character right

Ctrl+Shift+Right Select up to word end

Tab Insert one tab

Shift+Tab Move one tab back

Up Line up

Ctrl+Up Window scroll one line up

Shift+Up Select back to line start

File Shortcut Keys
Keys Description

Ctrl+N Creates a new file

Ctrl+O Opens the file open dialog box

Ctrl+P Opens the print dialog box

Ctrl+S Saves the current file

F7 Compile

Ctrl+F5 Execute

F8 Command line dialog box

Project Shortcut Keys
Keys Description

Ctrl+B Build

Intellisense Shortcut Keys

42

Keys Description

Ctrl+R Rebuild all

Ctrl+E Execute

Intellisense Shortcut Keys

Keys Description

Ctrl+TAB Shows function argument list

Ctrl+F7 Shows intrinsic type list

Ctrl+Shift+F7 Shows user defined type list

Ctrl+F8 Shows intrinsic function list

Ctrl+Shift+F8 Shows user defined function list

Call Graph Shortcut Keys

Keys Description

Ctrl+F9 Shows graph of functions that the selected function calls

Ctrl+Shift+F9 Show graphs of functions that call the selected function

Debugger Shortcut Keys

Keys Description

F4 Starts debugging

Shift+F4 Stops debugging

F5 Continues thread execution

Alt+Num* Shows next statement

F11 Step into

F10 Step over

Shift+F11 Step out

Ctrl+F10 Run to cursor

F9 Insert/remove breakpoint

Alt+F9 Opens the breakpoint manager

Shift+F9 Watch

	Superbase NG IDE Users Guide
	Table of Contents
	Chapter 1. Copyright and Disclaimer
	Copyright Information
	Disclaimer

	Chapter 2. Introduction
	Chapter 3. The Superbase NG Project
	Introduction
	The Organization of Files in a Project
	SIMPOL Server Pages
	Description
	Server Page Directives
	Multiline Comments
	Server Page Comment Blocks
	include
	outputcall
	SIMPOL Source Code in an HTML Argument Value

	Chapter 4. The Superbase NG IDE Environment
	Starting the IDE
	Editing Documents
	The Help Valet
	Data Type Help
	Function Prototype Help
	OnMouseOver Help
	Language Items Help

	Control Bars
	The Project Space Control Bar
	Project View
	Project Tree View Nodes
	The Project Node
	The Module Node
	The Main Source Code Node
	Source Code Nodes
	Server Pages Node
	Server Page Node
	Other Nodes

	Type View
	Type View Nodes
	Library Node
	SIMPOL Language Node
	Project Module Nodes
	External Module Nodes

	Function Node
	Type Node
	Element Node

	The Output Windows Control Bar
	Output Window
	Debug Window
	Find in Files Window

	The Call Stack Control Bar
	The Variables Control Bar
	The Locals Window
	The Me Window

	Menus
	File Menu
	Edit Menu
	View Menu
	Project Menu
	Debug Menu
	Document Menu
	Window Menu
	Tools Menu
	Help Menu

	Tool Bars
	Standard Toolbar
	Edit Toolbar
	Debug Toolbar

	Important Dialogs
	Breakpoint Manager
	Expression evaluation help
	Expression data types
	Expression operators
	Constant Values
	Variable Values
	Breakpoint Condition
	Watch Window Expression
	Built In Functions
	Breakpoint Expression Examples

	Call Analyzer
	Check Project File
	Application Options
	Languages
	Editor
	Parser
	Keywords
	Colors

	New Project Options
	Debug Execution Profile
	Project Settings
	File Folders
	*sml Files to link
	Targets

	Target Manager
	Watch Window
	Thread Manager

	Keyboard Shortcuts
	Edit Shortcut Keys
	File Shortcut Keys
	Project Shortcut Keys
	Intellisense Shortcut Keys
	Call Graph Shortcut Keys
	Debugger Shortcut Keys

