Superbase NG IDE Users Guide
Building Projects in the SIMPOL Language

Manuel Franco
Neil Robinson
Duncan Jones

Superbase NG IDE Users Guide: Building Projects in the SIMPOL

Language
by Manuel Franco, Neil Robinson, and Duncan Jones
Copyright © 2001-2017 Superbase Software Limited

Table of Contents

1. Copyright and DiSCIAIMENuiiiiii et 1
Copyright TNFOIMELTONcieiie e e e e e e eeees 1
(D1 o F 1011 ST U PPPPTTUTPPPPIN 1

2. INEFOAUCTION ...ttt ettt e et e e e et e e e e e b 3

3. The SUPErbase NG PrOJECEccuuuuiiiiiii it 5
F g1 To (8 oi [l H TSP P PP PPPPTRR 5
The Organization of Filesin @Projectooooiuiiiiiiiiii e 6
SIMPOL SEIVEI PaOESouiiriiiiiiieii ettt et 7

(D= 'el g o1 [o] o PP PR 7
Server Page DITECHIVESuiiiiiii e 9

4. The Superbase NG IDE ENVIFONMENToveeitiiiiiiieeeiii et 11
SHATING ThE IDE ..ottt e 11
Editing DOCUMENTSiiiitiee ettt ettt e e e e e e e e eean s 12

The HEP VAIEL ... 12
CONEIOI BAIS ...t ettt 14
The Project Space COntrol Barccoeuuuieiiiiiiieiiiii e 14
The Output Windows Control Barovieiiiiiiiiiiiecc e 19
The Call Stack CONrol Barccovuiiiiiiiici e 19
The Variables CONtrol Baroviiiiiiiiiiiiii e 19
IVIBINUS ..t 19
FIIE IMIBNU ...ttt e 20
Bt MENU ..o 20
VIBW IMBINU ..ottt 21
PrOJECE MENUviiiii et 22
DEDUG IMENU ..o 22
DOCUMENE MENU ..ottt 23
WINAOW IMENU L.ttt e et e e e e e e ena e e 24
TOOIS IMBNU ...t ettt e et e e e e eeees 24
HEIP IMBNU . e s 26
TOOI BaIS ..ttt 26
Standard TOOIDANcccuuuieiiiiie e 26
Edit TOOIDA ...t e 27
DebUG TOOIDAN ...ceveieie e 27
IMPOILANT DIGIOGS ... eeeeetie ettt ettt e e et e e et e e e eae s 27
Breakpoint MaNAGEScouuuiiiiii ettt 28
Expression evaluation NEIPiiiiii e 28
Call ANAIYZEL ... 32
Check ProjECt FIle ... 32
APPHICATON OPLIONS ...ttt 32
(=00 0= L= L PP 34
NEW ProjeCt OPLIONSevuueieiti ittt ettt e e 35
Debug EXecution Profileooooiiiiiii e 35
PrOJECE SEILINGS ... eeeeei ettt ettt e e e e e e eees 36
Target MaNAJEScvuiieieii ettt et 38
WELCH WINOOW ..ot 38
THread MaNAQES it 39
KeYDOArd SNOMCULSeeeeeeieiii ettt r et e e 39
Edit SOMCUL KEYS ... 39
File SNOMCUL KEYS ...t 41
Project ShortCUL KEYSoue e 41
INtellisense SNOMCUL KEYS ... ovieiiieieie e 42
Call Graph ShOMCUL KEYS ... e 42
Debugger ShOMCUE KEYS ...t 42

List of Tables

A1 MENU OPLIONS ...ttt ettt ettt e e e et e et e et en e e e e ana s 15
A.2. MENU OPLIONS ...ttt ettt ettt ettt ettt e et et e et et e e e e e e e s 16
A.3. MENU OPLIONS ...ttt ettt ettt ettt ettt et e eean e e e e ena s 16
A4, MENU OPLIONS ...ttt ettt ettt et ettt e et et e et et e e e an e e e e a e e e anan s 16
A5, MENU OPLIONS ...ttt ettt ettt ettt et e e an e e e e naa s 17
A.6. MENU OPLIONS ...ttt ettt ettt ettt r ettt e et et e e e e e e e e e ennan s 17
A.7. MENU OPLIONS ...ttt ettt ettt ettt ettt et e et et e e e e e eanan s 17
A.8. FIE MENU TTEIMS ..ottt ettt e e et ettt e e e e et e e e entnaeaees 20
4.9, Edit MENU TTEIMS ..eeiiii ettt e e et e e et n e e e et e e e ent e eeens 20
A.10. VIEW MENU TTEMS ...ttt ettt e e e e e e e e b 21
410, ProjeCt MENU ITEIMSiiiei ittt et e et e et eeera s 22
4.12. DEDUG MENU TTEIMS ...ttt e 22
4.13. DOCUMENT MENU TTEIMSeiietiiit ettt e eens 23
A.14. WINAOW MENU TTEIMISieiiiieeii ettt e b e e 24
4.15. TOOI MENU TTEIMISeeeiti ettt ettt e e ettt e et et eeeena e eeees 24
A.16. HEIP MENU TTEIMS .ot e et e e 26
4.17. Breakpoint Manager Dialog BOXcoouuuioiiiiiiieiiii e 28
4.18. EXPreSSION OPEIBIOIS ...ceevueeiiii e eeeet e ettt ettt e et e et e e et et e e et et e e e e et e e e e era s 28
4.19. Breakpoint EXPression EXAMPIEScoouuiiiiiiieciii et 31

Vi

List of Examples

3.1
3.2
4.1.
4.2,
4.3.
4.4,
4.5.

SIMPOL Server Page COUEuuiiiiiiieeeee ettt et e et e eeeai e eees 7
Compiled SIMPOL SErVEr PAgEccceuiieiiiiii ettt e e e e eees 8
Data TYPE HEID ..o et 12
FUNCLioN Prototype HEIDveie e 13
OnMouseOver Variable Contents Help (Debugging)oevveveneeiirineeiiiiieeeeeiineeeeeiine 13
OnMouseOver Function Prototype HEIDveiiiiiic e 14
Code BIOCK THMITS ...eeeeee ettt e e e e e e eeeans 21

vii

viii

Chapter 1. Copyright and Disclaimer
Copyright Information

This document is copyrighted © 2003-2016 Superbase Software Limited and is not permitted to be
distributed by anyone other than Superbase Software Limited and its licencees.

All trandlations, derivative works, or aggregate works incorporating any of the information in this
document must be cleared with the copyright holder except as provided for under normal copyright
law.

If you have any questions, please contact <i nf o@i npol . conp

Disclaimer

No liability for the contents of this document can be accepted. Use the concepts, examples and other
content at your own risk.

All copyrights are held by their respective owners, unless specifically noted otherwise. Use of aterm
in this document should not be regarded as affecting the validity of any trademark or service mark.

Naming of particular products or brands should not be seen as endorsements.

Y ou are strongly recommended to take abackup of your system beforeamajor installation and backups
at regular intervals.

Chapter 2. Introduction

Thisapplication is an Integrated Development Environment (IDE) to write, execute and debug Super-
base NG applications. Thereisonly one Superbase NG IDE release version, one that runs on Windows
XP and later operating systems. The older releases also included a version for Windows 9x operating
systems. Thisis no longer the case.

The application is mainly an editor to write documentsin the SIMPOL language. This editor provides
a color-coding engine that makes it very easy to program in SIMPOL. There are many features that
help the user to write code. For example, a Find in files tool, copy and paste, full screen view, and
most recently-used file and project lists. It also supports working with different languagesin the same
Superbase NG application in that other languages can be correctly color-coded, suchas XML, HTML,
JavaScript, and others. The editor is very flexible and can be easily personalized. The editor supports
other languages as XML, HTML, JavaScript, Visua Basic,

The objectiveistowriteacomplex Superbase NG application quickly and be ableto maintainit easily.
The IDE manages the dependences among Superbase NG files and compiles, executes and allows
debugging of Superbase NG projects, even CGI projects! It also provides project documentation tools
to easily document the various components of a project.

Chapter 3. The Superbase NG Project

This chapter briefly covers what a Superbase NG project is and what are its components.

Introduction

Source codefilesin SIMPOL are stored with one of two file extensions: sma or siu. Thefirst exten-
sion indicates that the file content is stored in an ASCII format (1 byte per character) and the second
one indicates that the file content is stored in Unicode format. Unicode can be stored in a number of
different formats. SIMPOL Unicode source files currently must be stored in UCS-2 and should begin
with what isknown as a byte-order mark (BOM). UCS-2 format stores characters using two bytes per
character. It is considered good form to aso use the byte order mark (OXFEFF) as the first character.
This allows the reading program to determine whether the characters are stored with the least signif-
icant byte or with the most significant byte first.

Here is an example of SIMPOL source code:

function main()
string s
s = "Hell 0"
end function s

After compiling a SIMPOL source code file the result is a byte-code file. SIMPOL byte-code files
come in two flavors: programs and libraries. These are distinguished by the file extensions snp and
sm respectively. The only difference between them is that the program files are produced from
projects that contain amai n() function. That is the entry point for a SIMPOL program. Compiled
programs that do not include amai n() function can not be executed but can be linked to other pro-
gramsto provide functions and data types that can be called or used. They can aso be loaded dynam-
icaly.

Here are two examples of the compilation process:
1. MySI MPOLFi | el1. sma—> MySI MPCOLFi | el. snp
2. MySI MPOLFi | €2. sma —> MySI MPOLFi | €2. sni

After the compilation process, if multiple source files are used to produce the resulting program, the
snp fileisjoined with each of thesm filesin alinking type of processin order to produce the final
program.

Hereis an example of the linking process:
1. MySI MPOLFi | el. smp + MySI MPOLFi | 2. s —> MyPr ogram snp

Following the linking process, we can execute the SIMPOL program file in the IDE or depending
on the type of program from the command line or as the result of entering a URL in aweb browser.
The IDE will call the SIMPOL virtual machine (SVM)and pass it the program and any command
line arguments that have been defined. The SVM then executes the program file. SIMPOL programs
usually return aresult string, which will be displayed in the IDE or if called from the command line
will be sent to standard out. In the case of aweb server program, the result is normally aweb page.

A SIMPOL project is a group of sma and/or siru files and the description of how the compilation
and link isto be done. It aso includes a definition of which directories to search in for included files
and potentially one or more targets to be created from the final result. It also includes the list of pre-
compiled libraries to link with, in addition to any library modules that are produced as part of the
project itself. SIMPOL source code files can a so include any number of other SIMPOL source code
files which themselves may include yet others. Typically a project may consist of a main source code

The Organization
of Filesin aProject

file that then includes other source code files, which may then include others. This results in a tree
of files below the main file and this is shown in the project window to the left of the area where the
source files are edited. For each module in the project, there is a main source file. Each main source
codefileisthetop of atree of included source code files. The SIMPOL language statement to include
afileisi ncl ude followed by the file name as a string.

It is not possible to simply compile and execute any source code file (if it has amai n() function)
using the IDE. Changes that were made to dynamically load the required components mean that the
component information is added to the project by the IDE build process. Whether for a simple or
complex project, the Superbase NG IDE'sreal strength isin compiling and linking complex projects.
The normal approach to working with the IDE isto create a project and then to build it. This results
in either aprogram or library that can be either executed or loaded into the SVM.

Thefollowing is an example of building a project:

1. Project's main source codefiles: MyFi | el. sma, MyFi | e2. sma

2. MyFi |l el. sma —includes—> MyFi | ela. sma, MyFi | elb. snma
3. MyFi | e2. sma — includes—> MyFi | e2a. snma

4. MyFi | el. sma — compilesto—> MyFi | el. snp

5. MyFi | e2. sma — compilesto—> MyFi | e2. sni

6. MyFil el. smp + MyFi | e2. sm — linksto—> MyFi | el. snp located in the bi n directory
of the project.

The SIMPOL IDE manages the time dependencies between SIMPOL files, so if in the previous ex-
ample, we update the file MyFi | e2a. sna, the only file that is going to be compiled when we do a
build, isMyFi | e2. s, becauseit is the only main source code file affected.

Theproject descriptionisstoredinafilewith the extension snj . For example, in the previousexample
the project file name would have been MyFi | 2. snj .

The Organization of Files in a Project

A SIMPOL project is stored on the hard disk as a group of files with the following extensionssnj ,
sma, smu, snp, snl , and sz with an appropiate folder structure. | will explain the folder structure
using the above project example.

Thebasis of every project isadirectory. All of thefilesthat are directly part of the project are stored in
the project directory or in subdirectories below that. The name of the directory isthe same asthe name
of the project. If the project name is MyFi | el, the directory name will be MyFi | el. The project
description is stored in this directory; in this example it isnamed MyFi | el. snj . Inside the project
directory wewill have adirectory for each main source codefile. These are called modules or module
directories. Each modul e containsits main source code file and the rest of the source code filesthat are
implemented as part of the module. Any source code filesthat are in the module directory besides the
main source code file of the module, must be included in the main or other included source code files
inthismodulein order to be compiled and considered part of the module during the build process. It is
also possible to include, as part of the code of the module, files from other modules or other projects,
for example source code fileswith standard functions, etc. When the project is built, the resulting byte-
code file (either library or program) will also be found in the modul€e's directory.

The name of the module directory will be the name of the main source code file without the extension.
In the previous example we have two modules: "MyFilel" and "MyFile2". The first module "My-
Filel" contains the files MyFi | ela. s, MyFi | elb. sna and after it is compiled the first time,
MyFi | el. snp. The second module "MyFile2" contains the files MyFi | e2. sma and after it has
been compiled thefirst time, MyFi | e2. s ™.

SIMPOL Server Pages

When the project is built the result is stored in the directory called bi n, which isasubdirectory of the
project directory. In the example, thefinal result of the building the project isthefile MyFi | el. snp.

SIMPOL Server Pages

Description

A SIMPOL server pageisafilewith the extension snz, the contents of whichisHTML but which also
includes blocks of SIMPOL source code. The blocks of source code are inside server page comment
blocks (in between <%and % tags), so if we launch the HTML viewer component of the SIMPOL
IDE, we will see just the HTML page asif it did not contain any SIMPOL source code.

A project withsnz filesisaCGl project. Thismeansthat thefinal SIMPOL program isintended to be
executed on the server sideasa CGl, |SAPI or Fast-CGlI program. Typicaly, aCGl programiscalled
from aweb server, for example the Apache web server. The entry point of a CGI or ISAPI program
isthermai n() function, but in this case, the function has only one argument: function main(cgicall
cgi). cgi isacgical object, and it contains all of the information the web server received from a
browser call.

Building a CGlI project adds another processto the normal build. First, the sne filesare compiled into
sma or snu files, and then the normal build follows. When a SIMPOL server page is compiled into
SIMPOL source code, the SIMPOL source codein the server page block comments are passed through
without change and the HTML is converted into string arguments of cgi . out put () statements.
Here is an example of the process followed when building a CGI project:

1. Project's main server page files: MySPFi | el. sne, MySPFi | e2. sne

2. MySPFi | el. snz —includes—> My SPFi | ela. t xt

3. MySPFi | el. sz — compilesto —> MySPFi | el. sma

4. MySPFi | e2. sz — compilesto—> MySPFi | e2. sma

5. Project's main source code files: MyFi | el. sma, MyFi | e2. sha

6. MyFi | el. sma — includes—> MyFi | ela. sma, MyFi | elb. smaand MWSPFi | el. sna
7. MyFi | e2. sma — includes—> MyFi | e2a. sma and MySPFi | e2. sna

8. MyFi | el. snma — compilesto—> MyFi | el. snmp

9. MyFi | e2. sma — compilesto—> MWFi | e2. s

10MyFilel.smp+MFil e2.sm —Ilinkto—> M/Fi |l el. snp

The following is an example of SIMPOL server page code:

Example 3.1. SIMPOL Server Page Code

S R R T begin code --------------------------
functi on ShowHel | oOr Not hi ng(cgicall cgi, integer i)

B R E R end code ------------------------- %>
<HTM_>

<HEAD><META htt p- equi v="pr agna"
cont ent =" no- cache" ></ HEAD>
<TI TLE>SI MPOL Hel | o Page</ Tl TLE>

Description

S L R begin code ---------------------_---.
if(i == 1)

B LT end code -------------------------- %
<BODY>Hel | o</ BODY>

S L R begin code ---------------------_---.
end if

B LT end code -------------------------- %

</ HTM_>

S L R begin code ---------------------_---.

end function

Results after compiling the server page:

Example 3.2. Compiled SIMPOL Server Page

B L begin code --------------oiiioo oo
function ShowHel | oOr Not hi ng(CG Cal |l cgi, integer i)
B end code ---------------o-o-o---
cgi . out put ("<HTM_>" + "{O0OD}{O0A}", 1)
cgi . out put (" <HEAD><META http-equiv=""pragma""" + "{0D}{O0A}", 1)
cgi . out put (" cont ent =""no-cache""></ HEAD>" + "{0OD}{O0A}", 1)
cgi .output (" <TITLE>SI MPOL Hel | o Page</ Tl TLE>" + "{OD}{OA}", 1)
B L begin code --------------oioioo o

B E T T end code -----------ooiioiiaoooon
cgi .output (" <BODY>Hel | o</ BODY>" + "{OD}{OA}", 1)
B E T T begin code -----------------oo-

B E T T end code -----------ooiioiiaoooon
cgi . out put ("</HTM.>" + "{OD}{0A}", 1)
B E T T begin code -----------------oo-

-------------------------- end code -----------ooiioiiaoooon

The advantage of doing this, isthat we can create HTML in a dynamic way using the power of the
SIMPOL programming language and we can also visualize the HTML in the HTML viewer that is
part of the IDE whenever we need it. So it is very easy to embed HTML (what afinal user will see
in his browser) in a SIMPOL CGlI-style program.

The way that SIMPOL server pages work is different to that of ASP, JSP, or PHP. In each of these
cases, the source code is aso embedded into the HTML but unlike with SIMPOL these mixed-mode
pages are then interpreted by the web server (which must be especially designed to be aware of them)
and then the code portions are passed to the language interpreters for execution. With SIMPOL server
pages, the design style is similar but the results are compiled rather than interpreted, which is faster
and also does not require any special capabilities on the part of the web server.

A CGl project can contain any number of server pages. The server pages follow the same pattern as
SIMPOL source code files when including files. Each main server page is the root node of atree of
other included files. The Superbase NG | DE managesthefile time-dependencieswhen abuild isdone,
asin the case of source code SIMPOL files.

The Superbase NG IDE provides away to compile SIMPOL server pagesinto SIMPOL source code,
and away to regenerate a SIMPOL server page after manipulating the associated (compiled) SIMPOL
source code; this allows the programmer to use the color coding capabilities of the IDE for the HTML
sourcewhen working on the server page and then after compiling, it ispossibleto work onthe SIMPOL
program source in the resulting compiled page. After the changes are done to the compiled source, the
option to regenerate the server page from the right mouse button popup menu should be used to send
the changes back to the server page source code.

Server Page Directives

@ Tip
It is always a good idea to propogate the changes back to the server page source right
after making them, sincethe server pageisthereference source codein the project. If you
forget, during the next build you will be prompted that the code has changed. If you say
okay, your changes will be lost as the compilation of the server page overwrites them.
Also, only change code in the blocks between the begin code and end code comments.
If you change anything else, it won't successfully regenerate the server page!

Server Page Directives

This section covers the syntax of the server page and the specific directives provided.

Multiline Comments

A multiline comment can consist of any piece of text between the start tag <% - and the end tag - -
%>. The comment can cover multiple lines and since it is acomment in the server page it will not be
transferred to the source code when that iscompiled. Only white space (spaces and tab characters) may
precede the begin comment tag on the same line, and only white space may follow the end comment
tag on the sameline.

Server Page Comment Blocks

These comment blocks are similar to the previous type, except that the contents are passed through
to the resulting compiled SIMPOL source code file as source code statements. This is the method by
which the embedded source code is extracted into the target program source file. Any text between
the start tag <%and the end tag %> will be transferred as SIMPOL source code to the target source
code file. Asin the previous case, the start tag may only be preceded on the same line by white space
and the end tag may only be followed on the same line by white space.

I ncl ude

Include the content of afile when the server page is compiled. Example:

<%@include = ".\fol der\ MyHTM_Chunk. t xt" %

out put cal |

By default aline of HTML codein the server pagefile is converted into aline in the SIMPOL source
codefile after compilation. TheHTML textisembedded inaSIMPOL string that isan argument to the
output method of the cgicall object. It meansthat if we have alarge server pagefile, after compilation,
lots of output calls are generated. We can optimize thisusing the outputcall = chunk directive. It can
be located at any line in the server page file. To reverse this behaviour we have to use the outputcall
= line directive. For example:

chunk %
line %

<% out put cal |
<% out put cal |

SIMPOL Source Code in an HTML Argument Value

In aline of a server page that holds an HTML argument value in between double quotes, we can add
asmall piece of SIMPOL source code in between back tick (") character marks. For example:

Hel | o</ A>

Server Page Directives

Typically it is used to embed a SIMPOL string variable. In this example, after compilation we will
get something like this;

cgi.output ("Hell o</ A>" + "{O0D}{0A}", 1)

So, we can see that the value of the HTML argument that the browser will receive is the value of the
SIMPOL variable. It is also possible to embed short chunks of inline code.

10

Chapter 4. The Superbase NG IDE
Environment

This chapter covers the various components that make up the Superbase NG Integrated Devel opment

Environment (IDE).

Starting the IDE

The I DE can be started from the command line or another program in variouswaysthat will be outlined

bel ow:

Command Line

Parameters

Description

sbngi de.

exe

None

The application is launched.

sbngi de.

exe

filenane

First, the application is launched. After that, if
thefileisaproject description file (*snj), the
project will be loaded into the application. If the
fileis of any other type of file, it will be opened
in the application editor.

sbngi de.

exe

/o fil enane.

snj

Thisisintended to be used to directly load a
project description file (*snj). The application
is launched and the project isloaded.

sbngi de.

exe

/b fil enane.

snj

Thisisintended to be used to directly load a
project description file (*smj). The applica
tion islaunched and the project is loaded. It then
builds the project and the application closes
again. Any output from the build processis di-
rected to the shell.

sbngi de.

exe

/r fil enane.

snj

Thisisintended to be used to directly load a
project description file (*snj). The applica
tion islaunched and the project is loaded. It then
rebuilds the project and the application closes
again. Any output from the rebuild processis di-
rected to the shell.

sbngi de.

exe

/e fil enane.

snj

Thisisintended to be used to directly load a
project description file (*snj). The applica-

tion islaunched and the project is loaded. It then
executes the project and the application closes
again. Any output from the program execution is
directed to the shell.

sbngi de.

exe

[x fil enane.
outfile.xn

snj

Thisisintended to be used to directly load a
project description file (*snj). The application
islaunched and the project is loaded. It then pro-
duces the project information as an XML file
and savesit to the filename passed in the second
argument and then the application closes again.
Any output from the documentation generation
processis directed to the shell.

sbngi de.

exe

/d fil enane.

Thisisused for callback debugging purposes
primarily associated with CGI debugging. The
IDE islaunched and the associated project for
the byte-code fileis loaded. The program isthen

11

Editing Documents

Command Line Parameters Description

placed into debug mode with a break at the first
code statement inside the function mai n() .

Editing Documents

Editing documents is the primary objective of the Superbase NG IDE. Asin any editor, a user can
create a document and store it in afile, open an existing file, update the content before saving it, etc.
There are many featuresin the IDE that make it easy to write and debug SIMPOL program code. Also
because it is quite common today to need to work in several different languages, the IDE supports
basi c color coding for anumber of languages, including Microsoft's Visual Basic, Visual Basic Script,
JScript, and C#. Also supported are HTML, XML XSL, IDL (Interface Description Language —
used for defining CORBA interfaces) and of special interest to Superbase programmers, it supports
both tokenized and text format Superbase programs. This can a so be extended by the user as needed
simply by creating a configuration file based on one of those supplied and then adding it to the list of
supported languages. A language is associated with alist of file extensions, so if we openin the editor
afile with an extension associated with alanguage, the editor will apply the color-coding syntax rules
to the document. That will show the text in the document coloring keywords, operators, etc, which
greatly enhances the ability to read it accurately. The language settings can be personalized through
the language settings dialog box.

The primary language used in the Superbase NG IDE is of course the SIMPOL language. There are
many built-in features in the editor to handle the specific SIMPOL syntax.

The Help Valet

Many people are familiar with a technology popularized by Microsoft known as IntelliSense®. The
Superbase NG IDE has a comparable technology specifically tailored to the needs of the SIMPOL
programmer that we call the Help Valet. It is activated whenever there is a project loaded in the IDE
and the active document is a SIMPOL document that belongs to the project. In this case the editor
will take the information that the IDE retrieves from the project, in order to make it easier for the user
to understand their own program. There are several Help Vaet features, including: data type help,
function prototype help, OnMouseOver help, and language items help. Some of the items will not
provide complete functionality until after the program has been successfully built at least once. For
example, it is not possible to show the members of a user-defined type until that type has been part of
abuild cycle of the project being edited. The same is true of user-defined functions.

Data Type Help

This is activated whenever the we append the SIMPOL property (dot) operator after an object name
in the code. A list is then displayed with the properties of the object. We can use the up and down
arrow keysto move through the list, or the mouse cursor to select another list property name. Another
way is to begin to write the name of the property so that the property name closest to what has been
written will be shown selected in thelist. If we press the tab key on the keyboard, the whole property
name will be appended after the dot operator.

This feature works with types nested at any level within other types. See the example below:

Example 4.1. Data Type Help

type MyType
enbed
string sl
i nteger i1
end type

12

The Help Valet

function main()
M Type t

t. (1]

end function "OK"

O After pressing the dot key, alist will display the s1 and i1 property names.

Function Prototype Help

Function prototype help is activated when the open parenthesis character is appended after afunction
name in the code. A list is then displayed with the parameters of the function. Each entry in the list
showsthe parameter datatype, itsname, and evenitsdefault value (if it has one). Asweadd parameters
to the function, the list entry selected will be moved one position down, so that the parameter that is
selected in the list is the same as the one that we are currently typing. Thelist will be closed when we
type the close parenthesis, that means that the function is not going to receive any more parameters.
If the parameter list is till active, we can use the the left and right arrow keys to move to another
parameter position. The parameter selected in the list will be the parameter the caret is over in that
moment. If we arein afunction and one of the parameters we type is another function call, the editor
will show the new function parameter list, and after typing all the parameters the new function needs,
the editor will show the previous function parameter list in order to continue to support the entering
of parameters.

There is another way this feature can be used. If we set the cursor at any position inside a function
parameter list in our program and press at the same time the keys Ctrl+Tab, alist with the parameters
of the function will be displayed. The parameter entry selected will be the parameter that the cursor
pointstointhetext. Thiscan bevery useful if thereisalinein the program with many nested functions.
For example:

Example 4.2. Function Prototype Help

function MyFunction(string s1, integer il)
end function "CK"

function main()

MyFuncti on((1]

end function "OK"

O After pressing the open parenthesis key, alist will display thes1 andi 1 parameters.

OnMouseOver Help

Thisfunctionality isaways active. If the mouse cursor is positioned over an item in the function body
of the source code, a tooltip will be shown, containing information relevant to the item below the
mouse pointer if the item is a function, a type, or avariable. It is a very powerful feature and when
debugging the SIMPOL program, if the mouse cursor is positioned over a variable, the value of the
variable will be shown.

Example 4.3. OnMouseOver Variable Contents Help (Debugging)

function main()
string s1, s2

sl = "Hello"

13

Control Bars

s2 = sl (1]

end function "OK"

© If wemovethemouse cursor over thes1 variableinthisline, atooltip will be displayed showing:
string s1 = "Hello".

Example 4.4. OnM ouseOver Function Prototype Help

function MyFunction(string sArg, integer iArg)
end function "COK"

function main()
string s
s = MyFunction("H ", 1) (1)

end function

© Ifwemovethecursor over thefunction MyFunct i on inthisline, thenatooltip will be displayed
showing: MyFuncti on(string sArg, integer iArg).

Language Items Help

A listisdisplayed of either functions or types at the current cursor position when the appropiate keys
are pressed.

List Type Key Commands Description

Intrinsic types Ctrl+F7 Shows the SIMPOL language internal types.

User-defined types Ctrl+Shift+F7 Shows the types specific to the project.

Internal functions Ctrl+F8 Shows theinternal functions of the SIMPOL lan-
guage.

User-defined functions | Ctrl+Shift+F8 Shows the functions specific to the project.

Control Bars

Control bars are a set of windows that share a common level of functionality. At the bottom of any
control bar there is atab control that allows easy selection of any window owned by the control bar.
There are four different control bars in the Superbase NG IDE: the Project Space control bar, the
Output Windows control bar, the Call Stack control bar, and the Variables control bar. The Project
Space control bar isthe most complex and that will be covered first.

The Project Space Control Bar

This control bar has two windows. They show information for the project that is currently loaded into
the IDE. The content of both windows is updated after any project is built.

Project View

In thiswindow thefilesthat make up aproject are shown asatree. Theroot nodeis always the project
node. The name of the node is the name of the file that contains the information for the project. The
extension of the project fileisawayssnj , for example: MyPr oj ect . snj .

Thechild nodesare the modules. Thereisone modul e node for each moduledirectory inthe project file
structure. The name of the modul e node isthe module directory name. There are two types of modules,

14

The Project Space Control Bar

project modules and imported modules. Project modules are modules that belong to the project and
that are built as part of the process of building the project. Imported modules are modules that belong
to other projects. When we add amodul e to the project anew module directory is created in the project
file structure and a new main source code file is created for the module. When we import a module,
what the IDE does is add a link to amodule that is located in another project.

In the example used in the previous chapter, we had two module nodes: MyFi | e1 and MyFi | e2. A
module node always has a child node, which is the main source code node. The name of this node is
the same as the name of the main source code node file. This node will have as many child nodes as
it hasincluded files. And each of the child nodes will have as many child nodes as they have included
filesand so on.

In a CGI project we will havethe Ser ver Pages node as a child node of each module. This node
looks like a folder and it will contain all the server pages of the module. The Server Page nodes
have the name of the server page file (afile with asne extension). Each Server Page node will have
as many child nodes as there are files included in each server page and so on as in the case of the
SIMPOL source code files. Server page child nodes are normally files with any extension and that
contain chunks of html code.

Project Tree View Nodes
Double-clicking on a source code node or server page node, causes the associated file to be opened
in the editor. Right mouse button clicks on any node displays a menu of options specific to the type
of node that was clicked on.

The Project Node

Thisisthe root node and it represents the entire project.

Table4.1. Menu Options

Menu Item Description

Add New Module Opens a dialog box to create a module in the active project.

Import Module from Opens a dialog box to select another project. Thisis done by selecting the
Project snj file. Thiswill add alink to the active project for each modulein the
external project. The files of an imported project are be read only, since
the active project is not the owner. An imported module node has a differ-
ent color than the project nodes.

Build This launches the Build process. The messages generated by the process
will be displayed in the output window.
Rebuild All This launches the Rebuild All process. Thiswill rebuild all portions of a

project even if normally they would not need to be built. The messages
generated by the process will be displayed in the output window.

Execute This executes the project. If it needs to be built first, then it will be built
prior to execution. The messages generated by the process will be dis-
played in the output window.

Settings Opens the Project Settings dialog box.

Properties Opens the Properties dialog box. In this case, the description of the
project file path, the date of last modification of the file, and the path
of the byte-code file that is generated as a result of the project build are
shown.

The Module Node

There are two types of module nodes, project nodes and imported module nodes. They are shown in
different colors.

15

The Project Space Control Bar

Table 4.2. Menu Options

Menu Item Description

Rename Module Available only for the project modules. This opens a dialog box to change
the name of the module and the name of its main source codefile.

Remove Module If the node is an imported module, the link to the module from another
project will be removed. If the node is a project node, adialog box to re-
move the module will be opened. The dialog box includes an option to re-
move the module folder and all of its contents.

Create SMPOL File |Available only for the project modules. This opens a dialog box to create
an empty source code file within the module.

Properties Opens the Properties dialog box. In this case, the module folder path and
the date of |ast modification of the module are shown.

The Main Source Code Node

This represents the main source codefile. It isthe root of the source code files of the module.

Table 4.3. Menu Options

Menu Item Description

Open File Opensthefilein the editor.

Compile File Thefileis compiled.

Execute File The compiled file associated with the main source codefile is executed. If

necessary, the source will be compiled first.

Properties Opens the Properties dialog box. There are two tabs. Thefirst one dis-
plays the file path, the date of last modification of the file, and the loca-
tion of the byte-code file after compilation. In the second tab we can seea
list with al of the filesthat are included in the module. If isthere acircu-
lar path when including files, then the wrong path is shown in this tab.

An example of acircular path might be: file A includesfile B. File B in-
cludesfile C and file Cincludes File A.

Source Code Nodes

This represents a source code file. These are al of the snma or snu files that are not the main source
code file of amodule.

Table 4.4. Menu Options

Menu Item Description

Open File Opensthefilein the editor.

Delete Shows a dialog box and asks for confirmation to delete the file and re-
move the reference to it in the project.

Properties Opens the Properties dialog box. This dialog box displays the file path
and the date of last modification of the file.

Regenerate Server Thisisavailable only for the source code files that are the output file of a

Page server page file compilation. If the source code file has been modified, the

regenerate process regenerates the associated server page, so that the out-
put of the processisthe server pagefile.

For example: MySPFi | e. smu — regeneratesto—> MySPFi | e. snz.
Thisisuseful when in aserver page thereis alarge block of SIMPOL
code. A server pageis essentialy aHTML page with blocks of embed

16

The Project Space Control Bar

Menu Item

Description

SIMPOL code. So the editor appliesthe HTML color coding rulesto the
document. If we want to have the advantage of the Help Valet with the
SIMPOL language portion of the server page, then we have to work with
the SIMPOL source code document generated after the compilation of the
server page. We can modify the SIMPOL source code in the source code
document and take advantage of the help of the SIMPOL color coding
rules and the context-sensitive Help Vaet, and then we can regenerate the
server page and continue working in the server page on the HTML.

Server Pages Node

This node represents the group of al the server page files in the module. These files are located in

the module directory.

Table 4.5. Menu Options

Menu Item Description
Create New Server Opens a dialog box to add a new server page file to the module.
Page

Reload Server Pages

Load all of the module server pages as child nodes of the Server Page
nodes.

Server Page Node

This represents a server pagefile.

Table 4.6. Menu Options

Menu Item Description

Open File Opensthefilein the editor.

Compile File The server page is compiled.

Delete Shows a dialog box and asks for confirmation to delete the file and re-
move the reference to it in the project.

HTML Viewer Opens the HTML viewer and loads the server pageinto it.

Properties Opens the Properties dialog box. There are two tabs. Thefirst one dis-

plays the file path, the date of last modification of the file, and the loca-
tion of the byte-code file after compilation. In the second tab we can see
alist with al of thefilesthat areincluded in the server page. If isthere a
circular path when including files, then the wrong path is shown in this
tab.

An example of acircular path might be: file A includesfile B. File B in-
cludesfile C and file C includes File A.

Other Nodes

This node represents any node related to a file with an extension other than snj , snu, s, or sne.
Typicaly, itisafile with ablock of HTML that isincluded in a server page.

Table4.7. Menu Options

Menu Item Description

Open File Opensthefilein the editor.

Delete Shows a dialog box and asks for confirmation to delete the file and re-
move the reference to it in the project.

17

The Project Space Control Bar

Menu Item Description

Properties Opens the Properties dialog box. This dialog box displays the file path
and the date of last modification of the file.

Type View

Thiswindow displays the content of the project library filesin ahierarchical or tree layout. A library
file or library is the byte-code file generated after compilation of a modules main source code file or
after the build of a project. So alibrary is always a file with the extension snp or sni . In the type
view tree thereisalibrary node for each library in the project. Each library node has a child node for
each function and for each type that is in the library. Each function node also has a child node for
each argument of the function. Thefirst child node is the first argument, the second child node is the
second argument and so on. Each type node has a child node for each property and method. As with
the functions, each method has a child node per argument.

Type View Nodes

Library Node

A library node represents alink to alibrary file.
There are three types of libraries:

e SIMPOL language library

» Project module library

» External linked library

SIMPOL Language Node

Thisnode containstheinternal type and function information for the SIMPOL language. For example,
function . t oval ortypecgical. Thelabel for thisnodeis<snpol >.

Project Module Nodes

There is one node of this type for each module in the project or imported module. These libraries
contain the information about all of the exported and non-exported functions and types. The name of
the node is the name of the library file, for example: MyLi brary. sm . If the right mouse button is
clicked on thistype of nodethen thelibrary file path and date of thelast modification will be displayed.

External Module Nodes

This contains the information about all of the exported functions and types from an external library.
The external library islinked to the project output file, when the project is built. The name of the node
is the name of the library file and is shown between angular brackets. If the right mouse button is
clicked on thistype of nodethen thelibrary file path and date of thelast modification will be displayed.

Function Node

A funct i on node represents alink to afunction description. It also represents a library function if
itisal i br ary child node, or atype method, if itisat ype child node.

Type Node

At ype node represents alink to atype description.

Element Node

An element node represents a link to an element description. An element can be a type property, a
function or method parameter, or atype tag.

18

The Output Windows Control Bar

The Output Windows Control Bar

Thisisthe location where the IDE communicates results to the user.

Output Window

Thiswindow displaysinformation generated by the application in general. For example, the messages
generated by abuild, or the results of an executed SIMPOL program are shown in this window.

Debug Window

Thiswindow displays information generated by the debugger.

Find in Files Window

This window displays information generated by the Find in fil es process. It displays aline
for each match found. In each of those lines is shown the file path and the line where the match was
found. If we double-click on aline, the file will be opened in the editor and the line where the match
was found will be shown.

The Call Stack Control Bar

This is active only when the debugger is running and the thread with the focus is suspended. This
is a read-only window that displays the stack of function calls of the thread that is suspended. The
bottom function isalwaysthefirst function the thread began to execute. If the thread isthe main thread
("Thread 1"), thisfunction will be mai n. Thetop function is always the function where the execution
pointer is currently located. Double-clicking on alineinthe Cal | St ack window will cause the
source code line that is displayed to be executed. That source code belongs to the function selected
intheCal | St ack window.

The Variables Control Bar

Thisis active only when the debugger is running and the thread with the focus is suspended.

The Locals Window

This window is a table with two columns. The first column is Nare and the second Val ue. This
table shows the name and the current value of the local variablesfor the function selected inthe Cal |
St ack window. The function can be changed if we double-click on another function in the Cal |
St ack window. By default the local variables that are shown are from the function in which the
execution pointer is currently located.

The Me Window

Thiswindow is aso atable with two columns. The first columnis Nane and the second Val ue. This
table shows the name and the current value of the properties of atypeif the function currently selected
intheCal I St ack window is amethod of atype. The method can be changed if we double-click
on another method inthe Cal | St ack window. By default the type properties that are shown are
from the method of atype in which the execution pointer is currently located.

Menus

These menus are located at the top of the application. Any menu when selected displays an options
list. Each option performs a specific task.

19

File Menu

File Menu

Table4.8. File Menu ltems

Menu Item Description

New Creates anew document. A list with the active language extensionsis dis-
played. Thislist can be changed in the editor/settings menu entry.

Open Opens an existing document.

Close Closes the active document.

New Project Creates anew project.

Open Project Opens a project. If thereisaproject aready active, it is closed before the
new oneis opened.

Close Project Closes the active project.

Save Project As... Allows user to save the active document with another name in another lo-
cation.

Save All Saves all the open documents.

Print... Prints the active document.

Print Preview Displays how the active document would look like if it were printed.

Print Setup... Opens the Print dialog box. The print options can be changed there.

Recent Files Displays alist of the last files opened.

Recent Projects

Displays alist of the last projects opened.

Exit

Quits the application. Prompts to save any modified documents.

Edit Menu

Table4.9. Edit Menu Items

Menu Item Description

Undo Undoes the last action.

Redo Redoes the previoudly undone action.

Cut Cuts the selection and putsit on the Clipboard.

Copy Copies the selection and putsit on the Clipboard.

Paste I nserts contents of the Clipboard.

Comment This menu option is only availableif the active document isa SIMPOL
source code document (*sma; or simu). It comments the lines selected in
the active document. It prefixes the beginning of each line with adouble
slash string: "//".

Uncomment This menu option is only availableif the active document isa SIMPOL
source code document (*sma; or simu). It uncomments the lines selected
in the active document. It removes the double slash comment prefix ("//")
from the beginning of each line.

Find Searches for a string in the active document.

The Find dialog box contains the following input boxes:

1. Match wholeword only: If it is checked, the Find what entry will have
to match awhole word in the document text to be found.

2. Match case: If thisis checked, the search will be case sensitive.

View Menu

Menu Item

Description

3. Regular Expression: If it is checked, the Find what entry will be treat-
ed as an standard regular expression.

The direction of the search can be "up" or "down". It can be changed us-
ing the appropriate radio buttons.

Thereis aso the button "Mark All". If thisis pressed, a bookmark will be
added to each line that contains the search string.

Find In Files

Searches for astring in multiple files. Thisis avery powerful search tool
that can find the search string in multiple files and folders.

The Find in Files dialog contains the following input boxes:
1. Find what: Enter the search text here.

2. Infileg/file types: Here you must enter the names of the target files you
wish to be searched. The names of the files have to be separated by
semicolons. The wildchar "*" can be used. Example: *sma;*snu

3. Infolder: Enter the name of the search folder here.
The Find in Files dialog box also contains the following check boxes:
1. Match case: If thisis checked, the search will be case sensitive.

2. Regular Expression: If thisis checked, the Find what entry will be
treated as a standard regular expression.

3. Look in subfolders: If thisis checked, filesin the subfolders of the tar-
get folder will also be included in the search.

4. Look in project: If thisis checked, the In files/file types and In fold-
er values will be discarded and the search will only take place in the
"sma", "snmu" and "snz" files that belongs to the project.

Replace...

It opens the Replace dialog box. It looks similar to the Find dialog box,
but it has another entry to introduce the text that should replace the search
text.

Insert Code Block

Thisisonly activeif the active document isa SIMPOL server page
(snz). Itinserts a new empty code block in the document before the line
with the caret. A code block is a place to write SIMPOL languagein a
SIMPOL server page; see Example 4.5, “ Code block limits”.

Example 4.5. Code block limits

S R R T begin code --------------------------
—————————————————————————— end code -------------"-"-"-"----------0%p
View Menu
Table4.10. View Menu Items
Menu Item Description
Sandard Toolbar Shows the standard toolbar.
Edit Toolbar Shows the edit toolbar.

21

Project Menu

Menu Item Description

Debug Toolbar Shows the debug toolbar.

Satus Bar Shows the status bar. The status bar is athin bar at the bottom of the ap-
plication frame. On the left, the bar displays small pieces of information
when the mouse cursor is moved over atoolbar button, menu item, etc.
On theright it displays the line and column where the caret is located in
the active document.

Full Screen Expands the document editor to the whole screen.

Projectspace Adds the "Project Space" control bar to the application frame. Typically,
the bar islocated at the left of the application frame.

Output Adds the "Output" control bar to the application frame. Typicaly, the bar
islocated at the bottom of the application frame.

Call Sack Addsthe "Call Stack" control bar to the application frame. Typically, the
bar islocated at the bottom of the application frame.

Variables Addsthe "Variables' control bar to the application frame. Typically, the

bar islocated at the bottom of the application frame.

Project Menu

Table4.11. Project Menu Items

Menu Item Description

Build Builds the active project. Will only compile files modified since the last
build.

Rebuild All Rebuilds the whole active project. This causes all the files of the project
to be compiled.

Execute Executes the active project. If any files belonging to the project have been
modified since the last build, the project will be rebuilt before being exe-
cuted. The execution result will be displayed in the output window.

Sop building Stops the current build.

Stop executing

Stops the currently executing program.

Refresh documents Reloads all the documents opened in the editor.
Settings Opens the Project Settings dialog box.
Debug Menu

Table 4.12. Debug Menu Items

Menu Item Description

Sart debugging Starts debugging the SIMPOL project. The debugger is launched and the
execution is stopped just before the first line in the "main” function code.

Sop debugging Stops debugging the SIMPOL project.

Continue thread execu-
tion

Continues the execution of the thread that is the focus of the debugger.

Break thread execution

Breaks the execution of the thread that is the focus of the debugger. The
debugger displays the source code line for the current instruction.

Show Next Satement

Displays the statement that will be executed next.

22

Document Menu

Menu Item Description

Sep Into Runs the next statement. If the next statement is afunction call, and the
source code for the called function is available, the debugger will stop just
before the execution of the first statement in the called function.

Sep Over Runs next statement.

Sep Out Runs the program to the end of the current function and steps out to the

caller function. Execution will break upon return to the caller.

Run to Cursor

Runs the program to the line containing the cursor.

Insert/Remove Break-
point

Inserts or removes a breakpoint at the source code line containing the cur-
Sor.

Set Next Satement

Changes the execution pointer to another position. The new position is al-
ways the beginning of acode line in the function that is being executed.

Thread Manager

Opens the Thread Manager dialog box. This option is only available
when debugging a program.

Breakpoint Manager | Opens the Breakpoint Manager dialog box.

Watch Opens the Watch Window dialog box. This option is only available when
debugging a program.

Profile Opens the Profile dialog box. This option is only available when debug-

ging a program.

Document Menu

Table 4.13. Document Menu Items

Menu Item Description

Compile File Compiles the active document fileif it isa SIMPOL source codefile, or a
SIMPOL server pagefile.

Execute File Executes the byte-code file associated with the active document if itisa

SIMPOL source code file. The execution will produce an error if the file
doesn't have a"main” function.

Command Line...

Opens a dialog box for the user to add parameters. These parameterswill
be passed to the "main" function when we execute a SIMPOL file using
the Execute File option. The parameters are separated by one or more
whitespaces. If a parameter contains whitespaces, it should come between
apair of double or single quotes.

Example:
function main prototype: main(string s, string s2)
command line: "hi bye" 123

DOS Newline This means that the lines in the file are separated by "\r\n". It can be
changed to Unix or Mac style.

Unix Newline This means that the lines in the file are separated by "\n". It can be
changed to DOS or Mac style.

Mac Newline This meansthat the linesin the file are separated by "\r". It can be

changed to DOS or Unix style.

Unicode format

Thisisoption is designed to allow the user to change the ASCI1/Unicode
format of afile. If it is checked it means that the file content is unicode, if
it is not checked then the content is ASCII. Unicode files have a byte or-

23

Window Menu

Menu Item

Description

der mark at the beginning of the file and each character is stored in two
bytes. ASCII files do not have a byte order mark, and each character is
stored in asingle byte.

Trim Trailing White
Foaces on Lines

Removes all the whitespaces and tabulator characters at the end of each
linein the active document.

HTML Viewer

Launchesthe HTML viewer. This option is only available when the active
document isan HTML file or a SIMPOL server page.

Window Menu

Table4.14. Window Menu ltems

Menu Item Description

New Window Thisisonly available when there is at least one active document. It cre-
ates a duplicate copy of the currently opened window.

Cascade Thisisonly available when there is at |east one active document. It
arranges the windows in the editor frame as overlapping tiles.

Tile Thisisonly available when there is at |east one active document. It

arranges the windows in the editor frame as non-overlapping tiles.

Arrange Icons

Thisisonly available when there is at |east one active document. It
arranges icons at the bottom of the window.

Close All

Closes all open documents.

Tools Menu

Table4.15. Tool Menu Items

Menu Item

Description

Project Report

Thisisonly availableif thereis an active project open. It opensadialog
box where there are five options to generate documentation from the ac-
tive project. The options are as follows:

Project summary in TEXT format

Creates atext document briefely describing the active project. It contains
the project file paths, the project settings and the project functions and
types prototypes.

Project summary in HTML format

Same asthefirst option but in HTML format.

Project description in XML format

Creates a XML document with all the active project information.
Project library information in HTML format

Createsa HTML document describing the functions and types that belong
to the active project.

SIMPOL library information in HTML format

24

Tools Menu

Menu Item

Description

Creates aHTML document describing the functions and types that belong
to the SIMPOL internal library.

Projects Report

Opens adialog box to generate documentation for multiple projects.
There are two entries in the dialog box. One to enter an input folder. The
projects report process will make areport per each project found in this
folder or in any subfolders within the input folder. The second entry is
the output folder. Thisis the place where the process will leave all the
reports. All the reports are HTML files and an "index.html" fileis cre-
ated with the report list. A report for the SIMPOL internal library isal-

so created. A "lodfile.txt" is created with the incidences that happen in
the process. Any report contains all the function and type information of
each project. The powerful issueis that the process createsa HTML link
in every library, function, type, method, property, parameter, tag, etc., so
from any report we can go to another report were the description islocat-
ed. The process al so adds the code lines just above a function or type dec-
laration that start with a double slash mark ("//" SIMPOL comment mark).

In the example below, the file "MyFile.sma" contains these two functions:

[/ This function returns a string
[l The string is "Hello"

function f1()

end "Hel | o"

[/ This function returns a string
[/l The string is "Bye"

function f2()

end "Bye"

In the documentation generated for the function f1 we will find this piece
of text: 'Thisfunction returns a string. The string is"Hello" .

And in the documentation generated for f2 we will find the equivalent

piece of text: 'Thisfunction returns a string. The string is "Bye" ".

Call Graph

Thisisonly availableif thereis an active project. It opensthe Call Ana-
lyzer dialog box. The dialog box shows a tree diagram of the calls among
functionsin the project. In this case the parent function calls the child
function. .

Caller Graph

Thisisonly availableif thereis an active project. It opensthe Call Ana-
lyzer dialog box. The dialog box shows a tree diagram of the calls among
functionsin the project. In this case the child function calls the parent
function. .

Check Project File

Thisisonly availableif thereis no active project. It opens the Check
Project File dialog box.

Open file as binary

Opens a dialog box that allows the user to open afile as binary. This
means that a document will be created with the data of the file selected.
This document contains two lines for each 32 bytesread in thefile. The
first line shows the value of each byte in hexadecimal format, and the sec-
ond shows the ASCII trandlation of each byte. The address of the bytein
thefileis shown on the left side of the first line, so it is easy to follow the
binary representation.

25

Help Menu

Menu Item

Description

The document created will have a"bi n" file extension and the appropiate
color coding syntax. This makes it very easy to read the document.

The searching function becomes quite a powerful tool in the binary doc-
ument. If the "Find" menu option is pressed, a modified Find dialog box
opens to search the information in this type of document.

Thisdialog box hasa"Find what" entry to enter the search text. Any

text entered will be translated into ASCII, and searched for in the docu-
ment. Thereisa"Unicode" checkbox which, when checked, will instruct
the application to translate the search text into unicode before searching
the document, i.e. it will allow two bytes per character rather than one.

In such acase, the rightmost byteis zero. There is also a"Match case”
checkbox. If thisis checked, the search will only return results where the
case exactly matches that of the search text. Users can also use regular ex-
pressions to find information in the binary file by checking the "Regular
expression” checkbox.

Options

Opens the Application Options dialog box.

Help Menu

Menu Item Description
About SMPOL IDE... |Displays program information, version number and copyright.
Keyboard Map... Shows the application keyboard map.

Tool Bars

Standard Toolbar

Table4.16. Help Menu Items

There arethreetoolbars available in the application. Almost all of the buttons have an associated entry
inthe menus, so for help regarding the use of abutton, please refer to the help for the associated menu

command.

Thisisthe standard toolbar, similar to that found in many applications. It contains the following but-

tons:

* New

* Open

» Save

» SaveAll
* Cut

* Copy

» Paste

* Print

» About

e FindinFiles

26

Edit Toolbar

HTML viewer

Close All

Edit Toolbar

Thistoolbar contains the following buttons:

Undo

Redo

Find

Previous Text Found - Moves to previous text found.

Next Text Found - Moves to next found.

Toggle Bookmark - Toggles a bookmark for the current line on and off.

Next Bookmark - Moves to the line containing the next bookmark.

Previous Bookmark - Moves to the line containing the previous bookmark.

Clear All Bookmarks - Clear all bookmarks in the active window.

Debug Toolbar

Thistoolbar contains the following buttons:

Start Debugging

Stop Debugging

Continue Thread Execution
Bresk Thread Execution
Show Next Statement
Step Into

Step Over

Step Out

Run To Cursor
Insert/Remove Breakpoint
Set Next Statement
Threads

Call Stack

Variables

Watch

Important Dialogs

The following is a description of the main application dialog boxes.

27

Breakpoint Manager

Breakpoint Manager

This dialog box manages the active project breakpoints status. A breakpoint is a mark added to aid
debugging. When the application reaches that line, it will interrupt the execution of the program. The
line containing the breakpoint will not be executed.

To add or remove a breakpoint in the active document, movethe caret to the line and pressthe "I nserts/
Remove Breakpoint" button. The breakpoint is displayed in the editor as a maroon circle on the left
of the line. When abreakpoint is added, it is active for all the threads of the program. By default there
is no condition for the break, i.e. the execution will break in all cases. It is possible to add a break
condition, using the "Condition to stop execution", field, which is explained below.

The Breakpoint Manager dialog box shows a table with information on all the project breakpoints.
Thereis arow for each breakpoint. The following table explains each component of the Breakpoint

Manager dialog box:

Table4.17. Breakpoint Manager Dialog Box

Menu Item

Description

'Enabled' column

Shows if the breakpoint is active or not. It can be toggled.

'File path’ column

Full file path of the file that contains the breakpoint.

'Fileline' column

The line in the source code file were the breakpoint is.

'Thread ID' column

Thread that will "see" the breakpoint. Valid dataincludes: 'al', '1', '2', '3,
‘4, etc.

'Condition to stop exe-
cution' column

Condition that will be evaluated when the execution get the breakpoint. If
the condition evaluates to be true, the execution will be interrupted. If the
condition evaluate to be false, the execution will continue uninterrupted.
Thisisapowerful feature and is fully explained in the section called * Ex-
pression evaluation help”

'Show sour ce code for
selected breakpoint’
button

When this button is pressed, the editor opens the file and shows the line
where the selected breakpoint is located.

Expression evaluation help

Expression data types

Expression operators

» boolean
* integer

* string

Thefollowingisalist of the expression operators available in SIMPOL

Table 4.18. Expression operators

Operator Syntax Return Type
+ i nteger + integer i nt eger
- i nteger - integer i nt eger
* i nteger * integer i nt eger
/ i nteger / integer i nt eger
< i nteger < integer bool ean

28

Expression evaluation help

Operator Syntax Return Type
> i nteger > integer bool ean
<= i nteger <= integer bool ean
>= i nteger >= integer bool ean
== i nteger == integer bool ean
I = i nteger != integer bool ean
<> i nteger <> integer bool ean
+ string + string string
== string == string bool ean
I = string !'= string bool ean
<> string <> string bool ean
and bool ean and bool ean bool ean
or bool ean or bool ean bool ean
O Used to group none

sub- operations

NB: ! = and <> are equivaent

Constant Values

Variable Values

Data Type Accepted Values
bool ean .trueor.fal se
i nt eger Any integer >= - 2147483647 and <= 2147483647
string Any array of charactersin between quotes: ". “or'.....
» A variable valueisafunction local variable or atype property value
Breakpoint Condition
» Must be aboolean expression
Watch Window Expression
» Can be any expression or object reference
Built In Functions
Thefollowingisalist of the built-in functions in the SIMPOL language:
Syntax Return Type Example Returned Value
#StrAsci i string #StrAsci i 68 65 6C 6C 6F
(string input) ("Hello")
#St r Uni code string #St r Uni code 0068 0065
(string input) ("Hello") 006C 006C 006F
#StrLength i nt eger #StrLength 11
(string input) ("He{d}{a}!llo")
#St r Lengt hEx i nt eger #St r Lengt hEX 7
(string input) ("He{d}{a}!llo")

Expression evaluation help

Syntax Return Type Example Returned Value
#Tr ace .fal se Exanpl e: #Trace .false (the text
(string text) ("Hell o) goes to the de-
bug wi ndow)
#Bool ToSt r string |#Bool ToStr (.true) ".true"
(bool ean input)
#lnt ToStr (in- string #lnt ToStr (123) "123"
teger input)
#St r UCase string #St r UCase "HELLO'
(string input) ("Hello")
#Str LCase string #StrLCase "hel | 0"
(string input) ("Hell o)
#StrTrim string #StrLCase "Hel | 0"
(string input) (" Hello ™)
#StrRight (string| string #St r Ri ght "l o"
i nput, inte- ("Hello", 2)
ger | ength)
#StrLeft (string string #StrLeft " He"
i nput, inte- ("Hello", 2)
ger | ength)
#StrMd (string string #StrMd (" Hel - "l o"
i nput, inte- [o", 3, 2)
ger from in-
teger |ength)
- - #StrMd (" Hel - "el
lo", 3, -2)
#StrFindF (string | integer #St r Fi ndF (" Hel - 1
i nput, in- lo", 0, "el")
teger from
string match)
- - #StrFi ndF (" Hel - -1 (not found)
lo", 0, "bye")
#StrFindB (string | integer #StrFindB (" Hel - 1
i nput, in- lo", 5, "el")
teger from
string match)
- - #StrFindB (" Hel - -1 (not found)
lo", 5, "bye")
#Fi |l eTrace (string| .false #Fi | eTrace ("c: .fal se (The text
path, string text) \tenp\log.txt", i s appended to
"Hel | 0") the file "c:
\tenp\log.txt")
#St r Hext Tol nt i nt eger #St r Hext - 65534
(string input) Tolnt ("FFFE")
#1 nt ToSt r Hext string #| nt ToSt r Hext " FFFE"
(integer input) (65534)
#Str Repeat (string| string #St r Repeat "Hel | oHel | oHel | 0"
i nput, inte- ("Hello", 3)

ger repeat)

Expression evaluation help

string vari abl e)

\temp\l og. txt",

"My Qbj ect . propertyl”

Syntax Return Type Example Returned Value
#Var Cont ent ToFi | e .fal se #Var Cont ent - .false (Usefu
(string path, ToFile ("c: for anal yzing

the content of
) | arge vari abl es)

Directory()

Directory()

#Var Content Length | i nteger | #VarContentlLength 12000
(string variable) (""MyQbj ect . propertyl)
#Var Struct ToFi |l e .fal se #Var Struct - .false (The ob-
(string path, ToFile ("c: ject structure and
string variable) \tenmp\log. txt", content is saved
"MyQbj ect") in XM. fornmat)
#Get Current - string #GCet Current - "c:\tenp\"

Breakpoint Expression Examples

Below are some sample code fragments and some example breakpoint expressions. Breakpoint ex-
pressions can only be evaluated on lines of executable code.

type TA
bool ml
i nteger n
string nB
end type

type TB
string
TA nb
end type

function
bool b
i nt eger i
string s
TB tb

exanpl e()

end function

Table 4.19. Breakpoint Expression Examples

Sample Return Type
1<i and s =="H" bool ean

(1 +3) *2+i >3 bool ean

b and .false or th.nb.nl bool ean

tb. nb. nil bool ean

s string

th obj ect reference
(b or th.nb.nl) and th.m == s bool ean

(i *3+2) +2- 14/ tbh.nb.n2 i nt eger

31

Call Analyzer

Call Analyzer

Thisis only available if there is an active project. This dialog box represents a tree view of all the
callsamong functionsin the project. Each node represents afunction. If the dialog box is opened from
"Menu/Tools/CallGraph", the parent function calls the child one. If the dialog box is opened frome
"Menu/Tools/CallerGraph", the parent function is called by the child one.

The dialog box has a combo box for the user to select the project function that will be the root of
the tree. Once thisis selected, the tree will be created with the functions that call or get called by the
parent node and so on.

Each node displays the name of the function that it represents. At the bottom of the dialog box thefile
path of the function is displayed and the function prototype. If the user double clicks on a node, the
editor will open the source code file where the function is located and show the function definition.
Thiswill happen only if the source codefile is available.

Check Project File

This is only allowed if there is no active project. Using this dialog box, the user can check if the
structure of a project definition file (asnj file) isvalid or not.

The dialog box has an entry for the project definition file path. After entering the file path, the button
"Check consistency" becomesactive. Thisbutton will check the consistency of thefileand will display
the result in the box below the button. There are two buttons below the result box. The first button
edits the project file definition. The second button loads the project that will be active if the project
definition fileis OK. If there are problems with the project definition file, the user hasto edit it, make
the appropiate changes and save the modified file. After that the user must check the consistency again
repeat the process until the project description fileisvalid.

Thisdialog box will always show upif the user triesto load a project with an invalid project desciption
file.

Application Options

This dialog box stores general application properties. This information is stored in the windows
registry.The following properties can be modified:

Property Description

SIMPOL compiler file | Showsthe SIMPOL compiler file path. It isasnp file with the function-
path ality to compile a source code file (sma or smu) into abyte-codefile
(snp or s). The SIMPOL compiler is abyte-code file that is executed
in the SIMPOL virtual machine as any other snp or sni file.

If the application cannot find the compiler file at the path you specify, it
will search in the root directory of the application.

Working Directory Use thistext box to enter the path of the folder you wish to contain your
Superbase NG projects. Thisinformation will be used by the application
to make it easier for the user to handle project information.

MultiLanguage If this checkbox is checked, the user will be able to work with severa dif-
ferent languages in the application. This means the user will be able to ed-
it different types of files, and different color-codig syntax rules will be
applied in the IDE. If MultiLanguage is not checked, the application will
work only with the SIMPOL language.

Optimize Linker Output | This checkbox affects the project link process. If it is not checked, the ap-
plication will concatinate all the snp and s files. This set of filesin-
cludes the result of compiling all the project modules, plus all the files
that areinthelist of filesto link. Any of thefilesto link is the result of
an external project build, so it is quite common that the filesto link share

32

Application Options

Property

Description

part of its content among them. If we check this option, the application
will analyze all the filesto concatenate and it will remove all the repeated
information in the final project byte-code file result of the project build.

Create application Icon
File associations

If this button is pressed, a process will be launched to create the applica-
tion icon file associations. This process makes appropriate changes to the
registery, that allow the operating system to associate an icon for each of
the following file extensions: sma, smu, sz and snj . Hence, if the user
double-clicks on any of these files (in windows explorer etc.) the file will
be opened with the SIMPOLIDE application. Options to build, rebuild or
execute are displayed in a popup menu if the user right-clicks on theicon
of asnj file.

Languages

In this area, the user can add, remove or change the properties of all the
languages the application can handle. The description of each language is
stored in adiferent .i ni " file. By default the application handles the fol-
lowing languages: Binary, C++, C#, HTML, IDL, JScript, SIMPOL, Su-
perbase, Text, Visua Basic, VBScript and XML.

A language can be activated or deactivated with the "active" checkbox.
On the left of thisareathereisalist of languages. On the right, the path
to the selected language description file is displayed and the file exten-
sions associated to the language. If there is more than one, they haveto
be separated by semicolons. Thereis also a short description of the select-
ed language.To edit the selected language settings, click on the "Edit Lan-
guage..." button.

Help

There is acheckbox to activate the help system. The help system is called
by pressing "F1" button from any place in the application.

There are two entries in the help area. In the first entry, the user entersthe
program that will be opened when the help isinvoked. The second entry
isthe file to open with that program. Example: "Exe File: C: \ Pr ogr am

Fil es\Internet Explorer\iexplore.exe", "Command Line:
C:\ SI MPOL\ docs\ i ndex. ht ml ™.

Autosave

If thisis selected, the application will save anu active project files and
folders to the windows temporary folder.In this area, there are two entries.
Thefirst is to indicate how many minutes to wait between autosaves. The
second entry isto indicate the maximun number of different copiesto be
stored in the temporay folder.

For example, if the number of minutesis set to 15 and the maximun
number of copiesis set to 4, after working with "MyProject” for
two hours, there will be 4 copies of the project in the windows tem-
porary folder. The nameswill be: MyPr 0j ect _Aut oSave_ 1,
MyProj ect _Aut oSave_2, MyProj ect Aut oSave_ 3

and MyProj ect _Aut oSave_4, with the most recent being
MyProj ect _Aut oSave_ 1.

Save project documents
before build...

If this box is checked and the user isworking in a project, the documents
that belong to the project will be saved just before a project build, rebuild,
execute or debug start, .

SMA source code file
default preference

If this box is checked, the default source code file for new projects be-
comes the sma type. Any new projects opened will now, by default, use
only sma files. If this box is unchecked, new projects will, by default, on-
ly use smu files. These settings can be changed once the project is created
by using the Project Settings dialog box (Project/Project Settings...).

33

Languages

Property Description
This property will not take effect if the user has the ASCII-only applica
tion build.
Languages

Thisdialog box allows the user to change the settings for alanguage. The language settings are stored
ina.i ni file. For example, the language settings file of the XML languageis XML. i ni .

This dialog box has the following tabs:
Editor

In this area the user can change the basic aspects of a specific language.

We can personalize the following properties:

Property Description
Tab size This changes how far the caret jumps when the user presses tab.
Auto indent If the user hits the return button with auto indent turned on, the caret will

be automatically indented to the same position as the text begins on the

line above. Until the user types some text, the indentation is temporary,

so if the user opens another active window, the caret will be left aligned
when he or she returns.

Show whitespace If thisis checked, the tabulators and whitespaces in the document will be
displayed with special characters.(afloating decimal place for whitespace
and a">>" character for tabulators).

Virtual whitespace If this box is unchecked, the user cannot position the caret after the last
blank space or character that has been typed in aline. If it is checked, the
user can position the caret anywhere in the editing window and begin typ-
ing. The application will fill empty spaces in the line with tablators as
necessary.

Replace tabs If thisis checked, all tabulators in the document are replaced by equive-
lant whitespaces. Thiswill have no visual effect on the document unless
you have the " Show whitespace" box checked.

Match case If it is checked, the editor parser will work in a case sensitive mode, if
not, the editor parser works in a non-case sensitive mode.

Font face name Displays the name of the font that is used in the document.

Font size Displaysthe size of the font. The "Font Settings" button can be used to

change these options.

Parser

The parser is in charge of recognizing the keywords, string patterns, operators, etc throughout the
document text. Thisinformation is used by the editor to color the text, following the rules of the spe-
cific language. These settings are very important, as they effect how the color-coding of the language
functions, so the user has to be compl etely sure before making a change, especially with the SIMPOL
language.

The following properties can be edited:

Property Description
Operators Characters that are operatorsin the language. For example: + - *
Delimiters Characters that are delimitersin the language.

New Project Options

Property Description

KW3tartChars Special characters that can be the first character of a keyword.

KWMiddleChars Specia charactersthat can bein the middle of a keyword.

KWENndChars Special charactersthat can be at the end of a keyword.
Keywords

Keywords are special reserved words in a language. For example, in SIMPOL language, kewords
include: for, i f, function and while.

On the |eft there is alist with all the language keywords. Above the list there are buttons to add and
remove keywords. On theright sidethereisacombobox. The combobox list contains the names of the
all thedifferent color groupsthat can be selected. The user can then choose acolor group per keyword.

Colors

Each language has a different set of color groups. SIMPOL, for example, has the following groups:
Conment , Keywor d, Nunber, Operator, String, SystenfFunction, SysteniType,
Text, Text Sel ection and User Type.

Each color group has a foreground color and a background color. These two colors can be changed
using the appropiate buttons on the right side of the color area.

Property Description

Operators Characters that are operatorsin the language. For example: + - *

New Project Options

This dialog box is used to create a new Superbase NG project. It is used to set the properties of the
new project.

These are the options:

Property Description

Project output type Thisisthe type of file that the build of a project will generate. It can be
snp or s . Both are byte-code files that will be run in the SIMPOL vir-

tual machine.
Project source code Thisisthe type of source code file that will be used in the project. It can
type be sma, which isan ASCII file, or srmu, which isa Unicodefile.
Project location The folder where the new project will be created.
Project name The name of the new project.
Wrapper over SMPOL | This means that the project will be created wrapping the SIMPOL source
codefile code file selected. A project with one module will be created, and the

SIMPOL source code file will be the module's main source code file.

Get properties from If this box is checked, the user has the opportunity to select a project. The
project new project will inherit the project properties of selected project.

Debug Execution Profile

This option is only available if there is an active project and the user is not debugging it. The infor-
mation recorded from a debug session is displayed here. It is a very powerful feature that shows the
developer the bottle-necks of his SIMPOL program and, as aresult, he can remove them and improve
the program'’s performance. At the top left of the dialog box there is a checkbox to enable or disable

35

Project Settings

thisfeature. If it isenabled, execution in debug modewill go abit slower in order to record the function
calls, time spent in each function, and so on.

There is abox at the top where the user can enter a number of microseconds. This is the maximum
amount of time that will be recorded for a statement being executed. The reason behind introducing
this cutoff isthat amultitasking operating system can pause the execution of a processin the middle of
an statement. In this case the time the statement takes to be executed is actually its own time plus the
time the microprocessor doing other things. So if we know, for example, that apart of our statement is
going to last less than 500 microseconds, we can set this time as a cutoff. Thiswill probably remove
all the time the microprocessor is out of our processin the profile report, or at |east, the majority of it.

The most important thing in the dialog box is the table, where the recorded information will be dis-
played after adebug sesion. Thereisarow per function. The columns of the table are explained below:

Column Description

Library Thelibrary file name where the functioniis.

Function The name of the function. It can be aglobal function or an object method.
Call count The number of times the function is called.

Full time (milliseconds) | The time spent in the function for all the calls. It takes into account the
time spent executing the function statement, plus any time spent in func-
tions that were called from within it.

Truncate time (millisec- | The "Full time" minus the time spent for each statement bigger that the
onds) cutoff.

Error time (millisec- | Thisisan indication of the +/- error in the timing of the function. The
onds) actual time taken will be somewhere between "Full time" minus "Error
time" and "Full time" plus"Error time".

Block time (millisec- | The amount of time for which the execution was blocked. This happens,
onds) for example, when the SIMPOL program uses sockets, tablesin adata
base, etc.

Project Settings

Thisis only available if there is an active project. It displays the project properties, and allows the
user to edit them. The project settings are stored aways in a file with snj extension. The name of
thisfile is the name of the project.

The dialog box shows the following information:

File Folders

Thisisalist of thefoldersthat the SSIMPOL compiler will useto find the included files. There are two
types of included path: absolute file paths and relative file paths.

For example, in alamda source code file, there could be aline like this:

i nclude "c:\projects\nyproject\includes\ WFilel.sm"
Or alinelikethis:

i nclude "MyFilel. sma"

The advantage in the second example is that the path in the source code is not made explicit. Note that
the path can have the dlash or back slash character depending on the operating system.

If the path is absolute, the compiler will use it and nothing more. If the path is relative, for example
MyFi | el. sma, the compiler will firstly use the folder where the file is being compiled to search
for the included file. If the included file is not there, it will search for it in each of the "File folders'
folders until it isfound.

36

Project Settings

*sm Files to link

A list withthesmi filesthat will be included in the output project file.

Targets

A target is a copy of the output project file plus a shebang line that is added at the beginning of the
file. A target istypically the output of a CGI Project, and the shebang line is the path to the SIMPOL
virtual machine program that will execute the byte-code file. The target file is typically called from
the web server, and the web server will take the information from the shebang line to execute thefile.
The targets are created in the project build process.

Targets is atable with arow per target. There are buttons to add, edit and remove atarget. The add
and edit target buttons will open the target manager dialog box, where the user can add or modify a
target. The Targets table has the following colums:

Column Description

Activate A checkbox to activate or deactivate the target creation in a project build.
Target Thetarget file path. E.g. c: \ Apache\ bi n\ MyPr oj ect . snp.
Shebang Line The shebang line. E.g. #! c: \ SI MPQL\ snpcgi 32. exe{d}{a}.
Command line The parameters that will be passed to the "main" function when the

project is executed. The parameters are separated by one or more white-
spaces. If a parameter contains whitespaces, they should be entered within
double quotes or between single quotes.

Example:

function main prototype: mmin(string s, string s2)
command line: "hi bye" 123

Output file (*snp, The byte-code file that is generated as aresult of a project build. If the
*sm) project hasa"main" function, this output file will have asnp exten-

sion and could be executed alone in the SIMPOL virtual machine. If the
project does not have a"main" function, the output file will havesm ex-
tension. In this case, the byte-code file acts as alibrary to be linked to by
other projects at design-time, or as alibrary to be loaded dynamically by a
running SIMPOL program.

Source code file prefer- | The default file extension that the application will use for this project
ence when the user creates a new file or opens afile etc.

Make file If this box is checked, the application will create two make files

in the project build process. Oneisto be used over Windows

platforms (NMAKE facility) and the other isto be used over the Linux
platform's (MAKE facility). This make file has the information to make
aproject build. The file time dependencies are taken into account when
making a project build.

CGlI Project This contains a checkbox and an area to enter information. It is provided
in the case the user wishes work with a CGI Project. If the box is checked,
the project changes from anormal project to a CGI project. A CGl SIM-
POL program is pretended to be called from aweb server. These pro-
grams have amain function but with an special parameter. This parame-
ter isareference to a CGICall object that will transport all the informa-
tion that the web server received from a browser call. The CGI SIMPOL
program will perform an action depending on the brower request and will
output HTML code embedded in SIMPOL strings to the CGICall ob-
ject. ThisHTML code will be returned to the browser that made the call
through the web server and will be displayed in the customer's browser as

37

Target Manager

Column Description

aHTML web page. So in the end, what the CGI programer needs is away
to build HTML web pages quickly and away to modify the web page dy-
namically, depending on the specific browser request.

Instead of working directly with the SIMPOL code and trying to imag-
ine how the HTML code embedded in SIMPOL strings will turn out, the
programmer can create SIMPOL server pages and work in them. A SIM-
POL server pageisaHTML page with blocks of SIMPOL code embed.
The advantage of working with SIMPOL server pagesisthat they can
be displayed in the HTML viewer of the SIMPOL application. The build
process will create the SIMPOL source code associated, and it will be
compiled as any other SIMPOL source code file.

If the CGI Project checkbox is checked, a new folder entitled " Server
Pages' is created as a child of every module folder in the Project View
Tree. All the SIMPOL server pages that belong to the specific module
will be displayed in the folder. A SIMPOL server pageisafilewith snz
extension.

In the CGI Project area the user can set the extension of the source code
file that will be generated when compiling a server page. It can be sima or
smu. Thereisan entry to set the output call format - the "CGICall.output"
method that will output an string to the standard output. By default the
formatis. cgi . out put (% + "{0D}{0A}",

An exampleis shown below. It is assumed here that the CGICall object
isnamed "cgi". The "%s" are placeholders for the HTML embedded as a
string.

Qut put CA format:
cgi .output (% + "{OD}{OA}", 1)
Line in a SIMPOL server page file:
<TH>Hel | 0 </ TH>
Line in the source code file associ ated
cgi .output ("<TH>Hel lo </ TH>" + "{0OD}{0A}", 1)

Target Manager

This dialog box is opened when the "add/edit target” button in the Project Manager dialog box is
pressed.

On the left thereisalist of target folders and on the right thereisalist of shebang lines. Below each
list isan edit box where the user can modify the information (target folder or shebang line). There are
buttons to add the content of the edit box to the appropiate list, remove an entry in the list or add the
content of the entry in thelist to the edit box. Thelist entries are stored in the windows registry. There
isalso acheckbox to activate or deactivate thetarget. Finally, thereisan entry inthetarget areato enter
the target file name. Note: Thisis usually the name of the project output, but it can be overwritten.

Watch Window

Thisis only available when a project is being debugged. It is avery powerful feature that allows the
user to evaluate expressions and to display the runtime object content.

The dialog box has an expression entry at the top. At the center of the dialog box there is the object
viewer, which displays the result of the expression evaluation in a tree view. If the user enters the

38

Thread Manager

name of afunction variable that contains an object as an expression, it will be displayed in the object
viewer. The object tree root node represents the object in the variable. There will be a child node per
object contained in the root object, and each of these nodeswill have achild node per object it contains
and so on. This allows the user to inspect the object completely.

The object viewer has two sides. The left side is where the tree nodes are located, and the right side
is where the value of the object, if applicable, is displayed. Typically the objects with values are the
basic types: boolean, integer, string, number and blob. But each object has an internal value that can
or cannot be used. For example, the standard object "date" has an integer as internal value to store
the date value.

On each node the name of the variable or type property that holds an object, the type of the variable or
type property holder and an internal 1D of the current object is displayed. If there are two nodes with
thesameinterna ID in atree, it meansthat they refer to the same physical object. All the objects have
a child type object. This type object transports information about the structure of the parent object.
So the value of the type object will be the type the parent object has at runtime. For example, if the
type of avariable is atag type "type(MyType)" then the object held in the variable can or cannot be
a"MyType" object. It isdisplayed in the child type object.

If an expression is not a variable or atype propery, result will be displayed in the object viewer as a
tree with just one node and of another color.

The expressions can contain variables and type property hames with boolean, integer and string con-
stants. There are many operators that can be used in an expression, so we can evaluate very complex
ones at runtime and retrieve interesting pieces of information. (The expression rules are described in
the the section called “ Expression eva uation help”)

Thereis an edit box at the botton of the dialog box. When a node of the object tree that holds a basic
object is selected, the value will be displayed in the box, and the user can modify it. After a value
modification, the user has to press the "Set Value" button if he wants to update the object tree with
this new value. After editing and changing severa values in the object tree, the user must press the
"Save new values' button to save al the changesin the physical objects.

When editing ablob value, anew window appears at the bottom of the dialog. This new window will
display the ASCI| translation of the binary content of the blob. Thisis quite useful if the blob contains
ASCII information, e.g. ASCI| text.

Thread Manager

The Thread Manager isthe placeto modify the running status of athread whilst debugging aSIMPOL
program.

The debugger enumerates the threads sequentially as they are created by the program, with the first
one created being known as "Thread 1"

The Thread Manager displays the running status of all the threads in the program and the functions
that they are executing at the time the thread manager is opened. The user can also suspend or resume
any thread and change the debugger focus to another thread. This meansthat Step Into, Step Out, Run
to Cursor etc. will affect this new thread.

Keyboard Shortcuts

Below isalist of the keyboard shortcuts availablein the IDE. Thislist can also be viewed by choosing
"Keyboard Map..." from the help menu.

Edit Shortcut Keys

Keys Description

Ctrl+Shift+8 Toggle view whitespace

39

Edit Shortcut Keys

Keys Description

Ctrl+A Select all

Ctrl+C Copy

Ctrl+F Opens "Find" Dialog
Ctrl+H Opens "Replace" Dialog
Ctrl+J Comment

Ctrl+Shift+J Uncomment

Ctrl+K Inserts a code block in a server page before the current line
Ctrl+L Cut line

Ctrl+Shift+L Delete Line

Ctrl+U Make selection lowercase
Ctrl+Shift+U Make sel ection uppercase
Ctrl+V Paste

Ctrl+Shift+W Select word

Ctrl+X Cut

Ctrl+Y Redo

Ctrl+z Undo

Back Delete previous character
Ctrl+Back Delete word to start
Alt+Back Undo

Alt+Shift+Back Redo

Delete Delete next character
Ctrl+Delete Delete word to end
Shift+Delete Cut selection

Down Line down

Ctrl+Down Scroll window one line down
Shift+Down Select up tolineend

End Gotolineend

Ctrl+End Go to document end
Shift+End Select up to lineend
Ctrl+Shift+End Select up to document end
Escape Clear selection

F1 Help

F2 Bookmark next

Ctrl+F2 Bookmark toggle
Shift+F2 Bookmark previous
Ctrl+Shift+F2 Bookmark delete all

F3 Find next

Ctrl+F3 Find next word

Shift+F3 Find previous
trl+Shift+F3 Find previous word
Ctrl+F6 Next pane

40

File Shortcut Keys

Keys Description
Ctrl+Shift+F6 Previous pane

Fo Break point toggle
Home Beginning of line
Ctrl+Home Document start
Shift+Home Select back to line start
Ctrl+Shift+Home Select back to document start
Insert Indicator OVR
Ctrl+Insert Copy

Shift+lnsert Paste

Left Character left

Ctrl+Left Word left

Shift+Left Select character |eft
Ctrl+Shift+Left Select back to word start
Next Page down

Shift+Next Select page down

Prior Page up

Shift+Prior Select page back

Return New line

Right Character right
Ctrl+Right Word right

Shift+Right Select character right
Ctrl+Shift+Right Select up to word end
Tab Insert one tab
Shift+Tab Move one tab back

Up Lineup

Ctrl+Up Window scroll one line up
Shift+Up Select back to line start

File Shortcut Keys

Keys Description

Ctrl+N Creates anew file

Ctrl+O Opens the file open dialog box

Ctrl+P Opens the print dialog box

Ctrl+S Savesthe current file

F7 Compile

Ctrl+F5 Execute

F8 Command line dialog box
Project Shortcut Keys

Keys Description

Ctrl+B Build

41

Intellisense Shortcut Keys

Keys Description
Ctrl+R Rebuild dll
Ctrl+E Execute

Intellisense Shortcut Keys

Keys Description

Ctrl+TAB Shows function argument list
Ctrl+F7 Shows intrinsic typelist
Ctrl+Shift+F7 Shows user defined type list
Ctrl+F8 Shows intrinsic function list
Ctrl+Shift+F8 Shows user defined function list

Call Graph Shortcut Keys

Keys Description
Ctrl+F9 Shows graph of functions that the selected function calls
Ctrl+Shift+F9 Show graphs of functions that call the selected function

Debugger Shortcut Keys

Keys Description

F4 Starts debugging

Shift+F4 Stops debugging

F5 Continues thread execution
Alt+Num* Shows next statement

F11 Step into

F10 Step over

Shift+F11 Step out

Ctrl+F10 Run to cursor

Fo Insert/remove breakpoint
Alt+F9 Opens the breakpoint manager
Shift+F9 Watch

42

	Superbase NG IDE Users Guide
	Table of Contents
	Chapter 1. Copyright and Disclaimer
	Copyright Information
	Disclaimer

	Chapter 2. Introduction
	Chapter 3. The Superbase NG Project
	Introduction
	The Organization of Files in a Project
	SIMPOL Server Pages
	Description
	Server Page Directives
	Multiline Comments
	Server Page Comment Blocks
	include
	outputcall
	SIMPOL Source Code in an HTML Argument Value

	Chapter 4. The Superbase NG IDE Environment
	Starting the IDE
	Editing Documents
	The Help Valet
	Data Type Help
	Function Prototype Help
	OnMouseOver Help
	Language Items Help

	Control Bars
	The Project Space Control Bar
	Project View
	Project Tree View Nodes
	The Project Node
	The Module Node
	The Main Source Code Node
	Source Code Nodes
	Server Pages Node
	Server Page Node
	Other Nodes

	Type View
	Type View Nodes
	Library Node
	SIMPOL Language Node
	Project Module Nodes
	External Module Nodes

	Function Node
	Type Node
	Element Node

	The Output Windows Control Bar
	Output Window
	Debug Window
	Find in Files Window

	The Call Stack Control Bar
	The Variables Control Bar
	The Locals Window
	The Me Window

	Menus
	File Menu
	Edit Menu
	View Menu
	Project Menu
	Debug Menu
	Document Menu
	Window Menu
	Tools Menu
	Help Menu

	Tool Bars
	Standard Toolbar
	Edit Toolbar
	Debug Toolbar

	Important Dialogs
	Breakpoint Manager
	Expression evaluation help
	Expression data types
	Expression operators
	Constant Values
	Variable Values
	Breakpoint Condition
	Watch Window Expression
	Built In Functions
	Breakpoint Expression Examples

	Call Analyzer
	Check Project File
	Application Options
	Languages
	Editor
	Parser
	Keywords
	Colors

	New Project Options
	Debug Execution Profile
	Project Settings
	File Folders
	*sml Files to link
	Targets

	Target Manager
	Watch Window
	Thread Manager

	Keyboard Shortcuts
	Edit Shortcut Keys
	File Shortcut Keys
	Project Shortcut Keys
	Intellisense Shortcut Keys
	Call Graph Shortcut Keys
	Debugger Shortcut Keys

