Superbase NG IDE Users Guide
Building Projects in the SIMPOL Language

Manuel Franco
Neil Robinson
Duncan Jones

Superbase NG IDE Users Guide: Building Projects in the SIMPOL Lan-

guage
by Manuel Franco, Neil Robinson, and Duncan Jones
Copyright © 2001-2017 Superbase Software Limited

Table of Contents

1. Copyright and DiSCIaIMENiiiiiie e e enaens 1
Copyright TNFOMMBLTON ...ttt 1
DR o F= 11111 ST S PP PRTRP 1

2. INEFOTUCTION ..ttt e e e et e e et e e et et e e e e et neeeene s 3

3. The SUPErbase NG PrOJECEccouuuiiieiii et et e e s 5
Fg11goTo (8 oi [l H TP PP TPPPPTP PPN 5
The Organization Of FileSin @ ProjeCtcouuuiiiiiiiiieii e 6
SIMPOL SEIVEI PAOESuiieiiiiiiei ettt ettt e 7

DESCIIPLION ...ttt et et et e 7
SErVEr Page DITECHIVESuieiiii et 9

4. The Superbase NG IDE ENVIFONMENTccouutniiiiiiieiiii et 11
SHATING ThE IDE ...ttt et e et 11
Editing DOCUMENES ... ettt ettt e et e e ettt e e et et e e e enb e e e enbnaaeeees 12

The HEIP VAIEL ..o e 12
CONTIOI BAIS ...ttt ettt 14
The Project Space COontrol Barccouuuiiiiiiieeiii e 15
The Output WIindows CONrol Barveieeiiieiiiiieiei e 19
The Call Stack CONLIOl Barcccuuuiiiiiiiieie e 20
The Variables CONrol Balrc.uuiiiiiiiiiiiiii e 20
1= 01U PP PPTN 20
FIIE IVIBNU . et ettt e e et e e e eeaes 20
Bt MENU ..ottt 21
VIBW IMBINU L.ttt e e 22
PrOJECE MENU ..coeeciee et 23
DEDUG IMENU ..ot 23
DOCUMENE MBINU ...ttt et e r e ea e ees 24
WINAOW IMENU L.ttt e e e s 25
TOOIS IMBNU ...t ettt ettt e et e 25
HEID IMIBNU . et e e e e e eeera e eees 27
TOOI BaIS ..ttt e e e e e een 27
Standard TOOIDANcouuieiiii e 27
Edit TOOIDA ...t 28
DeDUG TOOIDEN ... 28
IMPOILANT DIAIOGS ... eeeeet ettt ettt e et e et eeeeba s 29
Breakpoint MBNAGEScoouuiieeiii ettt ettt e et e e e e 29
EXpression evaluation NEIP ... 29
Call ANAIYZEN ..o 33
Check ProjECE FIlE ... et 33
APPHICALTON OPLIONSveieiieii ettt e e e e 34
LBNGQUBOES ...eveeiiie ittt ettt 35
NEW ProjECt OPLIONS ...cevviieiiiiie ettt ettt ettt ettt e e e e enb e eenanns 37
Debug EXeCUtion Profileoooiiiii e 37
PrOJECE SEILINGS ... ettt e 38
TarQEt MANAJES .. .ievniiee ettt et 40
WEECH WINGOW ..ttt ettt e e 40
THIEaO MANAJES ettt et e 41
KeYDOArd SNOMCULSeeeeeieeeeit ettt ettt et e e e ra e e eneens 41
Edit SNOMCUL KEYS ...t 41
File SNOMCUL KEYS ... et 43
Project ShOrtCUL KEYS .. .ooei et 44
INtelliSense SNOMCUL KEYS ... i 44

Superbase NG IDE Users Guide

Call Graph ShOrCUL KEYSuiiiii i e e e e e e

Debugger Shortcut Keys

List of Tables

A1 MENU OPLIONS ...ttt ettt ettt ettt e et e et e et et et e e et aber et e e a e e e ana e e enaas 15
A.2. MENU OPLIONS ...ttt ettt ettt ettt ettt ettt ettt e et e et r e et et e e et eae e e e ana e e eanas 16
A.3. MENU OPLIONS ...ttt ettt ettt ettt ettt e et et e e e et r e et e b e e e e e b e e e ana e e enaas 16
A4, MENU OPLIONS ...ttt ettt ettt ettt ettt e et et e et et e et e et r e et et e et e e e e e e ana e eennas 17
A5, MENU OPLIONS ...ttt ettt ettt ettt ettt ettt et e et e e et et e et e ebn e e e ena e e enaas 17
A.6. MENU OPLIONS ...ttt ettt ettt ettt e ettt et e et r e et e b e et e ebe e e e e ane e e ennas 18
A.7. MENU OPLIONS ...ttt ettt ettt et e e et e et et et s e et et r et e ebareeeana e eeanas 18
A.8. FIE MENU TTEIMIS ..ottt et e e e ettt e et e e e eaa s 20
4.9, Eit MENU TTEIMS ..ottt e et ettt e ettt e e e et e e e rea s 21
A.10. VIEW MENU TTEIMIS ...ttt et et e et ettt e e e e e e e 22
410, ProjeCt MENU TTEIMS ...ttt ettt et e e e e e e e e eeanns 23
4.12. DEDUG MENU TTEIMS ...ttt ettt e et e e e 23
4.13. DOCUMENT MENU TTEIMS ..ottt e r e eenas 24
A.14. WINAOW MENU TTEIMS ...ttt et e e et e et e et e eeenans 25
4.15. TOOI MENU TTEIMIS ...ttt ettt e et e et et e e e e 25
A.16. HEIP MENU TTEIMS ...ttt e e e e e et e e e e s 27
4.17. Breakpoint Manager Dialog BOXccouuuiiiiiiiieiiiiie et 29
4.18. EXPreSSION OPEIEIOIS ..eevuetieti e ettt et eet e ettt e et et e et et e et et e et et e e et et e e et et e e e e enan s 30
4.19. Breakpoint EXPression EXAMPIEScouuuiiiiiiieiiii ettt 33

Vi

List of Examples

3.1
3.2
4.1.
4.2,
4.3.
4.4,
4.5.

SIMPOL Server Page COUEouuiiiiiiiiieeeii ettt et e e et e s 7
Compiled SIMPOL SEIVEr PAgEccouuiieiiiiieee ettt e e 8
Data TYPE HEID oot et 12
FUNCEION PrototyPe HEID ..ooveieeie e e e e e 13
OnMouseOver Variable Contents Help (DebUGQING)vuuevertneeiiiiieeeiiin e 14
OnMouseOver FUNction Prototype HEIDieeicee e 14
Code BIOCK THMITS ...eeet ettt e e et e et e e et e e e eeba e eenes 22

Vii

viii

Chapter 1. Copyright and Disclaimer
Copyright Information

This document is copyrighted © 2003-2016 Superbase Software Limited and is not permitted to be dis-

tributed by anyone other than Superbase Software Limited and its licencees.

All trandations, derivative works, or aggregate works incorporating any of the information in this docu-
ment must be cleared with the copyright holder except as provided for under normal copyright law.

If you have any questions, please contact <i nf o@i npol . conp

Disclaimer

No liability for the contents of this document can be accepted. Use the concepts, examples and other

content at your own risk.

All copyrights are held by their respective owners, unless specifically noted otherwise. Use of atermin

this document should not be regarded as affecting the validity of any trademark or service mark.

Naming of particular products or brands should not be seen as endorsements.

Y ou are strongly recommended to take a backup of your system before a major installation and backups

at regular intervals.

Chapter 2. Introduction

This application isan Integrated Development Environment (IDE) to write, execute and debug Superbase
NG applications. Thereisonly one Superbase NG | DE release version, one that runs on Windows XP and
later operating systems. The older releases also included a version for Windows 9x operating systems.
Thisis no longer the case.

The application is mainly an editor to write documents in the SIMPOL language. This editor provides a
color-coding engine that makes it very easy to program in SIMPOL. There are many features that help
the user to write code. For example, aFind infilestool, copy and paste, full screen view, and most recent-
ly-used file and project lists. It also supports working with different languages in the same Superbase NG
application in that other languages can be correctly color-coded, such as XML, HTML, JavaScript, and
others. The editor is very flexible and can be easily personalized. The editor supports other languages as
XML, HTML, JavaScript, Visua Basic,

Theobjectiveisto writeacomplex Superbase NG application quickly and be ableto maintainit easily. The
| DE manages the dependences among Superbase NG files and compiles, executes and all ows debugging of
Superbase NG projects, even CGlI projects! It also provides project documentation tool sto easily document
the various components of a project.

Chapter 3. The Superbase NG Project

This chapter briefly covers what a Superbase NG project is and what are its components.

Introduction

Source code filesin SIMPOL are stored with one of two file extensions: srma or snu. Thefirst extension
indicates that the file content is stored in an ASCII format (1 byte per character) and the second one
indicates that the file content is stored in Unicode format. Unicode can be stored in a number of different
formats. SIMPOL Unicode source files currently must be stored in UCS-2 and should begin with what
is known as a byte-order mark (BOM). UCS-2 format stores characters using two bytes per character. It
is considered good form to also use the byte order mark (OXFEFF) as the first character. This allows the
reading program to determine whether the characters are stored with the least significant byte or with the
most significant byte first.

Here is an example of SIMPOL source code:

function main()
string s
s = "Hello"
end function s

After compiling aSIMPOL source codefiletheresult isabyte-codefile. SIMPOL byte-code filescomein
two flavors. programs and libraries. These are distinguished by the file extensions snp and snl respec-
tively. Theonly difference between them isthat the program files are produced from projectsthat contain a
mai n() function. That isthe entry point for a SIMPOL program. Compiled programs that do not include
amai n() function can not be executed but can be linked to other programsto provide functions and data
types that can be called or used. They can also be loaded dynamically.

Here are two examples of the compilation process:
1. MySI MPOLFi | e1. sma—> MySI MPCLFi | el. snp
2. \ySI MPOLFi | €2. sma —> MySI MPOLFi | e2. smi

After the compilation process, if multiple source files are used to produce the resulting program, the snp
fileisjoined with each of thesm filesin alinking type of processin order to produce the final program.

Here is an example of the linking process:
1. MySI MPOLFi | el. smp + MySI MPOLFi | e2. sm —> MyPr ogram snp

Following the linking process, we can execute the SIMPOL program file in the IDE or depending on the
type of program from the command line or asthe result of entering aURL in aweb browser. The IDE will
call the SIMPOL virtual machine (SVM)and pass it the program and any command line arguments that
have been defined. The SVM then executes the program file. SIMPOL programs usually return a result
string, which will be displayed in the IDE or if called from the command line will be sent to standard out.
In the case of aweb server program, the result is normally aweb page.

A SIMPOL project isagroup of sna and/or snu files and the description of how the compilation and link
isto bedone. It also includes adefinition of which directoriesto search infor included filesand potentially
one or more targets to be created from the final result. It also includesthelist of pre-compiled librariesto
link with, in addition to any library modulesthat are produced as part of the project itself. SIMPOL source
code files can also include any number of other SIMPOL source code files which themsel ves may include

The Organization of Filesin a Project

yet others. Typically aproject may consist of amain source code file that then includes other source code
files, which may then include others. Thisresultsin atree of files below the main file and thisis shownin
the project window to the left of the areawhere the source files are edited. For each modulein the project,
there is a main source file. Each main source code file is the top of atree of included source code files.
The SIMPOL language statement to include afileisi ncl ude followed by the file name as a string.

It is not possible to ssmply compile and execute any source codefile (if it hasamai n() function) using
the IDE. Changes that were made to dynamically load the required components mean that the component
information is added to the project by the IDE build process. Whether for asimple or complex project, the
Superbase NG IDE's real strength isin compiling and linking complex projects. The normal approach to
working with the IDE is to create a project and then to build it. Thisresultsin either a program or library
that can be either executed or loaded into the SVM.

The following is an example of building a project:

1. Project's main source codefiles: MyFi | el. sma, MyFi | e2. sha

2. MyFil el. sma —includes—> MyFi | ela. sma, WyFi | elb. sna
3. MyFi | e2. sma — includes—> MyFi | e2a. snma

4. MyFi | el. sma — compilesto—> MyFi | el. snp

5. MyFi | e2. sma — compilesto—> MW/Fi | e2. s

6. MyFil el. smp + MyFi | e2. sm — linksto —> MyFi | el. snp located in the bi n directory of
the project.

The SIMPOL IDE manages the time dependencies between SIMPOL files, so if in the previous example,
we update the file MyFi | e2a. s, the only file that is going to be compiled when we do a build, is
MyFi | e2. sma, because it is the only main source code file affected.

The project description is stored in a file with the extension snj . For example, in the previous example
the project file name would have been MyFi | e2. snj .

The Organization of Files in a Project

A SIMPOL project is stored on the hard disk as a group of files with the following extensionssnj , sma,
snu, snp, sm , and sne with an appropiate folder structure. | will explain the folder structure using the
above project example.

Thebasis of every project isadirectory. All of thefilesthat are directly part of the project are stored in the
project directory or in subdirectories below that. The name of the directory is the same as the name of the
project. If the project nameis MyFi | e1, the directory name will be MyFi | e1. The project description
is stored in this directory; in this example it is named MyFi | el. snj . Inside the project directory we
will have adirectory for each main source codefile. These are called modules or module directories. Each
modul e contains its main source code file and the rest of the source code filesthat are implemented as part
of the module. Any source code files that are in the module directory besides the main source code file of
the module, must be included in the main or other included source code filesin this module in order to be
compiled and considered part of the module during the build process. It isaso possible to include, as part
of the code of the module, files from other modules or other projects, for example source code files with
standard functions, etc. When the project is built, the resulting byte-code file (either library or program)
will also be found in the modul€e's directory.

The name of the moduledirectory will bethe name of the main source codefilewithout the extension. Inthe
previous example we have two modules; "MyFilel" and "MyFile2". Thefirst module "MyFilel" contains

SIMPOL Server Pages

thefilesMyFi | ela. sma, MyFi | elb. snma and after it iscompiled thefirst time, MyFi | el. snp. The
second module "MyFile2" containsthe filesMyFi | e2. sma and after it has been compiled the first time,
M/Fil e2.sm".

When the project is built the result is stored in the directory called bi n, which is a subdirectory of the
project directory. In the example, the final result of the building the project isthefile MyFi | el. snp.

SIMPOL Server Pages

Description

A SIMPOL server page is a file with the extension sne, the contents of which is HTML but which also
includesblocks of SIMPOL source code. The blocks of source code areinside server page comment blocks
(in between <%and % tags), so if we launch the HTML viewer component of the SIMPOL IDE, we will
seejust the HTML page asif it did not contain any SIMPOL source code.

A project with snz filesis a CGI project. This means that the final SIMPOL program is intended to be
executed on the server side as a CGl, ISAPI or Fast-CGI program. Typically, a CGI program is called
from aweb server, for example the Apache web server. The entry point of a CGI or ISAPI program is the
mai n() function, but in this case, the function has only one argument: function main(cgicall cgi). cgi
isacgical object, and it contains all of the information the web server received from a browser call.

Building aCGl project adds another processto the normal build. First, thesne filesare compiledinto sma
or snu files, and then the normal build follows. When a SIMPOL server page is compiled into SIMPOL
source code, the SIMPOL source code in the server page block comments are passed through without
change and the HTML is converted into string arguments of cgi . out put () statements.

Hereis an example of the process followed when building a CGI project:

1. Project's main server pagefiles: MySPFi | el. sne, MySPFi | e2. sne

2. M\ySPFi | el. snz — includes—> MySPFi | ela. t xt

3. MySPFi | el. sz — compilesto—> MySPFi | el. sma

4. MySPFi | e2. sz — compilesto—> MySPFi | e2. sma

5. Project's main source code files: MyFi | el. sma, MyFi | e2. sma

6. MyFi |l el. sma — includes—> MyFi | ela. sma, MyFi | elb. snmaand MySPFi | el. sna
7. MyFi | e2. sma — includes—> MyFi | e2a. smaand MySPFi | e2. sma
8. MyFi | el. sma — compilesto —> MyFi | el. smp

9. MyFi | e2. sma — compilesto—> MWFi | e2. s

10MyFi l el. snp + MyFi | e2. sml —linkto—> MyFi | el. snp

The following is an example of SIMPOL server page code:

Example 3.1. SSIMPOL Server Page Code

Description

function ShowHel | oOr Not hi ng(cgicall cgi, integer i)
R LT end code ------------------o----o- %>
<HTM_>
<HEAD><META ht t p- equi v="pr agm"
cont ent =" no- cache" ></ HEAD>
<TlI TLE>SI M°PCL Hel | o Page</ Tl TLE>

S L R begin code ---------------------_---.
if(i == 1)

B LT end code -------------------------- %
<BODY>Hel | o</ BODY>

S L R begin code ---------------------_---.
end if

B LT end code -------------------------- %

</ HTM_>

<U---- - begin code ---------------------_---.

end function

Results after compiling the server page:

Example 3.2. Compiled SIMPOL Server Page

—————————————————————————— begin code ----------------ooooon
function ShowHel | oOr Not hi ng(Cd Cal | cgi, integer i)

B end code -----------iooaoa o
cgi . out put ("<HTM.>" + "{OD}{OA}", 1)

cgi . out put (" <HEAD><META http-equiv=""pragma""" + "{0D}{O0A}", 1)
cgi . out put (" cont ent =""no-cache""></ HEAD>" + "{0OD}{O0A}", 1)
cgi . output (" <TITLE>SI MPOL Hel | o Page</ TI TLE>" + "{OD}{O0A}", 1)
—————————————————————————— begin code ----------------ooooon

—————————————————————————— end code -------------------------
cgi . out put (" <BODY>Hel | o</ BODY>" + "{OD}{O0A}", 1)
—————————————————————————— begin code --------------------------

—————————————————————————— end code -------------------------
cgi . out put ("</HTM.>" + "{OD}{0A}", 1)
—————————————————————————— begin code --------------------------

—————————————————————————— end code -------------------------

The advantage of doing this, isthat we can create HTML in adynamic way using the power of the SIMPOL
programming language and we can also visuaize the HTML in the HTML viewer that is part of the IDE
whenever we need it. So it is very easy to embed HTML (what a final user will seein his browser) in a
SIMPOL CGl-style program.

The way that SIMPOL server pages work is different to that of ASP, JSP, or PHP. In each of these cases,
the source code is also embedded into the HTML but unlike with SIMPOL these mixed-mode pages are
then interpreted by the web server (which must be especially designed to be aware of them) and then the
code portions are passed to the language interpreters for execution. With SIMPOL server pages, the design
styleissimilar but the results are compiled rather than interpreted, which isfaster and also does not require
any special capabilities on the part of the web server.

A CGlI project can contain any number of server pages. The server pages follow the same pattern as
SIMPOL source code files when including files. Each main server page is the root node of atree of other

Server Page Directives

included files. The Superbase NG | DE manages the file time-dependencies when a build is done, asin the
case of source code SIMPOL files.

The Superbase NG IDE provides away to compile SIMPOL server pagesinto SIMPOL source code, and
away to regenerate a SIMPOL server page after manipulating the associated (compiled) SIMPOL source
code; this allows the programmer to use the color coding capabilities of the IDE for the HTML source
when working on the server page and then after compiling, it is possible to work on the SIMPOL program
source in the resulting compiled page. After the changes are done to the compiled source, the option to
regenerate the server page from the right mouse button popup menu should be used to send the changes
back to the server page source code.

Q@ .

It is always a good ideato propogate the changes back to the server page source right after
making them, since the server page is the reference source code in the project. If you forget,
during the next build you will be prompted that the code has changed. If you say okay, your
changeswill belost asthe compilation of the server page overwritesthem. Also, only change
code in the blocks between the begin code and end code comments. If you change anything
else, it won't successfully regenerate the server page!

Server Page Directives

This section covers the syntax of the server page and the specific directives provided.

Multiline Comments

A multiline comment can consist of any piece of text betweenthe start tag <% - andtheendtag- - %. The
comment can cover multiple lines and since it isacomment in the server page it will not be transferred to
the source code when that is compiled. Only white space (spaces and tab characters) may precede the begin
comment tag on the same line, and only white space may follow the end comment tag on the sameline.

Server Page Comment Blocks

These comment blocks are similar to the previous type, except that the contents are passed through to the
resulting compiled SIMPOL source code file as source code statements. This is the method by which the
embedded source code is extracted into the target program source file. Any text between the start tag <
%and the end tag % will be transferred as SIMPOL source code to the target source code file. Asin the
previous case, the start tag may only be preceded on the same line by white space and the end tag may
only be followed on the same line by white space.

I ncl ude

Include the content of afile when the server page is compiled. Example:

<%@include = ".\fol der\ M/JHTM_.Chunk. t xt" %

out put cal |

By default aline of HTML code in the server page file is converted into a line in the SIMPOL source
code file after compilation. The HTML text is embedded in a SIMPOL string that is an argument to the
output method of the cgicall object. It means that if we have a large server page file, after compilation,
lots of output calls are generated. We can optimize this using the outputcall = chunk directive. It can

Server Page Directives

be located at any line in the server page file. To reverse this behaviour we have to use the outputcall =
line directive. For example:

<%@ out putcal | = chunk %
<%@ outputcall = line %

SIMPOL Source Code in an HTML Argument Value

In aline of a server page that holds an HTML argument value in between double quotes, we can add a
small piece of SIMPOL source code in between back tick (") character marks. For example:

Hel | o</ A>
Typically it is used to embed a SIMPOL string variable. In this example, after compilation we will get
something like this:

cgi.output ("Hel | o</ A>" + "{OD}{0A}", 1)

So, we can see that the value of the HTML argument that the browser will receive is the value of the
SIMPOL variable. It is also possible to embed short chunks of inline code.

10

Chapter 4. The Superbase NG IDE
Environment

This chapter covers the various components that make up the Superbase NG Integrated Devel opment
Environment (IDE).

Starting the IDE

The IDE can be started from the command line or another program in various ways that will be outlined
below:

Command Line Parameters Description

sbngi de. exe None The application is launched.

sbngi de. exe filenane First, the application is launched. After that, if the
fileisaproject description file (*snj), the project
will be loaded into the application. If thefileis of
any other type of file, it will be opened in the ap-

plication editor.

sbngi de. exe /o filenane. snj Thisisintended to be used to directly load a
project description file (*snj). The applicationis
launched and the project is loaded.

sbngi de. exe /b filename. snj Thisisintended to be used to directly load a
project description file (*snj). The applicationis
launched and the project is loaded. It then builds
the project and the application closes again. Any
output from the build process is directed to the
shell.

sbngi de. exe [r filename.snj Thisisintended to be used to directly load a
project description file (*smj). The application is
launched and the project isloaded. It then rebuilds
the project and the application closes again. Any
output from the rebuild process is directed to the
shell.

sbngi de. exe /e filenane.snj Thisisintended to be used to directly load a
project description file (*smj). The applicationis
launched and the project is loaded. It then executes
the project and the application closes again. Any
output from the program execution is directed to
the shell.

sbngi de. exe /x filenamne. snj Thisisintended to be used to directly load a
outfile.xm project description file (*snj). The application

is launched and the project isloaded. It then pro-
duces the project information as an XML file and
saves it to the filename passed in the second argu-
ment and then the application closes again. Any
output from the documentation generation process
is directed to the shell.

11

Editing Documents

Command Line Parameters Description

sbngi de. exe /d filename.snp |[Thisisused for callback debugging purposes pri-
marily associated with CGI debugging. The IDE
is launched and the associated project for the byte-
code fileisloaded. The program is then placed in-
to debug mode with a break at the first code state-
ment inside the function mai n() .

Editing Documents

Editing documents is the primary objective of the Superbase NG IDE. Asin any editor, a user can create
adocument and store it in afile, open an existing file, update the content before saving it, etc. There are
many featuresin the IDE that make it easy to write and debug SIMPOL program code. Also becauseit is
quite common today to need to work in severa different languages, the IDE supports basic color coding
for anumber of languages, including Microsoft's Visual Basic, Visua Basic Script, JScript, and C#. Also
supported are HTML, XML XSL, IDL (Interface Description Language — used for defining CORBA
interfaces) and of special interest to Superbase programmers, it supports both tokenized and text format
Superbase programs. This can also be extended by the user as needed ssimply by creating a configuration
file based on one of those supplied and then adding it to the list of supported languages. A language is
associated with alist of file extensions, so if we open in the editor afile with an extension associated with
alanguage, the editor will apply the color-coding syntax rules to the document. That will show thetext in
the document coloring keywords, operators, etc, which greatly enhances the ability to read it accurately.
The language settings can be personalized through the language settings dialog box.

The primary language used in the Superbase NG IDE is of course the SIMPOL language. There are many
built-in features in the editor to handle the specific SIMPOL syntax.

The Help Valet

Many people are familiar with a technology popularized by Microsoft known as IntelliSense®. The Su-
perbase NG IDE has a comparable technology specifically tailored to the needs of the SIMPOL program-
mer that we call the Help Valet. It is activated whenever thereis a project loaded in the IDE and the active
document is a SIMPOL document that belongs to the project. In this case the editor will take the infor-
mation that the IDE retrieves from the project, in order to make it easier for the user to understand their
own program. There are several Help Valet features, including: data type help, function prototype help,
OnMouseOver help, and language items help. Some of the items will not provide complete functionality
until after the program has been successfully built at least once. For example, it is not possible to show the
members of a user-defined type until that type has been part of a build cycle of the project being edited.
The same istrue of user-defined functions.

Data Type Help

This is activated whenever the we append the SIMPOL property (dot) operator after an object name in
the code. A list is then displayed with the properties of the object. We can use the up and down arrow
keys to move through the list, or the mouse cursor to select another list property name. Another way is
to begin to write the name of the property so that the property name closest to what has been written will
be shown selected in the list. If we press the tab key on the keyboard, the whole property name will be
appended after the dot operator.

This feature works with types nested at any level within other types. See the example below:

Example4.1. Data Type Help

12

TheHelp Vaet

type MType
enbed
string sl
integer i1
end type

function main()
M Type t

t. (1]

end function "OK"

O After pressing the dot key, alist will display the s1 and i1 property names.

Function Prototype Help

Function prototype help is activated when the open parenthesis character is appended after a function
namein the code. A list is then displayed with the parameters of the function. Each entry in the list shows
the parameter data type, its name, and even its default value (if it has one). As we add parameters to the
function, thelist entry selected will be moved one position down, so that the parameter that is selected in
thelist is the same as the one that we are currently typing. The list will be closed when we type the close
parenthesis, that means that the function is not going to receive any more parameters. If the parameter
list is still active, we can use the the left and right arrow keys to move to another parameter position. The
parameter selected in thelist will be the parameter the caret is over in that moment. If we arein afunction
and one of the parameters we typeisanother function call, the editor will show the new function parameter
list, and after typing all the parameters the new function needs, the editor will show the previous function
parameter list in order to continue to support the entering of parameters.

Thereisanother way thisfeature can be used. If we set the cursor at any positioninside afunction parameter
list in our program and press at the same time the keys Ctrl+Tab, alist with the parameters of the function

will be displayed. The parameter entry selected will be the parameter that the cursor pointsto in the text.
This can be very useful if thereisalinein the program with many nested functions. For example:

Example 4.2. Function Prototype Help

function MyFunction(string sl1, integer i1l)
end function "OK"

function main()

MyFuncti on((1)

end function "COK"
O After pressing the open parenthesis key, alist will display thes1 andi 1 parameters.

OnMouseOver Help

This functionality is always active. If the mouse cursor is positioned over an item in the function body
of the source code, atooltip will be shown, containing information relevant to the item below the mouse

13

Control Bars

pointer if theitemisafunction, atype, or avariable. It isavery powerful feature and when debugging the
SIMPOL program, if themouse cursor ispositioned over avariable, thevalue of the variablewill be shown.

Example 4.3. OnMouseOver Variable Contents Help (Debugging)

function main()
string s1, s2

sl "Hel | 0"
s2 = sl (1]

end function "OK"

O If we move the mouse cursor over the s1 variable in this line, atooltip will be displayed showing:
string s1 = "Hello".

Example 4.4. OnMouseOver Function Prototype Help

function MyFunction(string sArg, integer iArg)
end function "CK"

function main()

string s

s = MyFunction("H ", 1) (1]
end function

© If we move the cursor over the function MyFunct i on in thisline, then atooltip will be displayed
showing: MyFunction(string sArg, integer iArg).

Language Items Help

A list isdisplayed of either functions or types at the current cursor position when the appropiate keys are

pressed.
List Type Key Commands Description
Intrinsic types Ctrl+F7 Shows the SIMPOL language internal types.
User-defined types Ctrl+Shift+F7 Shows the types specific to the project.
Internal functions Ctrl+F8 Shows the internal functions of the SIMPOL lan-
guage.
User-defined functions | Ctrl+Shift+F8 Shows the functions specific to the project.

Control Bars

Control bars are a set of windows that share acommon level of functionality. At the bottom of any control
bar there is a tab control that allows easy selection of any window owned by the control bar. There are

14

The Project Space Control Bar

four different control bars in the Superbase NG IDE: the Project Space control bar, the Output Windows
control bar, the Call Stack control bar, and the Variables control bar. The Project Space control bar isthe
most complex and that will be covered first.

The Project Space Control Bar

This control bar has two windows. They show information for the project that is currently loaded into the
IDE. The content of both windows is updated after any project is built.

Project View

Inthiswindow thefilesthat make up aproject are shown asatree. Theroot nodeisalwaysthe project node.
The name of the node is the name of the file that contains the information for the project. The extension
of the project fileisalwayssnj , for example: MyPr oj ect . snj .

The child nodes are the modules. There is one module node for each module directory in the project file
structure. The name of the module node is the module directory name. There are two types of modules,
project modules and imported modules. Project modules are modules that belong to the project and that
are built as part of the process of building the project. Imported modul es are modules that belong to other
projects. When we add amodul eto the project anew modul e directory iscreated in the project file structure
and a new main source codefile is created for the module. When we import a module, what the IDE does
isadd alink to amodule that is located in another project.

In the example used in the previous chapter, we had two module nodes: MyFi | el and MyFi | e2. A
module node always has a child node, which is the main source code node. The name of this node is the
same as the name of the main source code node file. This node will have as many child nodes as it has
included files. And each of the child nodes will have as many child nodes as they have included files and
S0 on.

InaCGl project wewill havethe Ser ver Pages node as a child node of each module. This node looks
like afolder and it will contain all the server pages of the module. The Server Page nodes have the name
of the server pagefile (afile with asne extension). Each Server Page node will have as many child nodes

asthere are files included in each server page and so on as in the case of the SIMPOL source code files.
Server page child nodes are normally files with any extension and that contain chunks of html code.

Project Tree View Nodes
Double-clicking on a source code node or server page node, causes the associated file to be opened in
the editor. Right mouse button clicks on any node displays a menu of options specific to the type of node
that was clicked on.

The Project Node

Thisisthe root node and it represents the entire project.

Table4.1. Menu Options

Menu Item Description

Add New Module Opens adialog box to create amodule in the active project.

Import Module from Opens adialog box to select another project. Thisis done by selecting the
Project snj file. Thiswill add alink to the active project for each module in the ex-
ternal project. Thefiles of an imported project are be read only, since the ac-

15

The Project Space Control Bar

Menu Item

Description

tive project is not the owner. An imported module node has a different color
than the project nodes.

Build

This launches the Build process. The messages generated by the process will
be displayed in the output window.

Rebuild All

This launches the Rebuild All process. Thiswill rebuild all portions of a
project even if normally they would not need to be built. The messages gen-
erated by the process will be displayed in the output window.

Execute

This executes the project. If it needsto be built first, then it will be built prior
to execution. The messages generated by the process will be displayed in the
output window.

Settings

Opens the Project Settings dialog box.

Properties

Opens the Properties dialog box. In this case, the description of the project
file path, the date of last modification of the file, and the path of the byte-
code file that is generated as aresult of the project build are shown.

The Module Node

There are two types of module nodes, project nodes and imported module nodes. They are shown in dif-

ferent colors.

Table 4.2. Menu Options

Menu Item

Description

Rename Module

Available only for the project modules. This opens a dialog box to change
the name of the module and the name of its main source code file.

Remove Module

If the node is an imported module, the link to the module from another
project will be removed. If the node is a project node, a dialog box to remove
the module will be opened. The dialog box includes an option to remove the
module folder and al of its contents.

Create SMPOL File

Available only for the project modules. This opens adialog box to create an
empty source code file within the module.

Properties

Opens the Properties dialog box. In this case, the module folder path and the
date of last modification of the module are shown.

The Main Source Code Node

This represents the main source code file. It isthe root of the source code files of the module.

Table 4.3. Menu Options

Menu Item Description

Open File Opens the filein the editor.

Compile File Thefileis compiled.

Execute File The compiled file associated with the main source code file is executed. If
necessary, the source will be compiled first.

Properties Opens the Properties dialog box. There are two tabs. The first one displays
the file path, the date of last modification of the file, and the location of the
byte-code file after compilation. In the second tab we can see alist with all

16

The Project Space Control Bar

Menu Item Description

of thefiles that areincluded in the module. If isthere acircular path when in-
cluding files, then the wrong path is shown in this tab.

An example of acircular path might be: file A includesfile B. File B in-
cludesfile C and file C includes File A.

Source Code Nodes

This represents a source code file. These are al of the sma or snu files that are not the main source code
file of amodule.

Table 4.4. Menu Options

Menu Item Description
Open File Opensthefile in the editor.
Delete Shows a dialog box and asks for confirmation to del ete the file and remove

the reference to it in the project.

Properties Opens the Properties dialog box. This dialog box displays the file path and
the date of last modification of thefile.

Regenerate Server Page | Thisisavailable only for the source code files that are the output file of a
server page file compilation. If the source code file has been modified, the
regenerate process regenerates the associated server page, so that the output
of the processis the server pagefile.

For example: MySPFi | e. snu — regeneratesto —> MySPFi | e. snz.
Thisisuseful when in aserver page thereis alarge block of SIMPOL code.
A server pageisessentialy aHTML page with blocks of embed SIMPOL
code. So the editor appliesthe HTML color coding rules to the document. If
we want to have the advantage of the Help Valet with the SIMPOL language
portion of the server page, then we have to work with the SIMPOL source
code document generated after the compilation of the server page. We can
modify the SIMPOL source code in the source code document and take ad-
vantage of the help of the SIMPOL color coding rules and the context-sen-
sitive Help Valet, and then we can regenerate the server page and continue
working in the server page on the HTML.

Server Pages Node

This node represents the group of all the server page files in the module. These files are located in the
module directory.

Table 4.5. Menu Options

Menu Item Description

Create New Server Page | Opens adialog box to add a new server page file to the module.

Reload Server Pages Load all of the module server pages as child nodes of the Server Page nodes.

Server Page Node

This represents a server pagefile.

17

The Project Space Control Bar

Table 4.6. Menu Options

Menu Item Description

Open File Opensthefile in the editor.

Compile File The server page is compiled.

Delete Shows a dialog box and asks for confirmation to delete the file and remove
the reference to it in the project.

HTML Viewer Opens the HTML viewer and loads the server page into it.

Properties Opens the Properties dialog box. There are two tabs. The first one displays

the file path, the date of last modification of the file, and the location of the
byte-code file after compilation. In the second tab we can see alist with all of
the files that are included in the server page. If isthere acircular path when
including files, then the wrong path is shown in this tab.

An example of acircular path might be: file A includesfile B. File B in-
cludesfile C and file C includes File A.

Other Nodes

This node represents any node related to a file with an extension other than snj , srmu, sna, or sne.
Typically, itisafile with ablock of HTML that isincluded in a server page.

Table4.7. Menu Options

Menu Item Description
Open File Opensthefilein the editor.
Delete Shows a dialog box and asks for confirmation to delete the file and remove
the reference to it in the project.
Properties Opens the Properties dialog box. This dialog box displays the file path and
the date of last modification of thefile.
Type View

This window displays the content of the project library filesin a hierarchical or tree layout. A library file
or library is the byte-code file generated after compilation of a modules main source code file or after
the build of a project. So alibrary is aways afile with the extension snp or sni . In the type view tree
thereisalibrary node for each library in the project. Each library node has a child node for each function
and for each type that isin the library. Each function node a so has a child node for each argument of the
function. The first child node is the first argument, the second child node is the second argument and so
on. Each type node has a child node for each property and method. As with the functions, each method
has a child node per argument.

Type View Nodes

Library Node

A library node represents alink to alibrary file.

There are three types of libraries:

e SIMPOL language library

18

The Output Windows Control Bar

 Project module library
» External linked library
SIMPOL Language Node

This node contains the internal type and function information for the SIMPOL language. For example,
function . t oval or typecgicall. The label for thisnodeis <snpol >.

Project Module Nodes
There is one node of this type for each module in the project or imported module. These libraries contain
the information about all of the exported and non-exported functions and types. The name of the nodeis
the name of the library file, for example: MyLi brary. sm . If the right mouse button is clicked on this
type of node then the library file path and date of the last modification will be displayed.

External Module Nodes
This contains the information about all of the exported functions and types from an external library. The
externa library is linked to the project output file, when the project is built. The name of the node is the
name of thelibrary file and is shown between angular brackets. If the right mouse button is clicked on this
type of node then the library file path and date of the last modification will be displayed.

Function Node

A funct i on node represents alink to a function description. It also represents alibrary function if it is
al i br ary child node, or atype method, if itisat ype child node.

Type Node
A t ype node represents alink to atype description.
Element Node

An element node represents alink to an element description. An element can be atype property, afunction
or method parameter, or atypetag.

The Output Windows Control Bar

Thisisthe location where the IDE communicates results to the user.

Output Window

This window displays information generated by the application in general. For example, the messages
generated by abuild, or the results of an executed SIMPOL program are shown in this window.

Debug Window
Thiswindow displays information generated by the debugger.
Find in Files Window

This window displays information generated by the Find in fil es process. It displays aline for
each match found. In each of those lines is shown the file path and the line where the match was found.

19

The Call Stack Control Bar

If we double-click on aline, the file will be opened in the editor and the line where the match was found
will be shown.

The Call Stack Control Bar

Thisisactive only when the debugger is running and the thread with the focusis suspended. Thisisaread-
only window that displays the stack of function calls of the thread that is suspended. The bottom function
is aways the first function the thread began to execute. If the thread is the main thread ("Thread 1"), this
function will be mai n. The top function is always the function where the execution pointer is currently
located. Double-clicking on alineinthe Cal I St ack window will cause the source code line that is
displayed to be executed. That source code belongsto the function selectedintheCal | St ack window.

The Variables Control Bar

Thisis active only when the debugger is running and the thread with the focusis suspended.

The Locals Window

This window is a table with two columns. The first column is Nare and the second Val ue. This table
shows the name and the current value of the local variablesfor the function selectedintheCal | St ack
window. The function can be changed if we double-click on another functionintheCal I St ack win-
dow. By default the local variables that are shown are from the function in which the execution pointer
is currently located.

The Me Window

This window is also a table with two columns. The first column is Nane and the second Val ue. This
table shows the name and the current value of the properties of a type if the function currently selected
inthe Cal | St ack window is a method of atype. The method can be changed if we double-click on
another methodinthe Cal | St ack window. By default the type properties that are shown are from the
method of atype in which the execution pointer is currently located.

Menus

These menus are located at the top of the application. Any menu when selected displays an options list.
Each option performs a specific task.

File Menu

Table4.8. File Menu Items
Menu Item Description
New Creates a new document. A list with the active language extensionsis dis-
played. Thislist can be changed in the editor/settings menu entry.
Open Opens an existing document.
Close Closes the active document.
New Project Creates anew project.
Open Project Opens aproject. If there is aproject already active, it is closed before the
new one is opened.
Close Project Closes the active project.

20

Edit Menu

Menu Item Description

Save Project As... Allows user to save the active document with another name in another loca-
tion.

Save All Saves all the open documents.

Print... Prints the active document.

Print Preview Displays how the active document would look likeif it were printed.

Print Setup... Opens the Print dialog box. The print options can be changed there.

Recent Files Displaysalist of the last files opened.

Recent Projects Displaysalist of the last projects opened.

Exit Quits the application. Prompts to save any modified documents.

Edit Menu

Table4.9. Edit Menu Items

Menu Item Description

Undo Undoes the last action.

Redo Redoes the previously undone action.

Cut Cuts the selection and putsit on the Clipboard.

Copy Copies the selection and puts it on the Clipboard.

Paste Inserts contents of the Clipboard.

Comment This menu option isonly available if the active document isa SIMPOL
source code document (*sma; or smu). It comments the lines selected in the
active document. It prefixes the beginning of each line with a double slash
string: "//".

Uncomment This menu option isonly available if the active document isa SIMPOL
source code document (*sma; or smu). It uncomments the lines selected in
the active document. It removes the double slash comment prefix ("//") from
the beginning of each line.

Find Searches for a string in the active document.

The Find dialog box contains the following input boxes:

1. Match whole word only: If it is checked, the Find what entry will have to
match awhole word in the document text to be found.

2. Match case: If thisis checked, the search will be case sensitive.

3. Regular Expression: If it is checked, the Find what entry will be treated as
an standard regular expression.

The direction of the search can be "up" or "down". It can be changed using

the appropriate radio buttons.

Thereisalso the button "Mark All". If thisis pressed, a bookmark will be

added to each line that contains the search string.

Find In Files Searches for astring in multiple files. Thisisavery powerful search tool that
can find the search string in multiple files and fol ders.

21

View Menu

Menu Item Description

The Find in Files dialog contains the following input boxes:

1. Find what: Enter the search text here.

2. Infilesffile types: Here you must enter the names of the target files you
wish to be searched. The names of the files have to be separated by semi-
colons. Thewildchar "*" can be used. Example: *sma;*smu

3. Infolder: Enter the name of the search folder here.

The Find in Files dialog box & so contains the following check boxes:

1. Match case: If thisis checked, the search will be case sensitive.

2. Regular Expression: If thisis checked, the Find what entry will be treated
as a standard regular expression.

3. Look in subfolders: If thisis checked, filesin the subfolders of the target
folder will also beincluded in the search.

4. Look in project: If thisis checked, the In files/file types and In folder val-
ues will be discarded and the search will only take placein the "sma",
"smu" and "sne" files that belongs to the project.

Replace... It opens the Replace dialog box. It looks similar to the Find dialog box, but it

has another entry to introduce the text that should replace the search text.

Insert Code Block

Thisisonly active if the active document isa SIMPOL server page (sne).

It inserts a new empty code block in the document before the line with the
caret. A code block is a place to write SIMPOL language in a SIMPOL serv-
er page; see Example 4.5, “Code block limits'.

Example 4.5. Code block limits

View Menu

------------- begin code ------------ommai i
----------- end code -----------iiiiiio---0p

Table4.10. View Menu Items

Menu Item Description

Standard Toolbar Shows the standard toolbar.

Edit Toolbar Shows the edit toolbar.

Debug Toolbar Shows the debug toolbar.

Satus Bar Shows the status bar. The status bar is athin bar at the bottom of the applica-
tion frame. On the left, the bar displays small pieces of information when the
mouse cursor is moved over atoolbar button, menu item, etc. On the right
it displaysthe line and column where the caret islocated in the active docu-
ment.

Full Screen Expands the document editor to the whole screen.

22

Project Menu

Menu Item Description

Projectspace Addsthe "Project Space" control bar to the application frame. Typically, the
bar islocated at the left of the application frame.

Output Adds the "Output" control bar to the application frame. Typically, the bar is
located at the bottom of the application frame.

Call Sack Addsthe "Call Stack" control bar to the application frame. Typically, the bar
islocated at the bottom of the application frame.

Variables Addsthe "Variables' control bar to the application frame. Typically, the bar
islocated at the bottom of the application frame.

Project Menu

Table4.11. Project Menu Items

Menu Item Description

Build Builds the active project. Will only compile files modified since the last
build.

Rebuild All Rebuilds the whole active project. This causes al the files of the project to be
compiled.

Execute Executes the active project. If any files belonging to the project have been
modified since the last build, the project will be rebuilt before being execut-
ed. The execution result will be displayed in the output window.

Sop building Stops the current build.

Stop executing Stops the currently executing program.

Refresh documents Reloads all the documents opened in the editor.

Settings Opens the Project Settings dialog box.

Debug Menu
Table 4.12. Debug Menu Items

Menu Item Description

Sart debugging Starts debugging the SIMPOL project. The debugger islaunched and the ex-
ecution is stopped just before the first linein the "main™ function code.

Sop debugging Stops debugging the SIMPOL project.

Continue thread execu-
tion

Continues the execution of the thread that is the focus of the debugger.

Break thread execution

Breaks the execution of the thread that is the focus of the debugger. The de-
bugger displays the source code line for the current instruction.

Show Next Statement Displays the statement that will be executed next.

Sep Into Runs the next statement. If the next statement is afunction call, and the
source code for the called function is available, the debugger will stop just
before the execution of the first statement in the called function.

Sep Over Runs next statement.

Sep Out Runs the program to the end of the current function and steps out to the caller

function. Execution will break upon return to the caller.

23

Document Menu

Menu Item

Description

Run to Cursor

Runs the program to the line containing the cursor.

Insert/Remove Break-
point

Inserts or removes a breakpoint at the source code line containing the cursor.

Set Next Satement

Changes the execution pointer to another position. The new positionisal-
ways the beginning of a code line in the function that is being executed.

Thread Manager

Opens the Thread Manager dialog box. This option is only available when
debugging a program.

Breakpoint Manager Opens the Breakpoint Manager dialog box.

Watch Opens the Watch Window dialog box. This option is only available when de-
bugging a program.

Profile Opens the Profile dialog box. This option is only available when debugging a

program.

Document Menu

Table 4.13. Document Menu Items

Menu Item Description

Compile File Compiles the active document fileif it isa SIMPOL source codefile, or a
SIMPOL server pagefile.

Execute File Executes the byte-code file associated with the active document if it isa

SIMPOL source code file. The execution will produce an error if thefile
doesn't have a"main” function.

Command Line...

Opens adialog box for the user to add parameters. These parameters will be

passed to the "main" function when we execute a SIMPOL file using the Ex-

ecute File option. The parameters are separated by one or more whitespaces.

If aparameter contains whitespaces, it should come between a pair of double
or single quotes.

Example:

function main prototype: main(string s, string s2)
conmand line: "hi bye" 123

DOS Newline This meansthat the linesin the file are separated by "\r\n". It can be changed
to Unix or Mac style.

Unix Newline Thismeansthat the linesin thefile are separated by "\n". It can be changed
to DOS or Mac style.

Mac Newline This means that the linesin the file are separated by "\r". It can be changed to

DOS or Unix style.

Unicode format

Thisisoption is designed to allow the user to change the ASCI1/Unicode for-
mat of afile. If it is checked it means that the file content is unicode, if it is
not checked then the content is ASCI 1. Unicode files have a byte order mark
at the beginning of the file and each character is stored in two bytes. ASCI|
files do not have a byte order mark, and each character is stored in asingle
byte.

24

Window Menu

Menu Item

Description

Trim Trailing White
Soaces on Lines

Removes all the whitespaces and tabulator characters at the end of each line
in the active document.

HTML Viewer

Launchesthe HTML viewer. This option is only available when the active
document isan HTML file or a SIMPOL server page.

Window Menu

Table4.14. Window Menu Items

Menu Item Description

New Window Thisisonly available when thereis at |east one active document. It creates a
duplicate copy of the currently opened window.

Cascade Thisisonly available when there is at least one active document. It arranges
the windows in the editor frame as overlapping tiles.

Tile Thisisonly available when there is at |east one active document. It arranges

the windows in the editor frame as non-overlapping tiles.

Arrange Icons

Thisisonly available when there is at |east one active document. It arranges
icons at the bottom of the window.

Close All

Closes all open documents.

Tools Menu

Table4.15. Tool Menu Items

Menu Item

Description

Project Report

Thisisonly available if thereis an active project open. It opensadialog
box where there are five options to generate documentation from the active
project. The options are as follows:

Project summary in TEXT format

Creates a text document briefely describing the active project. It contains the
project file paths, the project settings and the project functions and types pro-
totypes.

Project summary in HTML format

Same asthe first option but in HTML format.

Project description in XML format

Creates a XML document with all the active project information.
Project library information in HTML format

Createsa HTML document describing the functions and types that belong to
the active project.

SMPOL library information in HTML format

25

Tools Menu

Menu Item

Description

Createsa HTML document describing the functions and types that belong to
the SIMPOL interna library.

Projects Report

Opens a dialog box to generate documentation for multiple projects. There
aretwo entriesin the dialog box. One to enter an input folder. The projects
report process will make a report per each project found in thisfolder or in
any subfolders within the input folder. The second entry is the output folder.
Thisisthe place where the process will leave all the reports. All the reports
are HTML filesand an "index.html" file is created with the report list. A re-
port for the SIMPOL internal library is also created. A "logfile.txt" is creat-
ed with the incidences that happen in the process. Any report contains all the
function and type information of each project. The powerful issue is that the
process createsa HTML link in every library, function, type, method, proper-
ty, parameter, tag, etc., so from any report we can go to another report were
the description is located. The process also adds the code lines just above a
function or type declaration that start with a double slash mark ("//" SIMPOL
comment mark).

In the example below, the file "MyFile.sma" contains these two functions:

/1 This function returns a string
[/l The string is "Hello"

function f1()

end "Hel |l 0"

/1 This function returns a string
/[l The string is "Bye"

function f2()

end "Bye"

In the documentation generated for the function f1 we will find this piece of
text: 'This function returns astring. The string is "Hello" '.

And in the documentation generated for f2 we will find the equivalent piece

of text: 'Thisfunction returns a string. The string is"Bye" .

Call Graph

Thisisonly available if thereis an active project. It opens the Call Analyz-
er dialog box. The dialog box shows atree diagram of the calls among func-
tionsin the project. In this case the parent function calls the child function. .

Caller Graph

Thisisonly available if thereis an active project. It opens the Call Analyz-
er dialog box. The dialog box shows atree diagram of the calls among func-
tionsin the project. In this case the child function calls the parent function. .

Check Project File

Thisisonly available if thereis no active project. It opens the Check Project
File dialog box.

Open file as binary

Opens adialog box that allows the user to open afile as binary. This means
that adocument will be created with the data of the file selected. This doc-
ument contains two lines for each 32 bytes read in the file. Thefirst line
shows the value of each byte in hexadecimal format, and the second shows
the ASCII trandlation of each byte. The address of the bytein thefileis
shown on the left side of the first line, so it is easy to follow the binary repre-
sentation.

26

Help Menu

Menu Item Description

The document created will have a"bi n" file extension and the appropiate
color coding syntax. This makes it very easy to read the document.

The searching function becomes quite a powerful tool in the binary docu-
ment. If the "Find" menu option is pressed, a modified Find dialog box opens
to search the information in this type of document.

Thisdialog box has a"Find what" entry to enter the search text. Any text en-
tered will be translated into ASCII, and searched for in the document. There
isa"Unicode" checkbox which, when checked, will instruct the application
to tranglate the search text into unicode before searching the document, i.e. it
will allow two bytes per character rather than one. In such a case, the right-
most byte is zero. Thereisaso a"Match case” checkbox. If thisis checked,
the search will only return results where the case exactly matches that of the
search text. Users can aso use regular expressions to find information in the
binary file by checking the "Regular expression” checkbox.

Options Opens the Application Options dialog box.

Help Menu

Table4.16. Help Menu Items

Menu Item Description

About SMPOL IDE... |Displays program information, version number and copyright.

Keyboard Map... Shows the application keyboard map.

Tool Bars

There are three toolbars available in the application. Almost all of the buttons have an associated entry
in the menus, so for help regarding the use of a button, please refer to the help for the associated menu
command.

Standard Toolbar

Thisisthe standard toolbar, similar to that found in many applications. It contains the following buttons:
* New

* Open

» Save

* SaveAll

* Cut

« Copy

e Print

27

Edit Toolbar

About
Findin Files
HTML viewer

Close All

Edit Toolbar

Thistoolbar contains the following buttons:

Undo

Redo

Find

Previous Text Found - Moves to previous text found.

Next Text Found - Moves to next found.

Toggle Bookmark - Toggles a bookmark for the current line on and off.
Next Bookmark - Moves to the line containing the next bookmark.
Previous Bookmark - Moves to the line containing the previous bookmark.

Clear All Bookmarks - Clear all bookmarks in the active window.

Debug Toolbar

Thistoolbar contains the following buttons:

Start Debugging

Stop Debugging

Continue Thread Execution
Break Thread Execution
Show Next Statement
Step Into

Step Over

Step Out

Run To Cursor
Insert/Remove Breakpoint
Set Next Statement

Threads

28

Important Dialogs

+ Call Stack

e Variables

» Waitch

Important Dialogs

The following is a description of the main application dialog boxes.

Breakpoint Manager

This dialog box manages the active project breakpoints status. A breakpoint is a mark added to aid de-
bugging. When the application reaches that line, it will interrupt the execution of the program. The line
containing the breakpoint will not be executed.

To add or remove a breakpoint in the active document, move the caret to the line and press the "Inserts/
Remove Breakpoint" button. The breakpoint is displayed in the editor as a maroon circle on the left of
the line. When a breakpoint is added, it is active for all the threads of the program. By default there is no
condition for the break, i.e. the execution will break in all cases. It is possible to add a break condition,
using the "Condition to stop execution”, field, which is explained below.

The Breakpoint Manager dialog box shows a table with information on all the project breakpoints. There
is arow for each breakpoint. The following table explains each component of the Breakpoint Manager

dialog box:

Table 4.17. Breakpoint Manager Dialog Box

Menu Item

Description

'Enabled' column

Shows if the breakpoint is active or not. It can be toggled.

'File path' column

Full file path of the file that contains the breakpoint.

'Fileline' column

Theline in the source code file were the breakpoint is.

'Thread ID' column

Thread that will "see" the breakpoint. Valid dataincludes: ‘dl', '1', '2', '3', '4,
etc.

'Condition to stop execu-

Condition that will be evaluated when the execution get the breakpoint. If the

tion' column condition evaluates to be true, the execution will be interrupted. If the con-
dition evaluate to be fal se, the execution will continue uninterrupted. Thisis
apowerful feature and is fully explained in the section called “ Expression
evaluation help”

"Show source codefor | When this button is pressed, the editor opens the file and shows the line

selected breakpoint' but- | where the selected breakpoint is located.

ton

Expression evaluation help

Expression data types
 boolean

* integer

29

Expression evaluation help

e string

Expression operators

Thefollowingisalist of the expression operators available in SIMPOL

Table 4.18. Expression operators

Operator Syntax Return Type
+ i nteger + integer i nt eger
- i nteger - integer i nt eger
* i nteger * integer i nt eger
/ i nteger / integer i nt eger
< i nteger < integer bool ean
> i nteger > integer bool ean
<= i nteger <= integer bool ean
>= i nteger >= integer bool ean
== i nteger == integer bool ean
I = i nteger != integer bool ean
<> i nteger <> integer bool ean
+ string + string string
== string == string bool ean
I = string !'= string bool ean
<> string <> string bool ean
and bool ean and bool ean bool ean
or bool ean or bool ean bool ean
O Used to group none

sub- operations

NB: ! = and <> are equivalent

Constant Values

Data Type Accepted Values

bool ean .trueor.fal se

i nt eger Any integer >= - 2147483647 and <= 2147483647
string Any array of charactersin between quotes: " “or'... ..

Variable Values

» A variable valueisafunction local variable or atype property value

Breakpoint Condition

» Must be aboolean expression

30

Expression evaluation help

» Can be any expression or object reference

Built In Functions

Watch Window Expression

Thefollowingisalist of the built-in functions in the SIMPOL language:

Syntax Return Type Example Returned Value
#Str Asci i string #StrAsci i 68 65 6C 6C 6F
(string input) ("Hello")
#St r Uni code string #St r Uni code 0068 0065
(string input) ("Hello") 006C 006C 006F
#StrLengt h i nt eger #StrLength 11
(string input) ("He{d}{a}!llo")
#St r Lengt hEX i nt eger #St r Lengt hEx 7
(string input) ("He{d}{a}!llo")
#Tr ace .fal se Exanpl e: #Trace .false (the text
(string text) ("Hello") goes to the de-
bug wi ndow)
#Bool ToStr string #Bool ToStr (.true) ".true"
(bool ean i nput)
#lnt ToStr (in- string #lnt ToStr (123) "123"
teger input)
#St r UCase string #St r UCase "HELLO'
(string input) ("Hello")
#StrLCase string #StrLCase "hel | 0"
(string input) ("Hello")
#StrTrim string #Str LCase "Hel | 0"
(string input) (" Hello ™)
#StrRight (string string #St r Ri ght "l o"
i nput, inte- ("Hello", 2)
ger | ength)
#StrLeft (string string #StrLeft "He"
i nput, inte- ("Hello", 2)
ger | ength)
#StrMd (string string #StrMd (" Hel - "lo"
i nput, inte- lo", 3, 2)
ger from in-
teger | ength)
- - #StrMd (" Hel - "el
lo", 3, -2)
#StrFindF (string i nt eger #StrFi ndF (" Hel - 1
i nput, in- lo", 0, "el")
teger from

string match)

#St r Fi ndF (" Hel -
lo", 0, "bye")

-1 (not found)

31

Expression evaluation help

Syntax Return Type Example Returned Value
#StrFindB (string i nt eger #StrFindB (" Hel - 1
i nput, in- l[o", 5, "el")
teger from
string match)
- - #StrFi ndB (" Hel - -1 (not found)
lo", 5, "bye")
#Fil eTrace (string .fal se #Fil eTrace ("c: .false (The text
path, string text) \tenp\log.txt", i s appended to
"Hel | 0") the file "c:
\tenp\log.txt")
#St r Hext Tol nt i nt eger #St r Hext - 65534
(string input) Tolnt ("FFFE")
#1 nt ToSt r Hext string #| nt ToSt r Hext " FFFE"
(i nteger input) (65534)
#Str Repeat (string string #St r Repeat "Hel | oHel | oHel | 0"
i nput, inte- ("Hello", 3)
ger repeat)
#Var Cont ent ToFi | e .fal se #Var Cont ent - .false (Useful
(string path, ToFile ("c: for analyzing
string variabl e) \tenmp\log.txt", the content of
"IMyQbj ect. propertyl") |large vari abl es)
#Var Cont ent Lengt h i nteger #Var Cont ent Lengt h 12000
(string variable) (]'MyQbj ect . propertyl"))
#Var Struct ToFi | e .fal se #Var Struct - .fal se (The ob-
(string path, ToFile ("c: ject structure and
string variabl e) \tenp\log.txt", content is saved
"MyQbj ect™) in XM format)
#Get Current - string #Get Current - "c:\temp\"
Directory() Directory()

Breakpoint Expression Examples

Below are some sample code fragments and some exampl e breakpoint expressions. Breakpoint expressions
can only be evaluated on lines of executable code.

type TA
bool ml
i nt eger n
string nB
end type

type TB
string md
TA nb

end type

function exanpl e()
bool b

32

Call Analyzer

i nteger i
string s
TB tb

end function

Table 4.19. Breakpoint Expression Examples

Sample Return Type

1 <i and s == "H " bool ean

(L +3) *2+i >3 bool ean

b and .false or th.nb. ml bool ean

tb. nb. mi bool ean

S string

tb obj ect reference
(b or th.nb.nl) and tb.m == s bool ean

(i *3+2) +2- 141 th.nb.n2 i nt eger

Call Analyzer

Thisis only available if there is an active project. This dialog box represents a tree view of al the calls
among functionsin the project. Each node represents afunction. If the dialog box is opened from "Menu/
Tools/CallGraph™, the parent function calls the child one. If the dialog box is opened frome "Menu/Tools/
CallerGraph", the parent function is called by the child one.

The dialog box has a combo box for the user to select the project function that will be the root of the
tree. Once this is selected, the tree will be created with the functions that call or get called by the parent
node and so on.

Each node displays the name of the function that it represents. At the bottom of the dialog box the file
path of the function is displayed and the function prototype. If the user double clicks on anode, the editor
will open the source code file where the function is located and show the function definition. This will
happen only if the source code fileis available.

Check Project File

Thisisonly allowed if thereis no active project. Using this dialog box, the user can check if the structure
of aproject definition file (asnj file) isvalid or not.

The dialog box has an entry for the project definition file path. After entering the file path, the button
"Check consistency” becomes active. This button will check the consistency of the file and will display
the result in the box below the button. There are two buttons below the result box. The first button edits
the project file definition. The second button loads the project that will be active if the project definition
fileis OK. If there are problems with the project definition file, the user hasto edit it, make the appropiate
changes and save the modified file. After that the user must check the consistency again repeat the process
until the project description fileisvalid.

Thisdialog box will always show up if the user triesto |oad aproject with aninvalid project desciptionfile.

33

Application Options

Application Options

This dialog box stores general application properties. This information is stored in the windows
registry.The following properties can be modified:

Property Description
SIMPOL compiler file | Showsthe SIMPOL compiler file path. It isasnp file with the functionali-
path ty to compile a source code file (snma or smu) into a byte-code file (snp or

sm). The SIMPOL compiler is a byte-codefile that is executed in the SIM-
POL virtual machine as any other snp or sm file.

If the application cannot find the compiler file at the path you specify, it will
search in the root directory of the application.

Working Directory Use this text box to enter the path of the folder you wish to contain your Su-
perbase NG projects. This information will be used by the application to
make it easier for the user to handle project information.

MultiLanguage If this checkbox is checked, the user will be able to work with several differ-
ent languages in the application. This means the user will be able to edit dif-
ferent types of files, and different color-codig syntax rules will be applied
inthe IDE. If MultiLanguage is not checked, the application will work only
with the SIMPOL language.

Optimize Linker Output | This checkbox affects the project link process. If it is not checked, the appli-
cation will concatinate all thesnp and s files. This set of filesincludes
the result of compiling all the project modules, plus al thefilesthat arein
thelist of filesto link. Any of the filesto link isthe result of an externa
project build, so it is quite common that the files to link share part of its con-
tent among them. If we check this option, the application will analyze al the
files to concatenate and it will remove al the repeated information in the fi-
nal project byte-code file result of the project build.

Create application Icon |If this button is pressed, a process will be launched to create the application
File associations icon file associations. This process makes appropriate changes to the reg-
istery, that allow the operating system to associate an icon for each of the
following file extensions: srma, snu, sne and snj . Hence, if the user dou-
ble-clicks on any of these files (in windows explorer etc.) the file will be
opened with the SIMPOL IDE application. Options to build, rebuild or exe-
cute are displayed in a popup menu if the user right-clicks on the icon of a
snj file.

Languages In this area, the user can add, remove or change the properties of al the lan-
guages the application can handle. The description of each language is stored
inadiferent .i ni " file. By default the application handles the following lan-
guages. Binary, C++, C#, HTML, IDL, JScript, SIMPOL, Superbase, Text,
Visual Basic, VBScript and XML.

A language can be activated or deactivated with the "active" checkbox. On
the left of thisareathereisalist of languages. On the right, the path to the
selected language description file is displayed and the file extensions associ-
ated to the language. If there is more than one, they have to be separated by
semicolons. Thereis also a short description of the selected language. To edit
the selected language settings, click on the "Edit Language..." button.

Help There is acheckbox to activate the help system. The help system is called by
pressing "F1" button from any place in the application.

Languages

Property

Description

There are two entries in the help area. In the first entry, the user entersthe
program that will be opened when the help isinvoked. The second entry
isthe file to open with that program. Example: "Exe File: C. \ Pr ogr am
Files\Internet Explorer\iexplore.exe","CommandLine C.
\ SI MPOL\ docs\ i ndex. ht m .

Autosave

If thisis selected, the application will save anu active project files and folders
to the windows temporary folder.In this area, there are two entries. The first
isto indicate how many minutes to wait between autosaves. The second en-
try isto indicate the maximun number of different copies to be stored in the
temporay folder.

For example, if the number of minutesis set to 15 and the maximun num-
ber of copiesis set to 4, after working with "MyProject” for two hours, there
will be 4 copies of the project in the windows temporary folder. The names
will be: MyPr oj ect _Aut oSave_1, MyProj ect _Aut oSave_2,
MyPr oj ect _Aut oSave_3 and MyProj ect _Aut oSave_4, with the
most recent being MyPr oj ect _Aut oSave_1.

Save project documents
before build...

If this box is checked and the user is working in a project, the documents that
belong to the project will be saved just before a project build, rebuild, exe-
cute or debug start, .

SMA source code file
default preference

If this box is checked, the default source code file for new projects becomes
the sma type. Any new projects opened will now, by default, use only sra
files. If this box is unchecked, new projects will, by default, only use snu
files. These settings can be changed once the project is created by using the
Project Settings dialog box (Project/Project Settings...).

This property will not take effect if the user has the ASCI1-only application
build.

Languages

Editor

This dialog box allows the user to change the settings for a language. The language settings are stored in
a.i ni file. For example, the language settings file of the XML languageis XML. i ni .

This dialog box has the following tabs:

In this area the user can change the basic aspects of a specific language.

We can personalize the following properties:

Property Description
Tab size This changes how far the caret jumps when the user presses tab.
Auto indent If the user hits the return button with auto indent turned on, the caret will

be automatically indented to the same position as the text begins on the line
above. Until the user types some text, the indentation is temporary, so if the
user opens another active window, the caret will be left aligned when he or
shereturns.

35

Languages

Parser

Property Description

Operators Characters that are operators in the language. For example: + - *

Delimiters Characters that are delimitersin the language.

KWSartChars Specia charactersthat can be the first character of a keyword.

KWMiddleChars Special characters that can be in the middle of a keyword.

KWEndChars Special characters that can be at the end of a keyword.
Keywords

Colors

Property

Description

Show whitespace

If thisis checked, the tabulators and whitespaces in the document will be dis-
played with specia characters.(afloating decimal place for whitespace and a
">>" character for tabulators).

Virtual whitespace

If this box is unchecked, the user cannot position the caret after the last blank
space or character that has been typed in aline. If it is checked, the user can
position the caret anywhere in the editing window and begin typing. The ap-
plication will fill empty spaces in the line with tablators as necessary.

Replace tabs If thisis checked, al tabulators in the document are replaced by equivelant
whitespaces. This will have no visual effect on the document unless you have
the " Show whitespace" box checked.

Match case If it is checked, the editor parser will work in a case sensitive mode, if not,
the editor parser works in a non-case sensitive mode.

Font face name Displays the name of the font that is used in the document.

Font size Displays the size of the font. The "Font Settings' button can be used to

change these options.

Theparser isin charge of recognizing the keywords, string patterns, operators, etc throughout the document
text. Thisinformation is used by the editor to color the text, following the rules of the specific language.
These settings are very important, as they effect how the color-coding of the language functions, so the
user has to be completely sure before making a change, especially with the SIMPOL language.

The following properties can be edited:

Keywords are special reserved wordsin alanguage. For example, in SIMPOL language, kewordsinclude:
for, if, function and while.

Ontheleft thereisalist with al the language keywords. Abovethelist there are buttonsto add and remove
keywords. On the right side there is a combobox. The combobox list contains the names of the al the
different color groups that can be selected. The user can then choose a color group per keyword.

Each language has a different set of color groups. SIMPOL, for example, hasthe following groups: Com
nment, Keyword, Nunber, Operator, String, Systenfunction, Systenilype, Text,
Text Sel ection and User Type.

Each color group has aforeground color and a background color. These two colors can be changed using
the appropiate buttons on the right side of the color area.

36

New Project Options

Property Description

Operators Characters that are operators in the language. For example: + - *

New Project Options

This dialog box is used to create a new Superbase NG project. It is used to set the properties of the new
project.

These are the options:

Property Description

Project output type Thisisthe type of file that the build of a project will generate. It can be snp
or s . Both are byte-code files that will be run in the SIMPOL virtual ma-
chine.

Project source code type | Thisis the type of source code file that will be used in the project. It can be
sma, whichisan ASCII file, or smu, which isaUnicodefile.

Project location The folder where the new project will be created.

Project name The name of the new project.

Wrapper over SMPOL | This means that the project will be created wrapping the SIMPOL source

codefile code file selected. A project with one module will be created, and the SIM-
POL source code file will be the modul€e's main source code file.

Get properties from If this box is checked, the user has the opportunity to select aproject. The

project new project will inherit the project properties of selected project.

Debug Execution Profile

Thisoptionisonly available if there is an active project and the user is not debugging it. The information
recorded from a debug session is displayed here. It is a very powerful feature that shows the developer
the bottle-necks of his SIMPOL program and, as aresult, he can remove them and improve the program's
performance. At the top left of the dialog box there is a checkbox to enable or disable this feature. If it
is enabled, execution in debug mode will go a bit slower in order to record the function calls, time spent
in each function, and so on.

Thereisabox at the top where the user can enter anumber of microseconds. Thisisthe maximum amount
of time that will be recorded for a statement being executed. The reason behind introducing this cutoff is
that a multitasking operating system can pause the execution of a process in the middle of an statement.
In this case the time the statement takes to be executed is actually its own time plus the time the micro-
processor doing other things. So if we know, for example, that a part of our statement is going to last
less than 500 microseconds, we can set this time as a cutoff. This will probably remove al the time the
microprocessor is out of our process in the profile report, or at least, the majority of it.

The most important thing in the dialog box is the table, where the recorded information will be displayed
after adebug sesion. Thereisarow per function. The columns of the table are explained below:

Column Description

Library Thelibrary file name where the function is.

Function The name of the function. It can be aglobal function or an object method.
Call count The number of times the function is called.

37

Project Settings

Column Description

Full time (milliseconds) | The time spent in the function for all the calls. It takes into account the time
spent executing the function statement, plus any time spent in functions that
were called from within it.

Truncate time (millisec- | The "Full time" minus the time spent for each statement bigger that the cut-
onds) off.

Error time (millisec- Thisisan indication of the +/- error in the timing of the function. The actu-

onds) al time taken will be somewhere between "Full time" minus "Error time" and
"Full time" plus "Error time".

Block time (millisec- The amount of time for which the execution was blocked. This happens, for

onds) example, when the SIMPOL program uses sockets, tables in a data base, etc.

Project Settings

Thisis only available if there is an active project. It displays the project properties, and allows the user
to edit them. The project settings are stored alwaysin afile with snj extension. The name of thisfileis
the name of the project.

The dialog box shows the following information:

File Folders

Thisis alist of the folders that the SIMPOL compiler will use to find the included files. There are two
types of included path: absolute file paths and relative file paths.

For example, in alamda source code file, there could be aline like this:

i nclude "c:\projects\nyproject\includes\ Filel.sm"
Or alinelikethis:

i nclude "MyFil el. sma"

The advantage in the second exampl e is that the path in the source code is not made explicit. Note that the
path can have the slash or back slash character depending on the operating system.

If the path is absolute, the compiler will use it and nothing more. If the path is relative, for example
MyFi | el. sma, the compiler will firstly use the folder where the file is being compiled to search for
the included file. If the included file is not there, it will search for it in each of the "File folders' folders
until it isfound.

*sm Files to link

A list withthesmi filesthat will be included in the output project file.

Targets

A target is a copy of the output project file plus a shebang line that is added at the beginning of the file.
A target is typically the output of a CGI Project, and the shebang line is the path to the SIMPOL virtual
machine program that will executethe byte-codefile. Thetarget fileistypically called from theweb server,
and the web server will take the information from the shebang line to execute the file. The targets are
created in the project build process.

38

Project Settings

Targets is a table with arow per target. There are buttons to add, edit and remove a target. The add and
edit target buttons will open the target manager dialog box, where the user can add or modify atarget. The
Targets table has the following colums:

Column Description

Activate A checkbox to activate or deactivate the target creation in a project build.
Target Thetarget file path. E.g. c: \ Apache\ bi n\ MyPr oj ect . snp.
Shebang Line The shebang line. E.g. #! ¢: \ SI MPOL\ snpcgi 32. exe{d}{a}.

Command line

The parameters that will be passed to the "main" function when the project is
executed. The parameters are separated by one or more whitespaces. If a pa-
rameter contains whitespaces, they should be entered within double quotes or
between single quotes.

Example:

function main prototype: main(string s,
command |line: "hi bye" 123

string s2)

Output file (*smp,
*sm)

The byte-code file that is generated as aresult of a project build. If the
project hasa"main" function, this output file will have asnp extension and
could be executed alone in the SIMPOL virtual machine. If the project does
not have a"main" function, the output file will have s extension. In this
case, the byte-code file acts as alibrary to be linked to by other projects at
design-time, or as alibrary to be loaded dynamically by a running SIMPOL
program.

Source code file prefer-
ence

The default file extension that the application will use for this project when
the user creates a new file or opens afile etc.

Make file

If this box is checked, the application will create two make filesin the
project build process. One isto be used over Windows platforms (NMAKE
facility) and the other isto be used over the Linux platform's (MAKE facili-
ty). This make file has the information to make a project build. The file time
dependencies are taken into account when making a project build.

CGlI Project

This contains a checkbox and an area to enter information. It is provided in
the case the user wishes work with a CGI Project. If the box is checked, the
project changes from anormal project to a CGl project. A CGl SIMPOL pro-
gramis pretended to be called from aweb server. These programs have a
main function but with an special parameter. This parameter is a reference
to a CGICall object that will transport al the information that the web serv-
er received from abrowser call. The CGI SIMPOL program will perform
an action depending on the brower request and will output HTML code em-
bedded in SIMPOL strings to the CGICall object. ThisHTML code will be
returned to the browser that made the call through the web server and will
be displayed in the customer's browser asaHTML web page. So in the end,
what the CGI programer needsis away to build HTML web pages quickly
and away to modify the web page dynamically, depending on the specific
browser request.

Instead of working directly with the SIMPOL code and trying to imagine
how the HTML code embedded in SIMPOL strings will turn out, the pro-
grammer can create SIMPOL server pages and work in them. A SIMPOL
server page isaHTML page with blocks of SIMPOL code embed. The ad-

39

Target Manager

Column Description

vantage of working with SIMPOL server pagesis that they can be displayed
inthe HTML viewer of the SIMPOL application. The build process will cre-
ate the SIMPOL source code associated, and it will be compiled as any other
SIMPOL source code file.

If the CGI Project checkbox is checked, a new folder entitled " Server Pages'
is created as a child of every module folder in the Project View Tree. All the
SIMPOL server pages that belong to the specific module will be displayed in
thefolder. A SIMPOL server pageisafile with snez extension.

In the CGI Project area the user can set the extension of the source codefile
that will be generated when compiling a server page. It can be sma or smu.
Thereis an entry to set the output call format - the "CGI Call.output™ method
that will output an string to the standard output. By default the format is:
cgi.output (% + "{0OD}{OA}",

An example is shown below. It is assumed here that the CGICall object is
named "cgi". The "%s" are placeholders for the HTML embedded as a string.

Qut put CA format:
cgi.output (% + "{OD}{OA}", 1)

Line in a SIMPOL server page file:
<TH>Hel | 0 </ TH>

Line in the source code file associ ated
cgi.output ("<TH>Hell o </ TH>" + "{0OD}{OA}", 1)

Target Manager

Thisdialog box is opened when the "add/edit target" button in the Project Manager dialog box is pressed.

Ontheleft thereisalist of target folders and on theright thereisalist of shebang lines. Below each listis
an edit box where the user can modify the information (target folder or shebang line). There are buttonsto
add the content of the edit box to the appropiate list, remove an entry in the list or add the content of the
entry inthelist to the edit box. Thelist entries are stored in the windows registry. Thereis also a checkbox
to activate or deactivate the target. Finally, thereis an entry in the target areato enter the target file name.
Note: Thisis usually the name of the project output, but it can be overwritten.

Watch Window

Thisisonly available when a project is being debugged. It is avery powerful feature that allows the user
to evauate expressions and to display the runtime object content.

Thedialog box has an expression entry at thetop. At the center of the dialog box there isthe object viewer,
which displays the result of the expression evaluation in a tree view. If the user enters the name of a
function variable that contains an object as an expression, it will be displayed in the object viewer. The
object tree root node represents the object in the variable. There will be a child node per object contained
in the root object, and each of these nodes will have a child node per object it contains and so on. This
allows the user to inspect the object completely.

The object viewer has two sides. The left side is where the tree nodes are located, and the right side is
where the value of the object, if applicable, is displayed. Typically the objects with values are the basic

40

Thread Manager

types. boolean, integer, string, number and blob. But each object has an internal value that can or cannot
be used. For example, the standard object "date" has an integer as internal value to store the date value.

On each node the name of the variable or type property that holds an object, the type of the variable or
type property holder and an internal 1D of the current object is displayed. If there are two nodes with the
sameinternal ID in atree, it meansthat they refer to the same physical object. All the objects have achild
type object. This type object transports information about the structure of the parent object. So the value
of the type object will be the type the parent object has at runtime. For example, if the type of avariable
isatag type "type(MyType)" then the object held in the variable can or cannot be a"MyType" object. It
is displayed in the child type object.

If an expression is not a variable or atype propery, result will be displayed in the object viewer as atree
with just one node and of another color.

The expressions can contain variables and type property names with boolean, integer and string constants.
There are many operators that can be used in an expression, so we can evaluate very complex ones at
runtimeand retrieveinteresting pieces of information. (The expression rulesare described in thethe section
called “Expression evaluation help”)

Thereisan edit box at the botton of the dialog box. When anode of the object tree that hol ds a basic object
is selected, the value will be displayed in the box, and the user can modify it. After avalue modification,
the user hasto pressthe "Set Value" button if he wantsto update the object tree with this new value. After
editing and changing several values in the object tree, the user must press the "Save new values' button
to save all the changesin the physical objects.

When editing a blob value, a new window appears at the bottom of the dialog. This new window will
display the ASCII tranglation of the binary content of the blob. This is quite useful if the blob contains
ASCII information, e.g. ASCII text.

Thread Manager

The Thread Manager is the place to modify the running status of a thread whilst debugging a SIMPOL
program.

The debugger enumerates the threads sequentially as they are created by the program, with the first one
created being known as " Thread 1"

The Thread Manager displays the running status of al the threads in the program and the functions that
they are executing at the time the thread manager is opened. The user can also suspend or resume any
thread and change the debugger focusto another thread. Thismeansthat Step Into, Step Out, Runto Cursor
etc. will affect this new thread.

Keyboard Shortcuts

Below isalist of the keyboard shortcuts available in the IDE. This list can also be viewed by choosing
"Keyboard Map..." from the help menu.

Edit Shortcut Keys

Keys Description
Ctrl+Shift+8 Toggle view whitespace
Ctrl+A Select all

Ctrl+C Copy

Ctrl+F Opens "Find" Dialog

41

Edit Shortcut Keys

Keys Description

Ctrl+H Opens "Replace” Dialog
Ctrl+J Comment

Ctrl+Shift+J Uncomment

Ctrl+K Inserts a code block in a server page before the current line
Ctrl+L Cut line

Ctrl+Shift+L Delete Line

Ctrl+U Make selection lowercase
Ctrl+Shift+U Make sel ection uppercase
Ctrl+V Paste

Ctrl+Shift+w Select word

Ctrl+X Cut

Ctrl+Y Redo

Ctrl+z Undo

Back Delete previous character
Ctrl+Back Delete word to start
Alt+Back Undo

Alt+Shift+Back Redo

Delete Delete next character
Ctrl+Delete Delete word to end
Shift+Delete Cut selection

Down Line down

Ctrl+Down Scroll window one line down
Shift+Down Select up to line end

End Goto line end

Ctrl+End Go to document end
Shift+End Select up to line end
Ctrl+Shift+End Select up to document end
Escape Clear selection

F1 Help

F2 Bookmark next

Ctrl+F2 Bookmark toggle
Shift+F2 Bookmark previous
Ctrl+Shift+F2 Bookmark delete all

F3 Find next

Ctrl+F3 Find next word

Shift+F3 Find previous
trl+Shift+F3 Find previous word
Ctrl+F6 Next pane

42

File Shortcut Keys

Keys Description
Ctrl+Shift+F6 Previous pane

Fo Break point toggle
Home Beginning of line
Ctrl+Home Document start
Shift+Home Select back to line start
Ctrl+Shift+Home Select back to document start
Insert Indicator OVR
Ctrl+Insert Copy

Shift+lnsert Paste

Left Character left

Ctrl+Left Word left

Shift+Left Select character left
Ctrl+Shift+Left Select back to word start
Next Page down

Shift+Next Select page down

Prior Page up

Shift+Prior Select page back

Return New line

Right Character right
Ctrl+Right Word right

Shift+Right Select character right
Ctrl+Shift+Right Select up to word end
Tab Insert one tab

Shift+Tab Move one tab back

Up Lineup

Ctrl+Up Window scroll one line up
Shift+Up Select back to line start

File Shortcut Keys

Keys Description

Ctrl+N Createsanew file

Ctrl+O Opens the file open dialog box
Ctrl+P Opens the print dialog box
Ctrl+S Savesthe current file

F7 Compile

Ctrl+F5 Execute

F8 Command line dialog box

43

Project Shortcut Keys

Project Shortcut Keys

Keys Description
Ctrl+B Build
Ctrl+R Rebuild all
Ctrl+E Execute

Intellisense Shortcut Keys

Keys Description

Ctrl+TAB Shows function argument list
Ctrl+F7 Shows intrinsic type list
Ctrl+Shift+F7 Shows user defined type list
Ctrl+F8 Shows intrinsic function list
Ctrl+Shift+F8 Shows user defined function list

Call Graph Shortcut Keys

Keys Description
Ctrl+F9 Shows graph of functions that the selected function calls
Ctrl+Shift+F9 Show graphs of functions that call the selected function

Debugger Shortcut Keys

Keys Description

F4 Starts debugging

Shift+F4 Stops debugging

F5 Continues thread execution
Alt+Num* Shows next statement

F11 Step into

F10 Step over

Shift+F11 Step out

Ctrl+F10 Run to cursor

Fo Insert/remove breakpoint
Alt+F9 Opens the breakpoint manager
Shift+F9 Watch

	Superbase NG IDE Users Guide
	Table of Contents
	Chapter 1. Copyright and Disclaimer
	Copyright Information
	Disclaimer

	Chapter 2. Introduction
	Chapter 3. The Superbase NG Project
	Introduction
	The Organization of Files in a Project
	SIMPOL Server Pages
	Description
	Server Page Directives
	Multiline Comments
	Server Page Comment Blocks
	include
	outputcall
	SIMPOL Source Code in an HTML Argument Value

	Chapter 4. The Superbase NG IDE Environment
	Starting the IDE
	Editing Documents
	The Help Valet
	Data Type Help
	Function Prototype Help
	OnMouseOver Help
	Language Items Help

	Control Bars
	The Project Space Control Bar
	Project View
	Project Tree View Nodes
	The Project Node
	The Module Node
	The Main Source Code Node
	Source Code Nodes
	Server Pages Node
	Server Page Node
	Other Nodes

	Type View
	Type View Nodes
	Library Node
	SIMPOL Language Node
	Project Module Nodes
	External Module Nodes

	Function Node
	Type Node
	Element Node

	The Output Windows Control Bar
	Output Window
	Debug Window
	Find in Files Window

	The Call Stack Control Bar
	The Variables Control Bar
	The Locals Window
	The Me Window

	Menus
	File Menu
	Edit Menu
	View Menu
	Project Menu
	Debug Menu
	Document Menu
	Window Menu
	Tools Menu
	Help Menu

	Tool Bars
	Standard Toolbar
	Edit Toolbar
	Debug Toolbar

	Important Dialogs
	Breakpoint Manager
	Expression evaluation help
	Expression data types
	Expression operators
	Constant Values
	Variable Values
	Breakpoint Condition
	Watch Window Expression
	Built In Functions
	Breakpoint Expression Examples

	Call Analyzer
	Check Project File
	Application Options
	Languages
	Editor
	Parser
	Keywords
	Colors

	New Project Options
	Debug Execution Profile
	Project Settings
	File Folders
	*sml Files to link
	Targets

	Target Manager
	Watch Window
	Thread Manager

	Keyboard Shortcuts
	Edit Shortcut Keys
	File Shortcut Keys
	Project Shortcut Keys
	Intellisense Shortcut Keys
	Call Graph Shortcut Keys
	Debugger Shortcut Keys

